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Abstract

Not all camouflages are equally effective, as even a par-

tially visible contour or a slight color difference can make

the animal stand out and break its camouflage. In this paper,

we address the question of what makes a camouflage suc-

cessful, by proposing three scores for automatically assess-

ing its effectiveness. In particular, we show that camouflage

can be measured by the similarity between background and

foreground features and boundary visibility. We use these

camouflage scores to assess and compare all available cam-

ouflage datasets. We also incorporate the proposed cam-

ouflage score into a generative model as an auxiliary loss

and show that effective camouflage images or videos can

be synthesised in a scalable manner. The generated syn-

thetic dataset is used to train a transformer-based model

for segmenting camouflaged animals in videos. Experimen-

tally, we demonstrate state-of-the-art camouflage breaking

performance on the public MoCA-Mask benchmark.

1. Introduction

Camouflage has long been a subject of interest and fas-

cination for the scientific community, especially evolution-

ary biologists who consider it as an excellent example of

species adaptation. In order to confuse predators or to hide

from prey, and increase their chances of survival in their

natural habitat, animals have developed numerous cam-

ouflage mechanisms, e.g., disruptive coloration and back-

ground matching. Some species have even evolved to de-

velop an adaptive camouflage, e.g., an arctic fox loses its

white fur to better match the brown grey of the new season’s

landscape. Perhaps the most dramatic camouflage adapta-

tion is the cuttlefish; it changes its patterns dynamically and

rapidly as it moves from one spot to the other, constantly

adapting and improving its camouflage.

This search for optimal camouflage has inspired nu-

merous works in the computer vision community, such

as [12, 27], that tackled camouflage as a problem of optimal

texture synthesis, making 3D objects non-detectable in a

given scene. Others have addressed camouflage as a highly

Figure 1: The three images depict the same animal, an Arc-

tic fox, as it adapts its appearance to better blend with the

changing landscape of the new season. While images a and

c exhibit better background similarity than image b, the fox

boundary is more visible in image a than image c. We assess

the effectiveness of camouflage by measuring the degree of

ambiguity it creates with respect to its background.

challenging object segmentation task in [9, 15, 20, 23]. Ef-

forts have been made in collecting large scale camouflage

datasets [9, 20] with costly annotation. In fact, camouflaged

animals often exhibit complex shapes and thin structures

that add to the boundary ambiguity and make the annota-

tion highly time-consuming. Fan et al. report up to 60min

per image to provide accurate pixel-level annotations for

their dataset COD10K [9]. While another line of research

turned to camouflage breaking in sequences by taking ad-

vantage of motion cues [1, 5, 18, 19, 40], the camouflage

data scarcity is even more extreme for videos. Recently,

Sim2Real [18, 39] training has shown to be very effective

for motion segmentation. By training on the optical flows of

synthetic videos, these models can generalise to real videos

without suffering from the domain gaps.

In this paper, we start by asking the question: ªwhat

are the properties of a successful camouflage ?º To an-

swer this question, we investigate three scoring functions

for quantifying the effectiveness of camouflage, namely,

reconstruction fidelity score (SRf
), boundary score (Sb)

and intra-image FrÂechet score (dF ). These scores are later

adopted for two critical roles, (i) they are used to assess

the relevance of existing camouflage datasets and act as

quality-indicator in collecting new camouflage data; (ii)
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they can be used as a proxy loss for image and video in-

painting/generation, where we establish a synthetic camou-

flage data generation pipeline with a Generative Adversar-

ial Network (GAN), that can simultaneously generate high-

quality camouflage examples and masks of the camouflaged

animals. We further train a Transformer-based architecture

on the generated camouflage video sequences, and demon-

strate a performance boost over training on only the (small

scale) real data.

In summary, we make the following contributions: First,

we introduce three scoring functions to measure the effec-

tiveness of a given camouflage in still images and videos.

We use these camouflage scores to rank the images in exist-

ing datasets in terms of camouflage success, and also show

that the rankings are largely in accordance with human-

produced rankings. Second, we incorporate the camou-

flage score into a generative model, establishing a scalable

pipeline for generating high-quality camouflage images or

videos, along with the pixelwise segmentation mask of the

camouflaged animals; Third, we show that a Transformer-

based model trained on the synthetically generated data can

achieve state-of-the-art performance on the MoCA-Mask

video camouflaged animal segmentation benchmark.

