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Abstract

Traditional Unsupervised Domain Adaptation (UDA)
leverages the labeled source domain to tackle the learning
tasks on the unlabeled target domain. It can be more chal-
lenging when a large domain gap exists between the source
and the target domain. A more practical setting is to utilize
a large-scale pre-trained model to fill the domain gap. For
example, CLIP shows promising zero-shot generalizability
to bridge the gap. However, after applying traditional fine-
tuning to specifically adjust CLIP on a target domain, CLIP
suffers from catastrophic forgetting issues where the new
domain knowledge can quickly override CLIP’s pre-trained
knowledge and decreases the accuracy by half. We propose
Catastrophic Forgetting Measurement (CFM) to adjust the
learning rate to avoid excessive training (thus mitigating
the catastrophic forgetting issue). We then utilize CLIP’s
zero-shot prediction to formulate a Pseudo-labeling setting
with Adaptive Debiasing in CLIP (PADCLIP) by adjust-
ing causal inference with our momentum and CFM. Our
PADCLIP allows end-to-end training on source and target
domains without extra overhead. We achieved the best re-
sults on four public datasets, with a significant improvement
(+18.5% accuracy) on DomainNet.

1. Introduction

Unsupervised Domain Adaptation (UDA) proposes to
reduce data annotation costs by leveraging a labeled source
domain to transfer the knowledge into an unlabeled target
domain [11, 27,49, 60, 73]. Prior UDA works focus on
bridging the domain gap between source and target domains
[4,12,25,27], or increasing network capacity [49, 60] by
changing a convolutional neural network (e.g., ResNet [14])
to Vision Transformer (ViT) [9]. All of these past methods
are pre-trained on ImageNet [7], but large-scale pre-training
is becoming practical and achieves superior performance in
many fields [41, 64,65, 67]. In theory, if the pre-trained
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Figure 1: Catastrophic Forgetting. We naively fine-tune
CLIP (ResNet-101) on VisDA-2017 source domain train-
ing set, and test it on validation sets of VisDA-2017 target
domain and ImageNet-1K. CLIP forgets pre-trained knowl-
edge (ImageNet accuracy -45%), resulting in -27% VisDA-
2017 accuracy. Our PADCLIP mitigates catastrophic for-
getting issues to achieve +6% VisDA-2017 accuracy.

dataset is large enough, the domain gap between source and
target domains could be bridged by the pre-trained dataset
itself. Hence, we argue that large-scale pre-training is an
important missing part of UDA.

We choose CLIP [41], a vision-language model pre-
trained on 400 million image-text pairs. Without fine-
tuning, CLIP outperforms SSRT [49], a state-of-the-art
UDA method on DomainNet [38]. This is thanks to the
large-scale training set, which allows CLIP to disentangle
object class from object domain (e.g., “a photo of a dog” vs
“a sketch of a dog”): the language supervision in the form
of a sentence used by CLIP is more descriptive than a sin-
gle class label. However, on VisDA-2017, CLIP without
fine-tuning underperforms previous work, SDAT [42]. This
is because the synthetic data generated from the real-world
domain do not exist in CLIP’s training set, so we still need
to fine-tune CLIP to adapt it for a specific domain task.

We first adopt the traditional approach to fine-tune CLIP
on VisDA-2017 [39] but found that CLIP suffers from
catastrophic forgetting issues. As shown in Fig.1: before
fine-tuning, CLIP has a strong representation power that
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Figure 2: Overview. For the source domain, we convert the label and domain name into a prompt, and obtain text and image
representations to train CLIP in a supervised manner. We use CLIP’s original representation, and weak/strong augmented
representations to measure CFM to adjust the learning rate for mitigating catastrophic forgetting issues. For the target domain,
we use zero-shot prediction in CLIP to obtain pseudo-labels and adaptively debias them with CFM (adjust debias factor) and
DCM (adjust momentum) for unsupervised learning. *Pseudo-label is converted into a prompt to obtain text representation.

can achieve 67% top-1 ImageNet accuracy, while drop-
ping to 22% after fine-tuning on VisDA-2017. The loss
of CLIP’s representation power causes the accuracy degra-
dation on VisDA-2017. To counter this, it is possible to
preserve CLIP’s representation power by fine-tuning both
CLIP and VisDA-2017 datasets jointly, but CLIP requires
several weeks to train a single setting (DomainNet has 30
settings, so it takes a year for a single experiment). More-
over, we anticipate the data imbalance issue during joint
training since CLIP’s training set is 142 times larger than
VisDA-2017. We seek a more practical solution for catas-
trophic forgetting issues without adding extra overheads.

