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Abstract

Knowledge distillation (KD) has shown great success in
improving student’s performance by mimicking the interme-
diate output of the high-capacity teacher in fine-grained
visual tasks, e.g. object detection. This paper proposes
a technique called Masked Knowledge Distillation (MKD)
that enhances this process using a masked autoencoding
scheme. In MKD, random patches of the input image are
masked, and the corresponding missing feature is recov-
ered by forcing it to imitate the output of the teacher. MKD
is based on two core designs. First, using the student
as the encoder, we develop an adaptive decoder architec-
ture, which includes a spatial alignment module that op-
erates on the multi-scale features in the feature pyramid
network (FPN) [20], a simple decoder, and a spatial re-
covery module that mimics the teacher’s output from the
latent representation and mask tokens. Second, we intro-
duce the masked convolution in each convolution block to
keep the masked patches unaffected by others. By coupling
these two designs, we can further improve the completeness
and effectiveness of teacher knowledge learning. We con-
duct extensive experiments on different architectures with
object detection and semantic segmentation. The results
show that all the students can achieve further improvements
compared to the conventional KD. Notably, we establish the
new state-of-the-art results by boosting RetinaNet ResNet-
18, and ResNet-50 from 33.4 to 37.5 mAP, and 37.4 to 41.5
mAP, respectively.

1. Introduction
As fundamental tasks in computer vision, high-level vi-

sual predictions such as object detection, instance segmen-
tation, and semantic segmentation have been widely used in
various practical applications. In real-world scenarios, im-
proving the performance of the deployable models is cru-
cial. Improving the performance of a lightweight student
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Figure 1: Visualization of feature maps of teacher networks
(RetinaNet-ResX101) and student networks (RetinaNet-
Res50) with different KD paradigms.

model via a high-capacity teacher introduces an effective
paradigm, which is widely known as Knowledge Distilla-
tion (KD) [16, 4]. For dense visual prediction tasks, feature-
based distillation [17, 7, 11] is more beneficial for the stu-
dent to mimic the teacher’s intermediate features. Some
elaborated feature-based distillation methods [29, 4, 40, 18]
have established the state-of-the-art performance for many
lightweight models such as ResNet-18 [15].

The core bottleneck of such feature-based KD is how
to learn the complete knowledge from the teacher’s output
containing about 20K spatial coordinates (calculated on the
COCO training set). According to our experiment, 72% of
them are simple enough and converge quickly to achieve
∼90% similarity with the teacher’s output. The remain-
ing important knowledge is suppressed by this large num-
ber of simple samples, and it is difficult for the student to
learn effectively. To further verify the existence of infor-
mation redundancy in teacher features, we conduct experi-
ments that, when 30% of the features are randomly masked
during training and testing on Retina-R101 (38.4 mAP),
it still achieved similar performance (38.1 mAP). Previous
works [34, 46] point out similar observations that each pixel
contributes equally if using a common distillation loss (e.g.
MSE), which will cause the network to easily learn a lot
of similar information and is hard to identify important in-
formation. So they use attention [45, 40] and decouple the
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foreground and background feature [34, 46] to help alleviate
this problem. But attention can still lead to the imbalance
of information learning.

In order to learn the complete information without be-
ing affected by the spatial redundancy in teacher features,
we introduce the Mask Image Modeling (MIM) mecha-
nism to effectively promote the learning of this informa-
tion. To be more specific, we propose a new Masked
Knowledge Distillation (MKD) framework to improve the
knowledge learning of the student via the masked autoen-
coding paradigm. The core idea is that we mask random
patches of the input image of the student while maintain-
ing the whole input image for the teacher, and then recover
the corresponding missing feature by forcing the student to
imitate the output of the teacher. In this way, the student
network is encouraged to predict the masked patches with
corrupted input images and learn the relationship between
the masked area and its surrounding regions, rather than
simply imitating the output feature of the teacher at visible
patches. We conduct some experiments trying to excavate
the potential ability of the students. As shown in Fig. 1,
according to the feature comparison in the red box, it can
be observed that student network using MKD learns more
complete knowledge from teacher than the direct feature-
based method [1] and the attention-based method [40].