2. Related work

Camouflage Evaluation. Although there are no previ-

ous computational works that directly assess camouflage,

as far as we know, there have been a number of human

studies. Previous works proposed methods to evaluate

camouflage by analysing the human viewers’ eye move-

ments [22, 37] or conducting subjective perceptual exper-

iments [12, 27, 32]. In [12, 27], participants were asked

to indicate the camouflaged object and their answers were

analysed in terms of accuracy and time needed per image.

Similarly, Skurowski et al. [32] asked human volunteers

to rate CHAMELEON [32] images from 1 to 5 in terms

of camouflage effectiveness. They produced a score after

compensating for personal bias. We validate our proposed

camouflage scoring functions by comparing our rankings to

these human-based rankings.

Motion Segmentation. The goal of this task is to parti-

tion the frames of a video sequence into background and

independently moving objects. Early approaches focused

on clustering motion patterns by grouping pixels with sim-

ilar trajectories [3, 17, 21, 24, 25, 26, 31]. Another line

of research tackled the problem by compensating for the

background motion [1, 2, 19], via registering consecutive

frames, or explicitly estimating camera motion. More re-

cently, in [40], a Transformer-like architecture is used to

reconstruct the input flows, and the segmentation masks are

generated as a side product, while [6] decomposes the flow

filed into regions by fitting affine transformations. The most

closely related to ours is [18, 39], where the authors adopt

a Sim2Real strategy by training the model on optical flow

computed from synthetic videos. These models can gener-

alise towards real videos without fine-tuning. In this paper,

we train a model on synthetic camouflage RGB sequences.

FrÂechet Inception Distance and its variants. Also known

as Wasserstein-2 distance [38], FrÂechet distance (FD) is a

metric quantifying the difference between two probability

distributions [10]. Lately, [13] introduced the FrÂechet In-

ception Distance (FID) in the context of generative models.

Under the assumption that real images and generated im-

ages follow Gaussian distributions, they compute the FD of

the two distributions. Note that here, each image is repre-

sented by a vector obtained from the last pooling layer of In-

ceptionV3 [35]. Following their steps, [30] adapted FID to

the image re-targeting task and introduced the Single Image

FrÂechet Inception Distance (SIFID). Instead of comparing

entire image datasets, they compare two images and con-

sider the distributions of their feature vectors obtained from

earlier layer of InceptionV3 [35]. Recently, [7] included

FID in the training objective and introduced FrÂechet-GAN.

Our work takes inspiration from [7, 30] and investigates a

FID of regions within the same image as an auxiliary loss.

3. Measuring the effectiveness of camouflage

Assuming there exists a dataset, D = {(I1,m1), . . . ,
(IN ,mN )}, where Ii ∈ R

H×W×3 refers to the images, and

mi ∈ {0, 1}H×W×1 denotes a binary segmentation mask

of the camouflaged animal. Here, we aim to design a scor-

ing function that takes the image and segmentation mask as

input, and outputs a scalar value S that can quantify the ef-

fectiveness of camouflage, i.e., how successfully an animal

blends into its background, termed as the camouflage score,

S : (Ii,mi) 7−→ si ∈ [0, 1]

specifically, for i ̸= j and si < sj , the animal in Ij , indi-

cated by the mask mj , is more concealed than the animal in

Ii, indicated by the mask mi. Having such a scoring func-

tion enables various applications, first, it enables to rank

the images from one dataset, in terms of the effectiveness

of camouflage, and generate camouflage-relevant statistics

for the dataset; second, it can serve as the objective for low-

level image generation tasks, for example, image inpainting,

editing, etc.

In the following sections, we investigate three such scor-

ing functions, specifically, we exploit the animal’s mask

and quantify the key aspects that determine the camou-

flage success both perceptually (Sec. 3.1) and probabilis-

tically (Sec. 3.2). Note that, we take into account the lo-

cal aspect of camouflage, i.e., instead of processing the en-

tire background region, we only focus on the immediate
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Figure 2: The reconstruction fidelity score SRf
evaluates the

similarities between the original foreground Ifg and its re-

construction from background features Ψbg(Ifg). The top

example shows a case where the animal exhibits different vi-

sual patterns (color) from its background (SRf
=0.11), while

the bottom example shows a better background matching

(SRf
=0.82).