We attempt to fine-tune CLIP on the UDA dataset with
a lower learning rate and observe less catastrophic forget-
ting issues, but the low learning rate prevents CLIP from
learning new knowledge. To solve this problem, we pro-
pose to adjust the learning rate with Catastrophic Forgetting
Measurement (CFM, Fig. 2) by comparing the original rep-
resentation (forward original image on original CLIP) and
fine-tuned representations (forward augmented images on
fine-tuned CLIP). CFM is, however, unstable because ev-
ery image has a different forgetting rate, so we leverage our
observation that CLIP is likely to have similar predictions
across all augmentations when the training example is easy
(and large difference for the hard example). We propose to
measure the consistency between weak (translate, flip) and
strong augmentation (perturb visual appearance) as a mo-
mentum (Dual Consistency Momentum, DCM) to stabilize
CFM. Our method does not introduce extra overhead: since
the augmentation is already a part of fine-tuning, original

prediction can be cached, and we do not need to fine-tune
UDA and CLIP datasets jointly.

We further seek to use CLIP with pseudo-labeling on
the target domain, which recently enjoyed success in UDA
[35,60,75,76,76]. DebiasPL [57] utilized CLIP for pseudo-
labeling, but it was designed for a single domain. After
extending to source and target domains (UDA setting), De-
biasPL [57] suffers from catastrophic forgetting issues (ac-
curacy decreases by 21% on VisDA-2017 after fine-tuning).
To solve this problem, we replace the fixed debias factor in
DebiasPL [57] with our CFM, and replace the fixed momen-
tum in DebiasPL with our adaptive momentum (DCM). We
further include a domain name into a prompt (such as: “This
is a [sketch] photo of [car]”’). Our method mitigates the
catastrophic forgetting issue, and achieves the best results
on DomainNet [38], VisDA-2017 [39], Office-Home [54],
Office-31 [44]. To summarize, our main contributions are:

* We propose to use CLIP in UDA and discover the
catastrophic forgetting issue when fine-tuning CLIP.
We propose CFM for CLIP in UDA to mitigate this is-
sue without introducing extra computational overhead.

* We propose pseudo-labeling for CLIP in UDA by ex-
tending DebiasPL to multiple domains, and replacing
debias factor and momentum with our CFM and DCM.
We also introduce a domain name into a prompt.

* We achieve the best results on four benchmarks on
both ResNet and ViT, with a large performance im-
provement on the large-scale dataset (+18.5% accu-
racy on DomainNet).
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2. Related Works

Unsupervised Domain Adaptation (UDA) adapts a
model trained on a source domain with annotated datasets
to an unlabeled target domain. Discrepancy-based meth-
ods [20,31,47,52] learn domain-invariant features via mini-
mizing the discrepancy between source and target domains,
or applying adversarial learning [24, 30, 31,42,47,52] to
obtain domain-invariant representations. DANN [ 1] and
CDAN [30] use a domain discriminator to classify source
and target samples while the feature extractor tries to fool
the domain discriminator with generated domain-invariant
features. AaD [062] proposes prediction consistency on the
neighboring features, while CPR [17] uses prototypes in-
stead. In theory, our improvement is orthogonal to these
methods, and they could complement each other. Re-
cent works found that the cross-attention in Vision Trans-
former (ViT) [9] is advantageous to feature alignment, and
it is more robust to the noisy samples compared to CNN,
which is the key to the UDA task [60]. Hence recent
works [42,49,60,61] use ViT as the backbone and achieve
better performance than CNNs. We also leverage ViT.

Pseudo-labeling in UDA aims to leverage unlabeled tar-
get domain data [26, 29, 35,49, 60, 76]. Specifically, the
model will generate pseudo labels on the unlabeled data
during the training process and use them as the supervision
in the following training loop. Consistency regularization is
also applied to different disturbed views of the same sam-
ples [21,46,69] to promote the prediction consistency on
the unlabeled data. However, these methods are built on
the assumption that the unlabeled data share similar distri-
butions as the labeled data [23,26,48,57], which is usually
not true since the source and target are in different domains.
Such distribution mismatch may generate low-quality and
biased pseudo labels [23], resulting in a poor-performance
classifier during the self-training process. Therefore, to re-
lieve the noise and bias, we focus on generating less-biased
pseudo labels during the UDA training in this work.