We introduce two crucial designs to alleviate some bot-
tlenecks in this framework. First, due to the masked im-
age input, directly applying the normal convolution in the
convolutional neural networks (CNN) will confuse the la-
tent representation in visible and invisible patches. There-
fore, we adopt the masked convolution [10, 23] to keep the
masked patches not affected by others in each convolution
block. Second, multi-scale features are often used in fine-
grained high-level visual tasks which have different masked
sizes, leading to inconsistent feature reconstruction. We de-
veloped an adaptive decoder architecture for this problem
to predict the teacher’s feature in the corresponding masked
area. More specifically, a spatial alignment module is first
operated on the multi-scale features to align them to the
same spatial resolution. A mask token is then replicated
multiple times to replace the features in the masked area.
The features in the visible patches and mask tokens are
sent to an adaptive transformer decoder to reconstruct the
teacher’s feature. Finally, we conduct the spatial recovery
module to convert the same spatial resolution to the original
multi-scale resolution to perform feature-based distillation.

In our method, by the mask autoencoding paradigm with
asymmetric input for student and teacher, the student is
forced to infer the teacher’s features in the invisible patches
by imitating the teacher’s features in the visible patches. We
observe that the mask tokens in the decoder try to absorb
knowledge from their adjacent region to restore the features
in the masked region. Completely restoring the masked fea-
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Figure 2: The average L2 distance between student’s feature
and teacher’s feature calculated at the unmasked areas with
RetinaNet-ResX101 distilling RetinaNet-Res50.

tures drives it to fully learn the teacher’s corresponding in-
formation in these adjacent areas. As shown in Fig. 2, the
L2 distance value in adjacent regions of the mask can be
lower with masked input. This verifies the claim that the
student network can better learn the teacher’s knowledge in
our learning manner. MKD can be directly used in differ-
ent architectures and various dense visual prediction tasks,
e.g., object detection and semantic segmentation. The re-
sults show that MKD can improve considerably cooperated
with conventional feature-based distillation. For instance,
with MKD in RetinaNet, the mAP of student ResNet-18 is
greatly improved to 37.5, 4.1% higher than the baseline, and
also outperforms the previous SOTA methods. To sum up,
our contributions are as follows:

• We propose a new paradigm for feature-based distilla-
tion named MKD, using mask autoencoding scheme to
effectively learn the complete knowledge in the teacher
network. MKD masks random patches of the input im-
age and recovers the corresponding masked feature by
forcing it to imitate the teacher’s output.

• We introduce the masked convolution and adaptive de-
coder module in MKD to make it easy to cooperate
with different architectures in fine-grained visual tasks,
e.g., object detection and semantic segmentation.

• Extensive experiments on various models and tasks
verify the effectiveness of our method. For different
student architectures and tasks, MKD can further im-
prove the performance of feature-based distillation and
establish new state-of-the-art.

2. Related Works
2.1. Object Detection

As a fundamental and challenging task in computer vi-
sion, object detection aims to detect the visual objects
of a certain class in the images. Modern object detec-
tors can be broadly divided into three paradigms: two-
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Figure 3: Illustration of the MKD. For clear visualization, we omit the original task losses, such as classification and
localization loss. In this learning process, the parameter of the teacher is fixed. The mask token and decoder are not shared
between different-scale features in FPN due to the semantic gap in different-scale features.

stage [28, 14, 35], anchor-based one-stage [21, 32, 24],
and anchor-free one-stage [43, 9]. While detectors with
strong backbones have better accuracy, they are computa-
tionally expensive and difficult to deploy on mobile devices.
One interesting direction of research is the compression of
detection networks, including quantization [36, 19], prun-
ing [12, 38], and the design of lightweight networks [31].
In addition, Knowledge Distillation (KD) [16, 46, 37], has
become an important method for transferring knowledge
from larger, better-performing networks without changing
the structure of the network.