Figure 3: Trimap regions and animal contours. From left

to right: Input image; Trimap partition (foreground region

in yellow, background in purple, and boundary region in

green); Contours C computed on the original image; and

ground truth Contours Cgt. The top example shows less

contour agreement along the boundary region (Sb=0.72)

than the bottom example (Sb=0.40).

surround of the animal. Hence, when referring to back-

ground, we mean the local background and only consider

the cropped images centred around the object.

3.1. Perceptual camouflage score

In this section, we define the camouflage score through a

perceptual lens, specifically, we measure the foreground and

background similarity (Sect. 3.1.1), along with the bound-

ary visibility (Sect. 3.1.2).

3.1.1 Reconstruction fidelity score

We attempt to reconstruct the foreground region with

patches from the background, and propose a score to quan-

titatively measure the discrepancy between the original im-

age and its reconstruction. Intuitively, for successful cam-

ouflage, we should be able to reconstruct the foreground

perfectly by copying patches from its close neighborhood.

Formally, for a given image (I) and segmentation

mask (m), subscript has been ignored for simplicity, we

consider a trimap separation and define the foreground and

background regions using morphological erosion and dila-

tion of the mask,

Ifg, Ibg = mfg ⊙ I, mbg ⊙ I (1)

where mfg = erode(m) and mbg = 1− dilate(m).
To reconstruct the foreground region, we replace the

foreground patch with the closest one in the background.

Here a patch is a n×n pixel region (n = 7 in our case with

an overlap of 3) and the the patchwise similarity is com-

puted by exploiting the low-level perceptual similarity, i.e.,

comparing corresponding RGB values. This reconstruction

method is inspired by the texture generation and inpainting

approaches, such as [8]. In practice, we implement it with

fast approximate nearest neighbor search for efficiency.

The reconstruction fidelity score is computed by assess-

ing the difference value between the foreground region and

its reconstruction, specifically, we count the number of

foreground pixels that have been successfully reconstructed

from the background:

SRf
(I,m) =

1

Nfg

∑

(i,j)∈Ifg

Rf (i, j) (2)

Rf (i, j) =

{

1 if ||Ifg −ΨIbg
(Ifg)||2 < λ||Ifg||2

0 otherwise
(3)

ΨIbg (.) denotes the reconstruction operation, Nfg = |mfg| is

the total number of pixels in the foreground region, and λ is

a threshold (λ=0.2 in our case). A higher SRf
score, means

that the animal’s visual attributes are well represented in the

background. Conversely, a low SRf
indicates that the ani-

mal’s appearance is composed of unique features that makes

it standout from its surrounding. In Fig. 2, we present ex-

amples of camouflage evaluation by reconstruction fidelity.

3.1.2 Boundary visibility score

With the trimap representation, we can easily extract the

boundary region, Ib = mb⊙I , where mb = (1−mbg)−mfg.

Here, we aim to measure the animal’s boundary proper-

ties, e.g., contour visibility, as they can also provide visu-

ally evident cues for camouflage breaking. In particular,

we adopt an off-the-shelf contour extraction method [29],

and run it on the original image and foreground mask, to

generate the images’ contour (C) and ground truth animal’s

contour (Cgt), as shown in Fig. 3.

We express the agreement between predicted contours

C and ground truth contours Cgt over the boundary region

with the F1 metric:

Sb(I,m) = 1− F1(mb ⊙ Cgt, mb ⊙ C) (4)

This score penalises the boundary pixels that are predicted

as contour in both C and Cgt. While we do not expect a
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perfect contour agreement for visible edges, we consider Sb

as a reasonable approximation, given the shape and size of

the boundary region as a thin margin centred around the an-

imal. If a boundary pixel is predicted as a contour in Cgt

but not in C, this means that the animal’s edge is not visible

in the original image. If a pixel is predicted as a contour in

C but not Cgt, this indicates the presence of distracting ele-

ments, such as complex texture patterns on the foreground

animal, which also affects the visibility of the animal’s con-

tour and therefore improves its camouflage. A perfectly

camouflaged animal would have little contour agreement

and Sb = 1.

To get the final perceptual camouflage score, we linearly

combine both reconstruction fidelity score and boundary

visibility score:

Sα = (1− α)SRf
+ αSb (5)

We will describe our method for setting the weighting pa-

rameter α in the Experiment section (Sec. 6).

3.2. Probabilistic scoring function

In addition to using the low-level RGB representation, in

this section, we consider the pixelwise representation in the

feature space, and propose a differentiable metric that com-

pares the probabilistic distribution between the foreground

and background regions, which acts as a proxy for the score

Sα described in previous section, and can be used directly

as a differentiable loss function in image generation.