Vision-Language Models have shown promising results
in learning generic visual representations [19, 34, 41, 68].
Recent models gain their advancement via text representa-
tion learning with Transformers [53], contrastive represen-
tation learning, and web-scale training datasets [74]. For
example, CLIP [41] was trained on 400 million image-
text pairs and achieved state-of-the-art performance in many
fields [41,64,65,67]. However, the best way to adapt CLIP
for downstream tasks is still under study. For example, De-
biasPL [57] found that CLIP [4]] produces imbalanced pre-
diction and proposes to adaptively debias pseudo-label for a
single domain. We extend DebiasPL [57] from a single do-
main to multiple domains in the UDA setting, and address
the domain gap problem by mitigating catastrophic forget-

ting issues, introducing domain name into the prompt, and
dynamically adjusting debias strength and momentum.

Causal Inference has been introduced in computer vision
tasks to alleviate the dataset bias in domain-specific appli-
cations [5,8,16,28,40,51,70]. These methods successfully
improve performance in many fields such as image classi-
fication [, 32], semantic segmentation [66], visual repre-
sentation learning [55] and image captioning [63]. Coun-
terfactual inference is a popular method that was used to
capture the bias as the direct causal effect [37], eliminate
the confounding effect [70], and disentangle the desired di-
rect effect [3]. Our method is built on top of these works to
debias pseudo-labels in our setting.

3. Methodology

Given a labeled source domain D, = {(z$, )} Y+, and
an unlabeled target domain D; = {(z!)}Yt,, we aim to
optimize a model from the labeled source domain to the un-
labeled target domain. Ng and NN, denote the size of the

source and target datasets respectively.

3.1. CLIP in UDA

We first modify CLIP to be suitable for UDA tasks.
CLIP [41] is composed of a vision encoder f (maps im-
age into low dimensional image representations), and a text
encoder g (maps sentence into text representations). CLIP
requires image-text pairs to jointly train f and g with sym-
metric cross-entropy loss [58] between the image and text
representations. We follow prompt engineering [4 1] to pre-
pare image-text pairs in UDA datasets. Our label y; de-
notes a sentence in the format of “a [DOMAIN] photo of
a [CLASS]”, where [CLASS] is a classification class name
and [DOMAIN] is a domain name in UDA tasks (e.g., a
synthetic photo of a person). During testing, we follow
CLIP zero-shot inference by comparing image representa-
tions with the classification weights generated by the text
encoder, denoted as {0,}% ;. By forwarding K descrip-
tions corresponding to K classes, we can calculate the prob-
ability that a training image belongs to the k-th category.

exp(cos(Oy, f(x')/T)
S2E exp(cos (6. f(a!)/T)
where T’ is the temperature parameter learned by CLIP, cos

refers to cosine similarity [41], and we denote a vector of
D as p (probability of a sample in a minibatch).

pr = P(gL = klz') = (1)

3.2. Catastrophic Forgetting Measurement

After formulating CLIP for UDA and attempting to fine-
tune CLIP on UDA datasets, we found that CLIP suffers
from catastrophic forgetting issues (Fig. 1). We explored
baselines in Tab. 1 and found that the original CLIP (no
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Table 1: Baseline. We fine-tune CLIP (ResNet-101) on
VisDA-2017 source domain training set, and test on VisDA-
2017 target domain validation set. “No fine-tuning” is the
best baseline because catastrophic forgetting issues are so
severe such that any fine-tuning will cause accuracy drops.

#  Configuration Accuracy
No fine-tuning 82.3%
Fine-tune 30 epoch 55.6%

BRSNSl

Early stop (fine-tune 1 epoch) 73.2%
Lower learning rate 50x on #2 75.8%

fine-tuning) performs the best (any fine-tuning will cause
performance degradation), but the degradation can be miti-
gated by lowering the learning rate. We propose to decrease
the learning rate according to the difference between the
original CLIP (o) and fine-tuned CLIP (f)’s representations.
Large differences indicate that CLIP forgets the pre-trained
knowledge (resulting in a new representation). The origi-
nal CLIP’s representation can be cached by running CLIP
on the original image (no augmentation) before fine-tuning,
and we seek a meaningful augmentation during fine-tuning.

We follow CLSA [56] to introduce “weak” (no appear-
ance change: translate, flip) and “strong” augmentation
(perturb appearance: CTAugment [2], RandAugment [6]),
and propose to measure the distance between representa-
tions from both augmentations. We lower the learning rate
when the difference is large because we observe more mis-
takes from “strong” (s(«*)) than “weak” (w(z®)) augmen-
tation predictions when CLIP struggles with the hard train-
ing example (leads to more forgetting). Combining both
of our proposals, we formulate a triplet of original CLIP’s
representations from the original image (o(z*)), fine-tuned
CLIP’s representations for “weak” (f (w(z*))) and “strong”
(f(s(x*®))) augmentation. We use Euclidean Distance to
measure the similarity of each pair, and we sum all pairs
into our triplet distance (\®). We flip the sign to lower the
learning rate when the difference of each pair is large.