2.2. Knowledge Distillation for Detection

Knowledge distillation is a model compression and ac-
celeration method that can transfer knowledge from the
teacher model to the student model. The logit-based distil-
lation methods [16, 46, 44] in classification are limited for
the improvement of the fine-grained visual understanding
tasks because the localization information from the teacher
is crucial. Therefore, feature-based distillation over multi-
scale features has become the main method of distillation
for detectors. Current feature distillation methods for de-
tectors can be divided into the following four categories: (1)
hint-based, (2) attention-based, (3) instance-based, and (4)
masked-feature based. Hint-based methods [29, 1, 33, 42]
take features from the intermediate layers as hints to guide
the student model. However, such methods treat all regions
equally and do not get satisfactory results. Instance-based
methods aim to find the key instance regions for distilla-
tion by GT boxes or specifically designed modules, e.g.
FGFI [34], GID [7], ICD [17]. Attention-based methods
further improve the performance by using attention maps to

locate discriminative areas, e.g. FKD [45], FGD [40]. Re-
cent work MGD [41] first proposed to mask out the feature
maps in the knowledge distillation branch and use a genera-
tor to restore the teacher feature. In our work, we mask ran-
dom patches of the original images and adopt masked con-
volution into the backbone network to prevent information
leakage. This new paradigm introduces masks throughout
the backbone network, enhancing the corresponding knowl-
edge learning in adjacent regions of the random mask. Ex-
periments have shown that distillation benefits well from the
masking scheme, especially for longer schedules.

3. Approach
3.1. Masked Knowledge Distillation

We first elaborate on the overall pipeline of our masked
knowledge distillation (MKD) by instantiating an exam-
ple in object detection. Let FS ∈ RC×H×W and FT ∈
RC×H×W denote the output features of student’s FPN and
teacher’s FPN, respectively. The standard feature-based dis-
tillation can be formulated as:

Lfeat =
1

2N

P∑
i=0

(FT
i − ϕ(FS

i ))2, (1)

where P indicates the total number of features in FPN and
N = CiHiWi. Ci, Hi,Wi represent the channel number,
height, and width for feature map F ∗

i . ϕ is a convolutional
layer with kernel size 1× 1 to align the channel dimension
between the FT and FS .

As discussed above, to further enhance KD distillation
dense visual predictions, we introduce the masked autoen-
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coding scheme into KD learning. In this manner, the distil-
lation of the features can be formulated as:

Lfeat =
1

2N

P∑
i=0

(FT
i − fdec(ϕ(F

S
i ), Tmask))

2, (2)

where fdec is the proposed adaptive decoder module with
spatial alignment module, stacked transformer decoder lay-
ers, and spatial recovery module. Tmask is the mask token.

The overall architecture of MKD is shown in Fig. 3.
Firstly, given an image with H×W , a binary mask map M
with the element number N = H

s × W
s is randomly sam-

pled with a given masking ratio. s is the down-sampled fac-
tor of the mask map and we set it to 32 in our experiments.
We progressively upsample the mask to align its resolution
to the output of each convolutional stage in the student’s
backbone. Using the student as an encoder, the masked
images are then sent to it and the masked residual blocks
in each masked convolutional stage are conducted to leave
the masked area unprocessed by the backbone in the for-
ward process. Finally, the masked feature maps generated
by FPN will be sent to an adaptive decoder module where
a spatial alignment module (SAM) is introduced to oper-
ate on the multi-scale features, along with a decoder and
spatial recovery module (SRM) that reconstructs the latent
representations with mask tokens. This learning manner is
supervised by forcing the student’s output of the adaptive
decoder to imitate the teacher’s output. Even if we mask
random patches of the input image, with the assistance of
MKD, the student model can still infer the features of the
invisible patches.

3.1.1 Masking in the Image Space.

Following ViT [8] and MAE [13], we first divide the input
image into regular non-overlapping image patches, and then
randomly generate a binary mask according to the given
masking ratio. The masked area in the input image keeps
unseen to the student model. We simply refer to this as
“random masking”. Notice that the random masking strat-
egy follows a uniform distribution, which eliminates the po-
tential center bias. The mask is illustrated in Fig. 3, which
is a schematic gram, and the real masked image is shown in
Fig. 1. Different from ViT, the convolutional neural network
is designed with a pyramid scheme where different convolu-
tional stages are set with different stride factors. This leads
to multiple different spatial resolutions in the student’s for-
ward propagation. To make consistent with this, after gen-
erating a mask with resolution H

32 × W
32 for the late stage in

the student, we progressively upsample the mask to larger
resolutions in early convolutional stages as shown in Fig. 3.
Introducing random masking to knowledge distillation can
create a task that cannot be easily solved by directly per-
forming the pixel-to-pixel spatial matching supervision.
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Figure 4: Illustration of the adaptive decoder. The inputs are
the corresponding mask and feature maps from the teacher’s
FPN and the student’s FPN.