We consider the Intra-Image FrÂechet Inception Dis-

tance, specifically, we compute the feature maps for the

foreground and background image regions:

ffg, fbg = Φv(Ifg), Φv(Ibg) (6)

Here Φv(·) denotes a pre-trained Inception network [34,

35], truncated at early layers. We take inspiration from [30],

and adapt the single image FrÂechet distance to measure the

deviation between feature distributions of different regions

within the same image. We adopt the FrÂechet hypothesis

with respect to our regions, i.e., the features of the fore-

ground and background follow multivariate Gaussian dis-

tributions: ffg ∼ N (µfg,Σfg) and fbg ∼ N (µbg,Σbg). The

intra-image FrÂechet distance can be formulated as follows:

d2F (I,m) = ||µfg − µbg||
2
2 + Tr(Σfg +Σbg − 2(ΣfgΣbg)

1/2)

Note that, when (I,m) is the output from a generative

model, d2
F

is differentiable with respect to its parameters,

and can therefore be used as an auxiliary loss for optimis-

ing the image generation procedure, i.e., generate effective

camouflage examples.

4. Generating camouflage video sequences

In this section, we propose a scalable pipeline for gen-

erating images with concealed animals. In particular, we

incorporate the differentiable intra-image FrÂechet distance

in image generation, explicitly optimising the camouflage

score of the image. We first detail the static image gener-

ation framework, then describe how we use the images it

generates to create camouflage video sequences.

4.1. Camouflage image generation

In order to generate the image with a camouflaged ani-

mal, and its corresponding segmentation mask, we adopt a

Generative Adversarial Network (GAN), where a generator

is fed with a latent vector z ∼ N (0, 1) and learns to predict

the pair of realistic image and segmentation mask, such that

a discriminator cannot differentiate it from real samples.

Let (xi,mi) denote an image and segmentation pair sam-

pled from the training dataset, a subset of COD10K [9] is

used here. We adopt the conventional label notation, i.e.

y = 1 for (real) examples sampled from the training dataset

and y = 0 for (fake) examples from the generator, and con-

sider the generative adversarial loss functions [11]:

LD = E(xi,mi)[− log(D(xi,mi))] + Ez[− log(1−D(G(z)))]

LG = Ez[− log(D(G(z)))]

To enforce coherence between images and their segmen-

tation masks, we feed the discriminator with additional fake

pairs, consisting of real images coupled with unpaired real

masks. This can be formulated as an additional coherence

loss term that minimises the probability of assigning incor-

rect labels, i.e. y = 1, to (xi,mj) sampled from the training

set such that i ̸= j:

LCoh = E(xi,mj)i ̸=j
[− log(1−D(xi,mj))] (7)

To increase the camouflage effectiveness in the generated

examples, we adopt the intra-image FrÂechet distance in the

generator loss, as an auxiliary loss term, and train our cam-

ouflage image generator with the following loss:

LD̃ = LD + LCoh LG̃ = LG + βd2F (8)

We present an overview of our data generation framework

in Fig. 4.

4.2. Camouflage video generation

Given a camouflage image and corresponding segmenta-

tion mask, generated using the method above, we can create

video sequences by applying different motions to the fore-

ground and background, in a similar manner to [18]. Specif-

ically, we first inpaint the backgrounds with an off-the-shelf

model proposed by Suvorov et al. [33] and overlay the syn-

thetic animal (extracted from the original generated image
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Figure 4: Our framework consists of a synthetic camouflage data generation pipeline (left), where we train a generator G,

in a GAN setting, to create camouflage images and masks, while encouraging camouflage effectiveness via minimising LF .

The generated samples are then transformed into synthetic video sequences (middle), following our method presented in

Sec. 4.2. The transformer-based motion segmentation architecture (right), for camouflage breaking in videos, is trained on

the synthetic video sequences. The architecture is described in Sec. 5.

by using the mask) at a random location within the image

in the first frame, then following a random translational tra-

jectory in the following frames. We incorporate a different

translational motion for the background and include random

sub-sequences where the foreground and background un-

dergo the same motion to simulate momentarily static ob-

jects. As we train our generator with intra-image FrÂechet

loss (LF ), the generated images exhibit strong similarities

between the foreground and the background, and even if the

object is placed at a different location from the original, we

expect it to remain concealed within its surrounding.