B

S I w(e) — o) 1o+

~ 5B «

1/ (s(2)) = 0@ 2 + I (w(xs)) — F(s(x))]]2)

where ~ denotes representation normalization with L2 norm
(e.g., 6(x®) = o(x®)/||o(x*)]|2) to cap each representation
between [-1, 1]. The summation of all terms is in the range
of [0, 6], so we divide the summation by 6 to cap A° range to
[0, 1], and average distances over the batch size (B). \? is,
however, unstable because the input (z*) changes every iter-
ation, so the learning rate will constantly be adjusted (result-
ing in unstable training). To solve this problem, we propose
a momentum to slow down the change of \*. We measure

=1
2

Table 2: Our improvements on DebiasPL. We fine-tune De-
biasPL (ResNet-101) on VisDA-2017 source domain train-
ing set, and test on VisDA-2017 target domain validation
set. Our improvement mitigates catastrophic forgetting is-
sues, and improve pseudo-label quality.

#  Configuration Accuracy
1 DebiasPL [57] 64.4%
2 Add CFM to supervised loss (Lsup, Eq. 12) on #1 85.9%
3 Add domain name to prompt on #2 86.5%
4 Add CFM to pseudo-label (Eq. 10) on #3 87.8%
5  Add DCM to pseudo-label (Eq. 9) on #4 88.5%

the consistency between “weak” and “strong” representa-
tions to use as Dual Consistency Momentum (DCM, m?®).

1 B
i=1

where cos is a cosine similarity. We use low momentum
(small m?®, slow \® changes) when the consistency is low
(indicating a hard training example). We combine triplet
distance with DCM to define Catastrophic Forgetting Mea-
surement (CFM, \3) for each iteration (z) with A\§ = 0.

AL = mPAl+ (1 —m®)N_, )

3.3. Pseudo-labeling and Inter-class Bias

Pseudo-labeling in CLIP. Pseudo-labeling [46, 69] en-
joyed success in UDA by leveraging the unlabeled target
domain data, but past methods [35,49,60,76] were not de-
signed for CLIP. DebiasPL [57] supports pseudo-labeling
for CLIP, but was designed for a single domain. We first
follow DebiasPL to generate a soft label on “weak” aug-
mented samples from the target domain as ¢ = p(y|w(z?)),
convert a soft label into a hard label by a one-hot encoder
(1), and use a fixed threshold (7 = 0.4) to select high con-
fident pseudo-labels. We formulate a consistency loss (L.p)
by using a cross-entropy loss (H) to push the prediction
from “strong” augmentation (p(y|s(x?))) to be closed to
pseudo-label from “weak” augmentation.

B
Lep= %Z 1lmax(g;) > 7] - H(p(yi|s(x})),q:) (5)

Inter-class Bias in Pseudo-labeling is caused by the re-
liance on a trained model to generate pseudo-labels. If mul-
tiple classes have similar appearances (e.g., dog vs. wolf),
the model tends to have prediction errors, which will gener-
ate incorrect pseudo-labels. As the training goes on, these
incorrect pseudo-labels will further increase the existing
bias and eventually lead to a significant accuracy drop. Past
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Figure 3: Debiased Pseudo-labeling. Inter-class bias de-
grades pseudo-label quality and reduces the recall of classes
with similar appearance (e.g., bus, car, truck). Our debiased
method can mitigate such issues and improve recall.

pseudo-labeling debiased methods [23,57] perform reason-
ably well in a generic setting, but the bias in the UDA setting
is more severe due to the domain gap between source and
target domains. We analyze the pseudo-label quality in Fig.
3 and observe the co-existence effect [50] where many sam-
ples in the confusing classes tend to be misclassified into
other similar classes (e.g., “bus”, “car”, and “truck” are all
belong to “vehicle”). We seek to simultaneously mitigate
inter-class bias while combating catastrophic forgetting.

3.4. Pseudo-labeling with Adaptive Debiasing

Causal Inference. We follow DebiasPL [57] to use causal
inference to mitigate inter-class bias in pseudo-labels.
Given the causal graph in Fig. 4, debiasing of predictions
can be delineated as the direct causal effect along ! — p,
defined as Controlled Direct Effect (CDE) [43,50,57].

CDE(p;) = [pi|do(x}), do(D)] — [pi|do(2"), do(D)] (6)

where do(-) denotes the causal intervention [13] that re-
moves the model bias (M) from z¢, and 3¢ = {z¢, ..., 2! }.
It is, however, computationally expensive to visit all train-
ing samples to measure the counterfactual outcome.