3.1.2 Masked Encoder.

In our MKD, the student backbone is used as the encoder
to process the masked input image. To ensure that the net-
work only operates on the visible patches and reconstructs
only from the neighboring ones, previously masked auto-
encoders such as MAE proposed to forward only the visi-
ble tokens into the encoder. However, this method cannot
be used directly in convolutional networks since we need
to preserve the spatial dimension of the image. Following
ConvMAE [10], we adopt the masked convolution to solve
this problem, which is commonly used in image inpaint-
ing [23] and sparse feature extraction [27] to process the in-
complete input information. More specifically, masked con-
volutions are used in all blocks for each stage in the whole
student so that the masked regions are not involved in the
encoding process. The operation of masked convolution is
shown in Fig. 3, where the input feature maps from the pre-
vious layer are masked firstly by performing the Hadamard
product with the mask map. This can effectively avoid the
confusing feature interaction between masked and visible
regions. In this way, the decoder can only speculate based
on the information of adjacent image blocks during recon-
struction. We assume that this will help the encoder learn
more expressive and content-rich features.

3.1.3 Adaptive Decoder.

The input to the adaptive decoder is the multi-scale masked
feature maps of the student followed by a 1 × 1 convolu-
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tion layer to align the channel number. The masked sizes
are different in these multi-scale features, which leads to
inconsistent feature reconstruction. To alleviate this, we in-
troduce a simple spatial alignment module (SAM) to align
them to the same spatial resolution ( 1

32 of the input image
size in our experiments). As shown in Fig. 4, this is im-
plemented by convolutional layer with stride p or upsam-
pling the spatial resolution by a factor of 1

p (using nearest
neighbor upsampling for simplicity), where scaling factor
p = Hi/

H
32 = Wi/

W
32 is the multiplier to the target size.

And then, a specific mask token is initialized for each fea-
ture scale and then replicated multiple times to replace the
features in the masked area. See Fig. 3. Each mask token is
a learned vector and is not shared between different feature
scales. Different from the fixed input size in the classifi-
cation task, the input size of the image is flexible, and this
requires the same flexible positional embedding generation.
We conduct the position encoding in an absolute scale, e.g.,
28× 28, and adaptively interpolate its resolution according
to the input image size. We then add the positional embed-
dings to all tokens in each feature scale and send them to
a series of transformer blocks to perform the feature recon-
struction task. The final outputs of the transformer blocks
are then restored to the original multi-scale resolutions via
the spatial recovery module (SRM). In the SRM, we adopt
a linear layer to change the channel numbers to p2 ×CT

i (p
is the same scaling factor used in SAM) and further reshape
into the same size as FT

i . The output of SRM is forced
to imitate the teacher’s output and learns to reconstruct the
missing feature. Note that the adaptive decoder is only used
during training to perform the masked KD task.
3.1.4 Distillation Target.

Denote the output of SRM as F̂S
i ∈ RCT

i ×Hi×Wi where i
indicates the feature index in FPN and CT

i , Hi,Wi indicate
the channel number, height and width of the corresponding
feature. The feature-based distillation loss can be formu-
lated as follows:

Lfeat =
1

2N

P∑
i=0

(FT
i − F̂S

i )2, (3)

where P indicates the total number of features in FPN and
N = CiHiWi. F̂S

i is the output of fdec(ϕ(FS
i ), Tmask) in

Eq (2). Following the state-of-the-art feature-based distilla-
tion method FGD [40], we introduce the global distillation
loss Lglobal to assist the distillation learning, which can be
formulated as:

Lglobal =

P∑
i=0

(R(FT
i )−R(F̂S

i ))2, (4)

where R denotes GCBlock in FGD. Note that before com-
puting Lfeat and Lglobal we have FS and FT pass a layer
normalization operation as well before MSE loss.