5. Learning to break camouflage

In this section, we train a transformer-based architec-

ture on the synthetic dataset, and demonstrate its effective-

ness for breaking the camouflage in real videos, for exam-

ple, MoCA [19]. We build on two previous architectures,

namely, the motion segmentation from [18] and the Search

Identification Network from [9]. While the first architec-

ture processes sequences of optical flow, the second takes

single RGB images as inputs and treats them separately.

Our proposed model, shown in Fig. 4, takes both the op-

tical flow and RGB frame sequences as input. The flow

is computed with RAFT [36] from the RGB sequence, and

processed with a motion encoder, followed by a transformer

encoder. The RGB sequence is processed with the appear-

ance encoder from [9], pre-trained for framewise camou-

flage segmentation. Then both streams are aggregated as

inputs to a Mask2Former-like [4] transformer decoder and

pixel decoder to produce the high resolution segmentation

mask from the motion stream.

Motion encoder. To encode the motion cues, we use a

light-weight convNet that takes as input a sequence of opti-

cal flows, Im= {Im1
, Im2

, .., Imt
} ∈ Rt×c0×h×w and out-

puts motion features:

{fm1
, fm2

, .., fmt
} = Φmotion(Im)

where each flow frame is separately embedded.

Motion transformer encoder. A transformer encoder takes

as input the motion features, concatenated along the se-

quence, together with learned spatial and temporal posi-

tional encodings (Poss, Post), as indicated in Fig 4. Post
specifies the frame, and Poss specifies the position in the

spatial feature map output of the motion encoder. The out-

put of the transformer is a set of enriched motion features.

Appearance encoder. Here, we adopt a SINet-v2 [9]

architecture, that encodes the RGB sequence, Ia=
{Ia1

, Ia2
, .., Iat

} ∈ Rt×c1×h×w into appearance features:

{fa1
, fa2

, .., fat
} = Φapp(Ia)

Again, each RGB frame is processed separately by SINet.

Transformer decoder. A transformer-based decoder takes

the output of the motion transformer encoder together with

the appearance features and a learnable query for the mask

embedding. In a similar manner to Mask2Former [4], the

query attends to multiple resolutions of the motion features

concatenated with the appearance features and produces a

mask embedding for the moving object.

Pixel Decoder. Similarly to the pixel decoder in

Mask2Former, a light-weight convNet decoder is used with

skip-connections to recover high-resolution segmentation

masks {m̂1, m̂2, .., m̂t} from the motion features and the

mask embedding. This is shown as the blue box in Fig. 4.

Training objective. We train the motion segmentation

model on our synthetic video sequences using the binary

cross-entropy loss LBCE .
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6. Experiments

In this section, we start by introducing the datasets in-

volved in this paper, followed by the implementation de-

tails. Our experiments present a thorough analysis of the

proposed camouflage scores and demonstrate their effec-

tiveness in our training framework.

6.1. Datasets

Here we describe the publicly available camouflage

datasets that we included in our experiments, as shown in

Fig. 5, as well as the synthetic camouflage datasets that we

generated.

CHAMELEON [32] is one of the first camouflage image

datasets. It contains 76 images collected using Google im-

age search with the ‘camouflaged animal’ keyword and in-

clude ground truth manual annotations.

CAMO [20]. The Camouflaged Object dataset consists of

2500 images collected from the internet, of which 1250 im-

ages (1000 training sub-set and 250 testing sub-set) con-

tain at least one camouflage instance from 8 categories with

manual pixelwise annotations provided.

COD10K [9]. COD10K contains 10,000 images collected

from photography websites of which 5066 depict camou-

flaged animals (3040 training sub-set and 2026 testing sub-

set), organised into 10 classes, and 78 sub-classes (69 cam-

ouflaged). Note that, in our camouflage evaluation experi-

ments we only used the camouflage subset of this dataset.

Camouflaged Animals [1]. This dataset consists of 9 video

sequences of camouflage animals from 6 categories.

MoCA [19] is the first large-scale camouflage video dataset.

It contains 141 video sequences (37K frames) totalling 67

animal categories. Recently, other works have curated this

dataset by selecting only the videos with more prominent

motion (locomotion) [40], and others have provided dense

pixel annotation in MoCA-Mask [5]. We use the latter ver-

sion in our experiments.