Debiasing by DebiasPL [57]. We follow DebiasPL [57]
to use Approximated Controlled Direct Effect (ACDE) by
assuming the model bias is not drastically changed. This
assumption holds true in our settings as we aim to fine-tune
CLIP and keep the original knowledge. We approximate the
first term ([p;|do(at), do(M)]) in Eq. 6 as

B
1
, . .
p,;empiJr(lfm)Elei @)

where p; is the vector of prediction from Eq. 1, p’ is the
debiased prediction, and 7 is a fixed momentum. Then the
debiased pseudo-label can be formulated as

4; = q; — plogpj (8)

where ( is a fixed debias factor, g is a soft label from Eq. 5,
and ¢ is the debiased soft label.

M : model bias from
source domain

D : mediator

x{ : target domain input

p : prediction

i : instance number

Figure 4: Causal graph via counterfactual reasoning for de-
biasing model predictions for pseudo-labels.

Debiasing by CFM. DebiasPL [57] was designed for a
single domain (DebiasPL’s setting splits a single dataset
(such as CIFAR-10) into labeled (source) and unlabelled
(target) data). Hence, it suffers from severe bias due to the
domain gap in UDA (Tab. 2). We identify the debias factor
(u, Eq. 8) as one of the root cause because u is sensitive
(small p does not eliminate bias, and large p prevents the
model from learning new knowledge [50,57]). Moreover, i
is set to a fixed value, but the bias is dependent on the do-
main setting (e.g., real-world vs. synthetic will likely have
a higher bias than sketch vs. quick draw), so we propose to
adaptively adjust p. We incorporate catastrophic forgetting
information by replacing p with CFM (\%) to adjust x adap-
tively, and replace the fix momentum (m, Eq. 7) with DCM
(m?) to also adjust 71 adaptively. Both CFM and DCM for
debiasing are computed on target domain input (z?).

B
1
/ t,/ t
pi<—mpi+(1—m)§;pi 9
¢; = qi — A; log pj (10)
Finally, the debiased consistency loss (Lgcp) is formulated
by replacing ¢ with ¢’ on the consistency loss (Eq. 5).

Loy = 5 > 1max(g)) > 7] - H(p(yils(z$), ¢)) (D)

i=1

3.5. End-to-end Trainable Pipeline

Fig. 2 shows the pipeline. We use symmetric contrastive
loss [41] (Lsyp) and debiased consistency loss (Lgep).

L= Az‘csup(DS) + A‘CdCP(Dt) (12)

where A = 0.5 is a constant term for adjusting Lg.,. We
use CFM (A%, Eq. 2) to adjust L, to mitigate catastrophic
forgetting issues. Our loss formulation allows end-to-end
training to simultaneously preserve CLIP knowledge, su-
pervised fine-tuning on the source domain, and fine-tuning
with debias pseudo-labels on the target domain.

4. Experimental Setup

Dataset. We evaluate our proposed methods on four pop-
ular UDA datasets. VisDA-2017 [39] contains 152k syn-
thetic images and 55k real object images of 12 categories
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Figure 5: The confusion matrix on VisDA-2017 shows the effect of pseudo-label and the pseudo-label with adaptive debiasing
(PAD). Diagonal values are true positive (darker = better) and other values are errors (brighter = better).

Table 3: Accuracies (%) on VisDA-2017. “-B” indicates ViT-B (except CDTrans uses DeiT). See full table in Appendix.

Method plane beycl bus car horse knife mcycl  person plant sktbrd train truck Avg.
RN-101 [14] 55.1 533 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 524
SDAT [42] 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 553 84.3
CAN [20] 97.0 87.2 82.5 743 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
AaD [62] 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
Ours (RN-101) 96.7 88.8 87.0 82.8 97.1 93.0 91.3 83.0 95.5 91.8 91.5 63.0 88.5
ViT-B [9] 99.1 60.7 70.6 82.7 96.5 73.1 97.1 19.7 64.5 94.7 97.2 15.4 72.6
TVT-B [6]] 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9
CDTrans [60] 97.1 90.5 82.4 71.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT-B [49] 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
SDAT-B [42] 98.4 90.9 85.4 82.1 98.5 97.6 96.3 86.1 96.2 96.7 92.9 56.8 89.8
Ours-B 98.1 93.8 87.1 85.5 98.0 96.0 94.4 86.0 94.9 93.3 93.5 70.2 90.9

Table 4: Accuracies (%) on Office-Home. “-B” indicates ViT-B (except CDTrans uses DeiT). See full table in Appendix.