To summarize, the overall training loss of the proposed
MKD includes (a) task loss Ltask, e.g., classification loss
and regression loss in object detection; (b) feature-based
distillation loss Lfeat and Lglobal. It can be formulated as
follows:

Ltotal = Ltask + λLfeat + γLglobal (5)

where λ and γ are the weights to balance the distillation
losses. The total distillation process is model-agnostic, so it
works well with a variety of different structures.

3.2. Discussion

Feature-based distillation methods [29, 4, 41], such as
hint-based [29, 1], attention-based [45, 40], and instance-
based [34, 7, 17], have achieved superior performance im-
provement. They usually make the student imitate the
teacher’s output given fully visible image input and design
different principles to extract the task-aware knowledge to
guide the student’s learning. But the redundant informa-
tion in the teacher’s feature hinders the complete knowledge
learning of the student.

As shown in Fig. 5, MGD [41] introduces the feature
masking scheme to enhance the feature learning process by
partially masking pixels in the feature maps from student’s
FPN. However, the information in the masked part has al-
ready been leaked during the forward process of the full
image in the backbone. Thus, when minimizing KD loss,
the effect of MGD is divided into two parts. First, since
each adjacent pixel of the masked pixel already contains the
information of the masked pixel, in the process of push-
ing student and teacher pair closer together, MGD extracts
the masked feature from the leaked information in adjacent
pixels and uses convolution to restore it. Second, the pix-
els around the masked pixels are pushed closer to the corre-
sponding teacher. The effect of MGD is therefore dispersed,
and even with the adaptive decoder proposed in our MKD,
MGD is still not able to establish the connection between
the masked and unmasked area as shown in Tab. 1.

FitNet MGD MKD

��

��
KD loss KD loss KD loss

�� ��
pull

�� ��
pull

�� ��
pull hard

: mask
: decoder

Figure 5: Comparison of different distillation paradigms.

Different from all these paradigms, MKD introduces a
global decoder to learn the relationship between the masked
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Method mAP AP50 AP75

original MGD [41] 36.6 55.1 39.1
MGD + decoder in our MKD 36.6 55.0 39.1

Table 1: Study on the decoder with Retina Res101-Res18.

area and its surroundings, shown in Fig. 5, promoting the
learning of complete knowledge in teacher by KD. MKD
masks information in the image space throughout the dis-
tillation process, which guarantees that the masked area is
completely invisible to the student. Since there is no ad-
ditional information leakage, MKD more strongly pushes
the features of the teacher and the student closer during dis-
tillation. Moreover, we visualize the self-attention in the
transformer decoder blocks in Fig. 6. To restore the feature
of the unseen masked region, the student network is driven
to fully learn corresponding knowledge from the adjacent
areas. Thus, the feature imitation process is accordingly
enhanced. To better understand this, we illustrate the L2
distance between the teacher’s and student’s features in the
adjacent regions in Fig. 2. Our MKD can further enhance
the student’s learning and demonstrates superior improve-
ment over the previous KD paradigms as shown in Tab. 3
and Tab. 2.

Figure 6: The visualization of attention in decoder blocks.
The square in red denotes the query.

4. Experiments
In order to evaluate the performance of our proposed

method on object detection tasks, we first conduct experi-
ments on the MS COCO dataset [22], which consists of 80
object categories and over 120k images in total. We use
120k images for training and 5k images for testing, fol-
lowing the most common setting. We take mean average
precision (mAP) as the evaluation metric of all the detec-
tors. As for the semantic segmentation task, we evaluate
our distillation method on the Cityscapes dataset [6] with
5k high-quality images and evaluate the performance with
mean Intersection-over-Union (mIoU). The shown results
are the average value of three runs.
Implementation Details. We train the student models with
a batch size of 16 for 24 epochs (known as a 2× sched-
ule). The initial learning rate is set by 0.01 for one-stage
detectors and 0.02 for two-stage detectors. We reduce the
learning rate by 0.1× at the 16th and 21st epochs. We adopt
an early-stop mask strategy in the last 2 epochs, in which we
set the masking ratio as 0.2 with a learning rate of 0.001 and
without supervision from the teacher. This follows the co-