Camouflaged cuboids [12, 27]. This dataset was created

for texture synthesis and consists of multiple-view scenes,

where cuboids were placed at a predefined location then

synthetically camouflaged. In our evaluation, we consider

the 4-views generated textures [12] from 36 scenes as well

as the cuboids masks.

Synthetic Camouflage Images. Using the method de-

scribed in Sec. 4.1, we generate a synthetic camouflage

dataset, of 5K frames, by discriminating against real cam-

ouflage image and annotation masks from COD10K.

Synthetic Camouflage Videos. We generate 1K sequences

of 30 frames each, incorporating static sequences using the

framework described in Sec. 4.2. We split these into 800
sequences for training and 200 for testing.

Figure 5: Randomly sampled examples from the cam-

ouflage datasets included in our work. For the video

datasets, Camouflaged Animals and MoCA-Mask, we show

an example sequence. For the multiple-view dataset Cam-

ouflaged cuboids (bottom), we show example views from a

scene with the 4-view texture synthesis method from [12].

6.2. Implementation details

In our experiments, for a given camouflage example, the

kernels for the morphological operations are selected from a

range of values [1,10], so that the resulting annotation mask
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is reduced by 20% for erosion and extended by 20% for

dilation. This allows the erosion/dilation to be adapted to

the size of the camouflaged animal, while always keeping a

reasonably large region for addressing the boundary effects.

For our synthetic camouflage image generation, we adopt a

Style-GAN architecture [41] and train it on the camouflage

images from COD10K to generate 256 × 256 images and

masks pairs. We use β = 0.1 to weight our intra-image

FrÂechet auxiliary loss. For numerical stability, we adopt

the Newton Schultz iterations when calculating the matrix

square root term in Intra-Image FrÂechet Inception Distance,

with T = 100 iterations.

When generating the image sequences, we compute optical

flows with RAFT [36], and train our moving camouflaged

animal segmentation model. We use batches of size 2 and

sequences of size 5. We first train on our synthetically gen-

erated dataset with a learning rate of 5× 10−4 for 500 iter-

ations then fine-tune on the training subset of MoCA-Mask.

6.3. Results

This section presents qualitative and quantitative results,

to demonstrate the effectiveness of our score functions and

the benefit of including d2
F

in the training loop.

6.3.1 Evaluation on camouflage effectiveness

Ranking camouflage images in COD10K. We can rank

the images based on the effectiveness of the animal’s cam-

ouflage, with our proposed scoring functions. In the left

part of Fig. 6, we show the four best scored images from

the large scale COD10K dataset. We can make the follow-

ing observations: (i) the best examples with respect to SRf

(top), which favours the background matching of the an-

imals without taking into account the boundary region, all

exhibit visible boundaries, with the exception of image (a).

This is especially noticeable in the rabbit example (d) along

the ears and shadow regions; (ii) the best four examples with

respect to the boundary score Sb are all from the cater-

pillar subclass, mostly the baron type. These insects have

thin, and transparent boundaries, that makes them the per-

fect candidates for this score. However, with the exception

of (a) and (c), the animals still stands out as they exhibit

colors and patterns that are not present within their back-

ground; (iii) the Sα combining both scores shows highly

effective camouflage examples. In contrast, the right part of

Fig. 6 shows the lowest scored images for each approach.

For SRf
, we find examples with low background matching

in the first row, with two ant examples, i.e., (e), (f). While

the boundary score penalises examples with high contrasts

between the animal and its background, that results in more

visible contours. This is also the case for the lowest Sα

score examples.

Dataset level camouflage comparison. We compute the

camouflage score for all the camouflage image and video

datasets and report the results in Tab. 1. For the image

datasets, the dataset level score is computed as the mean

of the image scores; for the video dataset the score is first

computed per frame, and per-video average computed, then

the dataset level score is the mean of the averages. Our ex-

periments show that MoCA-Mask [5, 19] contains the most

successful camouflages according to our scoring. While

COD10K [9] subsets are balanced in terms of camouflage

effectiveness, we find that, for CAMO [20], the test subset

yields higher scores than the training subset and therefore

contains more challenging examples.

We note that Camouflaged cuboids dataset yields higher

SRf
and Sα scores compared to our synthetic datasets. This

is due to the fact that the model used in [12, 27] is only

trained to produce optimal texture for a predefined region

(cuboid) in a particular location of a given scene. However,

our model learns to output a new image with a randomly

located camouflaged object of random shape, thus offer-

ing more scalability and diversity compared to the cuboids

dataset which cannot be used to train a model for breaking

real camouflage.