Method Ar—-Cl Ar-Pr Ar—-Rw Cl-Ar Cl-Pr Cl-Rw Pr—Ar Pr—-Cl Pr—-Rw Rw—Ar Rw—Cl Rw-Pr Avg.
RN-50 [14] 349 50.0 58.0 37.4 41.9 46.2 385 312 60.4 539 41.2 59.9 46.1
SDAT [42] 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2
AaD [62] 59.3 793 82.1 68.9 79.8 79.5 672 57.4 83.1 72.1 58.5 85.4 72.7
KUDA [48] 58.2 80.0 829 71.1 80.3 80.7 713 56.8 832 75.5 60.3 86.6 73.9
Ours (RN-50) 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6
ViT-B [9] 54.7 83.0 872 713 834 85.5 744 50.9 872 79.6 53.8 88.8 75.5
CDTrans [60] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
TVT-B [61] 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
SDAT-B [42] 70.8 87.0 90.5 852 87.3 89.7 94.1 70.7 90.6 88.3 75.5 92.1 84.3
SSRT-B [49] 752 89.0 91.1 85.1 88.3 89.9 85.0 742 91.3 85.7 78.6 91.8 85.4
Ours-B 76.4 90.6 90.8 86.7 923 92.0 86.0 74.5 91.5 86.9 79.1 93.1 86.7

sampled from Microsoft COCO. Office-Home [54] has
15.5k images of 65 categories from 4 domains: Art (Ar),
Clipart (Cl), Product (Pr), and Real-world (Rw). Office-
31 [44] includes 31 classes and 4.6k images from 3 do-
mains: Amazon (A), DSLR (D), and Webcam (W). Do-
mainNet [38] is the most challenging dataset that contains
0.6 million images of 345 classes from 6 domains: Cli-
part (clp), Infograph (inf), Painting (pnt), Quickdraw (qdr),
Real-world (rel), and Sketch (skt). We strictly follow the
protocol of previous works [42,49,60]. On VisDA-2017,
we use synthetic as the source domain and the real object
as the target domain; on the other three datasets, we select
one domain as the source and another domain as the tar-
get. We have 12, 6, and 30 source-target combinations on

Office-Home, Office-31, and DomainNet, respectively.

Training Configuration. We experiment on both ViT-
B [9] (patch size 16 x 16, batch size 16) and ResNet [14]
(batch size 32) as the vision encoder in CLIP [41]. The
learning rate is set to 1e~% on all datasets, except le~7 on
VisDA-2017 because training on VisDA-2017’s synthetic
data is not stable and the training may diverge. We freeze
the text encoder and only train the vision encoder in the
CLIP framework. We follow the training process in CLIP
to use Adam optimizer with decoupled weight decay reg-
ularization [36] incorporated into all weights that are not
gains or biases. Cosine schedule [33] is used to decay the
learning rate and we train every setting for 30 epochs.
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Table 5: Accuracies (%) on DomainNet. In each sub-table, the column-wise means source domain and the row-wise means
target domain. “-B” indicates ViT-B (except CDTrans uses DeiT). See full table in Appendix.