Method Schedule mAP AP50 AP75
RetinaNet-ResX101(T) 2x 41.0 60.9 44.0
RetinaNet-Res50(S) 2x 37.4 56.7 39.6
FKD [45] 2x 39.6 (+2.2) 58.8 42.1
FGD [40] 2x 40.4 (+3.0) 59.9 43.3
MGD [41] 2x 40.7 (+3.3) 59.4 42.8
MGD* [41] 2x 41.0 (+3.6) 60.7 44.0
ours 2x 41.1 (+3.7) 60.6 44.0
ours* 2x 41.5 (+4.1) 61.1 44.3
RetinaNet-Res101(T) 2x 38.1 58.3 40.9
RetinaNet-MBV2(S) 2x 31.0 48.9 32.7
GID [7] 2x 33.5 (+2.5) 51.9 35.5
FGD [40] 2x 35.6 (+4.6) 53.8 38.1
MGD [41] 2x 35.5 (+4.5)
ours 2x 36.0 (+5.0) 54.5 38.1
RetinaNet-Swin-s(T) 1x 39.7 60.1 42.2
RetinaNet-Swin-t(S) 1x 37.2 57.4 39.1
FGD [40] 1x 38.6 (+1.4) 58.6 40.9
F=MGD [41] 1x 38.1 (+0.9)
ours 1x 39.3 (+2.1) 59.5 41.6

Table 2: Results on COCO dataset with large backbones
and swin transformer backbones [26]. T and S denote the
teacher and the student, respectively.

sine schedule down to 0. In this way, the input distribution
of the whole image is consistent with the test image.

We use SGD as the optimizer and set the momentum and
weight decay by 0.9 and 0.0001, respectively. We use the
masking ratio of 0.1 by default and set the size of masked
patches by 32. The number of adaptive decoder layers is 4.
Transformer blocks in the decoder have 256 channels with
a head number of 8, and the mlp ratio is set to be 8. The
loss weight in Eq. 5 are set to be {λ = 3, γ = 3e − 6} in
single-stage detectors, {λ = 3, γ = 3e − 7} in two-stage
detectors, and {λ = 7, γ = 0} in segmentation. All the ex-
periments are conducted on 8 GPUs with mmdetection [2]
and mmsegmentation [5] on PyTorch.