Comparison to human-produced rankings. We compare

our rankings to the human scoring system based on the rat-

ing of CHAMELEON [32] and the time-to-find for Camou-

flaged cuboids [12]. To search for the optimal α parameter

in Equation (5), we select 15 images from CHAMELEON

and compare their Sα ranking with ground truth using

kendall-τ metric [16]. For α = 0.35, we obtain kendall-

τ = 0.51 on this validation set that we excluded from our

test reported in Tab. 2. We can draw the following obser-

vations: (i) we find that the boundary score Sb produces

more agreement with the ground truth ranking than SRf
,

suggesting that human observers tend to pay more attention

to contour visibility than background matching; (ii) while

comparing to the ranking from Camouflaged cuboids, we

found negative correlations for SRf
and dF , we conjecture

that this may be due to the nature of the dataset in [12],

i.e., all the textured cuboids are synthetically generated with

very high background matching; (iii) for both experiments,

we obtain the strongest agreement with the Sα score com-

bining both background similarity and boundary blending.

Further analysis of the synthetic datasets. We adopt the

FID [13] and IS [30] metrics in Table 4. These metrics as-

sess: (i) the similarity between the set of synthetic images

output by the generator and the set of real images used to

train it (FID); and (ii) the clarity of the object and the diver-

sity of images in terms of classes (IS). While they are not

intended for measuring camouflage success, which is the

focus of this work, IS could somewhat be (inversely) linked

to Sb as the object clarity and boundary visibility are close.

Note that the object clarity (IS) is decreased with LF which

is the intended purpose of improving camouflage, however,
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Figure 6: Left: Top-4 scored examples from COD10K for SRf (top), Sb(middle) and Sα(bottom). Right: Lowest scored

examples from COD10K. For each example, we show the obtained score and the corresponding ground truth mask.

Datasets Data type SRf
↑ Sb ↑ Sα↑ d2

F
↓

CHAMELEON [32] Image 0.694 0.445 0.607 0.70

CAMO Train [20] Image 0.672 0.451 0.595 1.01

CAMO Test [20] Image 0.683 0.470 0.608 1.00

COD10K Train [9] Image 0.655 0.433 0.577 0.90

COD10K Test [9] Image 0.657 0.431 0.578 0.90

Camouflaged Animals [1] Video 0.674 0.536 0.626 1.60

MoCA-Mask Train [5, 19] Video 0.850 0.443 0.707 1.14

MoCA-Mask Test [5, 19] Video 0.733 0.464 0.639 2.51

Camouflaged cuboids[12, 27] Multi-view 0.894 0.433 0.733 6.2

Syn. Camouflage w.o. LF Image 0.608 0.432 0.546 1.36

Syn. Camouflage w. LF Image 0.679 0.447 0.598 1.13

Syn. Camouflage Video Video 0.658 0.430 0.578 1.18

Table 1: Results of the proposed scores on natural camouflage

datasets (top) and synthetically generated camouflage datasets (bot-

tom). We report the mean scores for the single image datasets. For

the video and multiple view datasets, we compute the mean per se-

quence and scene respectively. Syn. Camouflage w. LF refers to the

synthetic image dataset that we generated while minimising LF and

Syn. Camouflage Video its sequence version.

Scores CHAMELEON [32] Camouflaged cuboids[12, 27]

SRf
0.01 -0.07

Sb 0.03 0.42

Sα 0.42 0.41

d2
F

0.10 -0.17

Table 2: Kendall-τ metric between rankings produced

via our scores and human scoring ground truth.

Model Training Appearance Transformer Transformer mIoU↑ F ↑ E ↑ MAE↓

dataset Encoder Encoder Aggregation

A S 14.5 20.4 57.3 9.4

B MM 15.3 20.6 57.3 5.1

C S+MM 16.0 21.8 59.8 4.3

D S+MM ✓ 20.5 22.6 59.8 3.8

E S+MM ✓ ✓ 23.0 23.5 57.0 1.6

F S+MM ✓ ✓ 22.7 23.2 58.8 3.6

G MM ✓ ✓ ✓ 23.4 24.7 62.0 2.4

H S+MM ✓ ✓ ✓ 30.8 34.3 77.0 1.8

Table 3: Ablation study on the different components

of the motion segmentation architecture and training

datasets. We evaluate on MoCA-Mask for all experi-

ments. (S: our synthetic dataset, MM: MoCA-Mask).

this effect is not maintained in the sequence generation as

the animal changes location within its background.
dataset FID↓ IS↑

Syn. Camouflage w.o. LF 75.01 3.49

Syn. Camouflage w. LF 76.34 3.13

Syn. Camouflage Video 86.42 3.85

Table 4: Overall quality of our synthetic datasets.