S(IZVII)KD[-'.] clp inf pnt qdr rel skt Avg ViT-B [Y] clp inf pnt qdr rel skt Avg. Tral?s]‘?-[ ] clp inf pnt qdr rel skt Avg.
clp = 204 433 152 593 465 369 clp © 272 531 132 712 533 436 clp © 294 572 260 72.6 58.1 487
inf 327 - 345 63 476 292 30.1 inf 514 - 493 40 663 41.1 424 inf 570 - 544 128 69.5 484 484
pnt 464 199 - 8.1 588 429 352 pnt 53.1 256 - 48 700 41.8 39.1 pnt 629 274 - 158 72.1 539 464
qdr 311 66 180 - 288 220 213 qdr 305 45 160 - 270 193 195 qdr 446 89 290 - 426 285 307
rel 555 237 529 95 - 452 374 rel 584 290 600 60 - 458 39.9 rel 662 310 61.5 162 - 529 456
skt 55.8 20.1 46.5 150 567 - 38.8 skt 639 238 523 144 674 - 444 skt 69.0 29.6 59.0 272 725 - 515
Avg. 443 18.1 39.0 108 502 372 333 Avg. 51.5 220 46.1 85 604 403 38.1 Avg. 59.9 253 522 19.6 659 484 452
_%D[AT] clp inf pnt qdr rel skt Avg _%S[RT] clp inf pnt qdr rel skt Avg. O_l]lsrs clp inf pnt qdr rel skt Avg.
clp - 220 415 - 575 472 421 clp ~ 338 602 194 758 59.8 498 clp ~ 736 754 746 164 763 753
inf 339 - 303 - 481 279 350 inf 555 - 540 9.0 682 447 463 inf 551 - 543 53.6 549 549 546
pnt 475 207 - - 580 418 420 pnt 617 285 - 84 714 552 450 pnt 711 706 - 700 727 71.7 712
qdr . - qdr 425 88 242 - 376 336 293 qdr 36.8 18.0 320 - 317 349 307
rel 56.7 25.1 53.6 - - 439 448 rel 69.9 37.1 660 10.1 - 589 484 rel 842 835 835 831 - 83.6 836
skt 587 21.8 48.1 - 571 - 464 skt 70.6 32.8 622 217 732 - 521 skt 68.1 66.6 672 66.1 675 - 67.1
Avg. 492 224 434 - 552 402 421 Avg. 60.0 282 533 13.7 653 504 452 Avg. 63.1 62.5 62.5 69.5 60.6 643 63.7
Table 6: Accuracies (%) on Office-31. .50 80
® g70
L 85 e
Method A-W D-W W-D A-D D-A W-A Avg s ge
() [
ViT-B [Y] 91.2 99.2 100. 904 81.1 80.6 904 87 E‘:g
(9 — - | v e =
SHOT-B [27] 943 99.0 100. 953 794 802 914 2w ol - B e
CDTrans [60] 96.7 99.0 100. 97.0 8I.1 819 92,6 65 -
cl Pr Rw Ar Avg. clp inf pnt qdr rel skt Avg.
SSRT-B [ ] 97.7 99.2 100. 98.6 83.5 82.2 93.5 Target Domain Target Domain
TVTB [61] 964 994 100. 964 849 861 93.8 ,
Ours-B 979 992 100. 985 846 853 043 (a) OfficeHome [54] (b) DomainNet [38]
Figure 6: Our improvement compared to the original
5. Results CLIP [41]: the score is averaged over all tasks using each

5.1. Ablation studies

Importance of Pretrained Data. Since CLIP is data-
hungry [19,34,41,68], we first study the sensitivity of CLIP
in the UDA setting. We compare public models from CLIP
[41] (trained on 400 million image-text pairs) with Open-
CLIP [18] (trained on Conceptual Captions dataset [45], 3
million image-text pairs). Tab. 7 shows the accuracy drops
from 82% to 59% when the pre-trained dataset is reduced.
Therefore, although CLIP has a strong zero-shot generaliza-
tion, such capability is learned through large-scale data. In
contrast, a small dataset is likely to lack enough samples to
disentangle the domain and class. We conclude that a large
pre-trained dataset is important, but we keep both datasets
throughout our ablation studies to show that our improve-
ment holds true even with small pre-trained data.

Importance of CFM. CLIP suffers from catastrophic for-
getting issues (Fig. 1), so we use Catastrophic Forgetting
Measurement (CFM) to compare representations from the
fine-tuned CLIP against the original CLIP. CFM adjusts the
learning rate to slow down the forgetting process while ac-
cumulating new knowledge from the UDA dataset (Fig. 7).
Tab. 7 shows that CEM can recover from -26% accuracy
drops to improve accuracy by +1.6% (row: 6-8). Fig. 6 fur-
ther shows that the improvement from CFM is consistent
across all classes on multiple datasets.

domain as the target domain. “-B” refers to ViT-B [9].

Importance of Adaptive Debiasing. Pseudo-labeling
improves our method by +2% (Tab. 7, row: 8,9), and we
enhance the pseudo-labeling process with adaptive debias-
ing (PAD) by our CFM and DCM on top of DebiasPL [57]
(row: 9, 10). To further verify the effectiveness of our de-
bias method, we summarize the confusion matrix in Fig. 5
and compute precision/recall in Fig. 3 to show improvement
in inter-class confusion (“car”, “bus” and “truck” belong to
“vehicle” category).

5.2. External Comparison

We achieved state-of-the-art results on four public
datasets using ViT-B backbone, and we test multiple con-
volutional backbones for a fair comparison.

VisDA-2017. We first use ResNet-101 (RN-101) as the
baseline model to perform fair comparisons with recent
methods [4, 10, 15,42, 59, 71]. Tab. 3 shows that our
method consistently improves almost all classes, and im-
proves 4.2% on the average accuracy compared to the pre-
vious best method, SDAT [42]. We then follow ViT-based
methods [42, 49, 60] to use ViT-B (denote as “-B”) and
achieve superior performance compared to the state-of-the-
art methods. We also observe a significant accuracy in-
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Table 7: Ablation study. We fine-tune CLIP (ResNet-101)
on VisDA-2017 source domain training set, and test on
VisDA-2017 target domain validation set. CLIP, trained
on 400M, ourperforms 3M (row: 1,6). Finetune CLIP on
a source domain leads to catastrophic forgetting and CFM
can mitigate it (row: 6-8). Pseudo-label (PL) with Adaptive
Debiasing (PAD) further improves accuracy (row: 8-10).

#  Pretrain CLIP Source CFM PL PAD Accuracy
1 3M 4 X X X X 59.1%
2 3M v v X X X 44.3%
3 3M v v v X X 62.9%
4 3M 4 v v 4 X 65.7%
5 3M v v v v v 67.1%
6 400M 4 X X X X 82.3%
7  400M v v X X X 55.6%
8 400M 4 v 4 X X 83.9%
9 400M v v v v X 86.0%
10 400M v v v v 4 88.5%

crease on “truck”, thanks to our adaptive debiasing module
that makes “truck’” more discriminate from “car”.

Office-Home/31. For Office-Home [54], we first use
ResNet-50 (RN-50) to fairly compare with recent meth-
ods [4,25,42,59]. Tab. 4 shows a +2.7% increase from
the previous best method, KUDA [48]. We then follow
ViT-based methods [42, 49, 60, 61] to use ViT-B, and ob-
serve consistent improvement across almost all settings. For
office-31 [44], we have a similar observation on consistent
improvement compared to the recent methods (Tab. 6).

DomainNet. Previous improvement (SSRT [49] vs SDAT
[42]) only achieves +3.1% accuracy on DomainNet [38] be-
cause this is the largest dataset, several domains have com-
pletely different appearances (e.g., infographic vs quick-
draw), and the distributions among different domains are
imbalanced. Our method, however, achieves +18.5% im-
provement over the previous best method, SSRT, thanks to
our proposed CFM for preserving the original CLIP’s pre-
trained knowledge, and our pseudo-label with adaptive de-
biasing for improving the pseudo-label quality.

5.3. Generalization of Our Method

Applications. We observe catastrophic forgetting issue in
CLIP across multiple applications where the accuracy de-
creases when fine-tuning CLIP in Incremental Learning (-
9.9%), and Domain Generalization (-14.0%) and CFM can
increase the accuracy +5.3%, +2.4% respectively. For few-
shot learning, our method outperforms Tip-Adapter-F [72]
by 0.5%. Details are in Appendix.

Vision backbone. Our method works on both vision lan-
guage (CLIP), and vision model. With our method, BiT-

M Cosine scheduler (23 =1)
CFM (A3) without DCM
B CFM (23) with DCM

25 * Learning Rate

Epoch

Figure 7: We use cosine scheduler with base learning rate
(base LR) 1e~% (except VISDA 2017 (1e~7)) and warm up
for 1 epoch. CFM (%) is the loss weight for the source
domain (L,,,) and CFM will adjust the gradient together
with the learning rate (A * LR). Low CFM (high catas-
trophic forgetting) will decrease the gradient, and we fur-
ther smooth CFM with momentum (DCM).

M-R101x3 [22] (trained on JFT-300M) achieved 88.1%
on VisDA-2017 (comparable to CLIP (90.9%, Tab. 3)).
However, a small pre-trained dataset is a limitation, as our
method has no effect on ResNet-101 with ImageNet-1K due
to the minimal effect of catastrophic forgetting issues.

5.4. Computational Complexity

It takes 16.5 hours to train CLIP with ViT-B backbone on
an Nvidia Tesla V100 GPU for VisDA-2017. Pseudo-label
is a standard method in UDA [35, 49, 60, 76] and adding
pseudo-label increases the training times to 23.3 hours. To
compute CFM, we forward the entire dataset with the orig-
inal CLIP (0.6 hours for VisDA-2017) to cache the origi-
nal CLIP representation (only needs to do once). We did
not observe any overhead from CFM during training since
CFM simply compare the low dimensional representations
(obtain as part of the training). We observe a training time
increase to 23.5 hours from our adaptive debiasing, but the
overhead is trivial with <1% increases from the pseudo-
label setting. Our method does not change the test speed.

6. Conclusion

We propose CLIP in the UDA setting. We first in-
clude a domain name into a prompt, and we uncover catas-
trophic forgetting issues when fine-tuning CLIP. We pro-
pose to counter this by adjusting the learning rate according
to CFM. We add pseudo-labeling by further extending De-
biasPL (from a single domain to multiple domains in the
UDA setting) with our CFM and DCM to better adjust de-
bias strength and momentum. Our method does not intro-
duce computational overhead, and achieves superior results
than the state-of-the-art methods on four public datasets,
with a large improvement (+18.5%) on DomainNet. For
future work, CFM and DCM could be improved to a more
sophisticated function or even learnable.
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