6.3.2 Model ablations

On the effectiveness of LF . Fig. 7 shows the generated

samples from the GAN pipeline, trained with and without

the intra-image FrÂechet Distance. Our generator is able to

produce realistic object masks of complex shapes and thin

structures similar to those usually encountered in the cam-

ouflage datasets. The produced images exhibit rich back-

grounds with realistic nature-like elements mimicking rocks

and coral structures present in the real camouflage data.

Adding the LF loss results in generating images with better

blending in the background, both qualitatively and quantita-

tively, as shown by the Sα computed for both datasets gen-

erated with and without the intra-image FrÂechet Distance in

Tab. 1. We refer the reader to the supplementary material

for more examples of generated samples.

On the architecture design and gain from the synthetic

dataset. We present in Tab. 3 an ablation study detailing

the gain from the main components of our architecture, as

well as the benefit of first training on our synthetic dataset

then fine-tuning on MoCA-Mask (S+MM), for model H, as

opposed to only training on MoCA-Mask (MM), for G.
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Figure 7: Generated camouflage images and masks: For the examples on the right, the generator was trained with LF .

Figure 8: Qualitative results on MoCA-Mask. From top

to bottom: Appearance sequence Ia, flow sequence Im, pre-

dicted segmentations and ground truth segmentations.

Model RGB Motion mIoU↑ F ↑ E ↑ MAE↓

SINet [9] ✓ 20.2 23.1 69.9 2.8

SINet-V2 [9] ✓ 18.0 20.4 64.2 3.1

SegMaR [14] ✓ 12.2 22.5 80.3 4.5

ZoomNet [28] ✓ 18.8 28.7 70.8 2.5

SLTNet [5] ✓ ✓ 27.2 31.1 75.9 2.7

MG [40] ✓ 12.7 16.8 56.1 6.7

Ours-flow ✓ 17.8 21.5 60.7 3.7

Ours ✓ ✓ 30.8 34.3 77.0 1.8

Table 5: Results on MoCA-Mask. Ours-flow refers to

the optical flow only version of our architecture, exclud-

ing the appearance stream.

6.3.3 Results on MoCA

We train our model on the synthetically generated camou-

flage images and fine-tune on the training set of MoCA-

Mask. Tab. 5 presents our camouflage object segmenta-

tion results on the test set of MoCA-Mask. Ours refers to

our proposed method with SINet-V2 as the appearance en-

coder and Ours-flow refers to the optical flow only version

of our architecture, excluding the appearance stream. Our

main model outperforms RGB and Motion-based methods

on MoCA-Mask. Fig. 8 presents qualitative results of our

segmentation model. Note that our model is robust to de-

graded optical flow and static animals.

6.4. Limitations

While our image generation method encourages back-

ground matching through the LF loss term minimization,

the sequence generating is not guaranteed to maintain ob-

ject concealment. A possible solution could be to use the

proposed Sα camouflage score to curate the generated se-

quence dataset and filter out the most visible objects.

Our proposed camouflage scores use the ground truth an-

notation and analyse the different regions it defines. We

found that our scoring system penalises specific cases of

camouflage by occlusion, where elements from the back-

ground are partially occluding the animal and helping im-

prove its camouflage. For instance, the grass in example (g)

from the last row of Fig. 6 is not treated as part of the animal

and therefore not considered in our background similarity

assessment. One can argue that this is due to the ambiguity

in the provided annotations and for such cases, extra amodal

annotation should be also considered.

7. Conclusion

We present three score functions for computationally

assessing the effectiveness of camouflage in images and

videos. By evaluating the similarity with background and

the boundary visibility, our combined perceptual score is

strongly correlated with human perceptual ranking systems

on two different datasets. We demonstrate that training a

generative model with our differentiable camouflage func-

tion improves the effectiveness of generated camouflage ex-

amples and can be used to generate challenging synthetic

camouflage datasets to train models to break camouflage.
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