4.1. Main Results

Object detection. To verify the effectiveness of the MKD,
we conduct experiments on popular detectors, i.e., Reti-
naNet [21], Faster R-CNN [28] and Reppoints [43] with
various backbones, and the results are shown in Tab. 3
and Tab. 2. We can observe that the proposed MKD can
consistently improve the student model by more than 2.5
mAP. For example, the Faster R-CNN with ResNet 50 can
achieve 41.1 mAP when mimicking Faster R-CNN with
ResNet 101 with MKD, which even surpasses the teacher.
We further compare our method with the state-of-the-art
for detection distillation under fair settings. Our MKD sur-
passes FGD [40] and MGD [41] on various student-teacher
pairs. When distilling the RetinaNet-Res50 model with
RetinaNet-ResX101 as the teacher, MKD transcends MGD
with 0.4 on mAP and 1.2 on AP50. A similar trend can be
observed when we choose smaller students like ResNet 18
as the backbone.
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Method (The default training schedule is 2x) mAP AP50 AP75 APs APm APl
RetinaNet-Res101(Teacher network) 38.9 58.0 41.5 21.0 42.8 52.4
RetinaNet-Res18(Student network) 33.4 51.8 35.1 16.9 35.6 44.9
FKD [45] 35.9 (+2.5) 54.4 38.0 17.9 39.1 49.1
FGD [40] 36.2 (+2.8) 54.7 38.6 19.5 40.1 48.4
MGD [41] 36.6 (+3.2) 55.1 39.1 19.5 40.3 50.7
ours 37.3 (+3.9) 56.1 39.9 19.0 41.0 51.6
ours*(with the parameter inheriting scheme [17] ) 37.5 (+4.1) 56.0 39.9 19.4 41.5 51.2
RetinaNet-Res101(Teacher network) 38.9 58.0 41.5 21.0 42.8 52.4
RetinaNet-Res50(Student network) 37.4 56.7 39.6 20.0 40.7 49.7
GID [7] 39.1 (+1.7) 59.0 42.3 22.8 43.1 52.3
FGD [40] 39.6 (+2.2) 58.5 42.5 22.9 43.7 53.6
MGD [41] 39.5 (+2.1) 58.5 42.2 21.3 43.6 53.4
ours 39.9 (+2.5) 59.0 42.7 22.3 43.9 53.3
ours*(with the parameter inheriting scheme [17] ) 40.2 (+2.8) 59.3 43.0 22.3 44.4 54.0
FasterRCNN-Res101(Teacher network) 39.8 60.1 43.3 22.5 43.6 52.8
FasterRCNN-Res50(Student network) 38.4 59.0 42.0 21.5 42.1 50.3
FGFI [34] 39.3 (+0.9) 59.8 42.9 22.5 42.3 52.2
GID [7] 40.2 (+1.8) 60.7 43.8 22.7 44.0 53.2
FGD [40] 40.4 (+2.0) 60.7 44.3 22.8 44.5 53.5
MGD [41] 40.1 (+1.7) 60.2 43.6 22.9 44.2 53.3
ours 41.0 (+2.6) 61.5 44.7 23.5 45.5 53.4
ours*(with the parameter inheriting scheme [17] ) 41.1 (+2.7) 61.5 44.8 24.4 45.1 54.3
FCOS-Res101(Teacher network) 40.8 60.0 44.0 24.2 44.3 52.4
FCOS-Res50(Student network) 38.5 57.7 41.0 21.9 42.8 48.6
GID [7] 42.0 (+3.5) 60.4 45.5 25.6 45.8 54.2
FGD [40] 42.1 (+3.6) - - 27.0 46.0 54.6
MGD [41] 42.2(+3.7) 60.9 45.3 26.6 46.3 54.7
ours 42.5 (+4.0) 61.2 46.1 26.6 46.8 54.6
ours*(with the parameter inheriting scheme [17] ) 43.1 (+4.6) 61.7 46.7 27.3 47.1 55.1
Reppoints-ResX101(Teacher network) 44.2 65.5 47.8 26.2 48.4 58.5
Reppoints-Res50(Student network) 38.6 59.6 41.6 22.5 42.2 50.4
FKD [45] 40.6 (+2.0) 61.7 43.8 23.4 44.6 53.0
FGD [40] 41.3 (+2.7) - - 24.5 45.2 54.0
MGD [41] 41.8 (+3.2) 62.8 44.8 24.2 45.8 55.6
MGD [41]*(with the parameter inheriting scheme [17] ) 42.3 (+3.7) 63.3 45.4 24.4 46.2 55.9
ours 42.2 (+3.6) 63.0 45.6 24.3 46.4 55.7
ours*(with the parameter inheriting scheme [17] ) 43.0 (+4.4) 63.8 46.1 24.4 47.2 57.1

Table 3: Object detection performance of our proposed MKD with various teacher-student pairs on the COCO dataset.

Moreover, our method can benefit from a longer training
schedule. For example, when training for 36 epochs, our
MKD can further improve the performance of the student
model over 4.0 mAP, which surpasses other methods by a
larger margin than that for 12 epochs. This demonstrates
that introducing a masked autoencoder into knowledge dis-
tillation can help the student avoid early saturation and ben-
efit more from the distillation process.

Semantic segmentation. Our MKD can be easily trans-
ferred to segmentation tasks such as semantic segmenta-
tion, and we conduct knowledge distillation experiments to
show the generality of the proposed method. We choose
PspNet-Res101 [47] as the teacher to distill PspNet-Res18
and DeepLabV3-Res18 [3]. As shown in Tab. 5, our method
improves the PspNet-Res18 model with 4.85 mIoU, which
greatly fills the gap between the student and the teacher.
Also, MKD surpasses MGD and other methods by a signif-

icant margin, which verifies the effectiveness and generality
of our method.
Image classification. Since the core bottleneck is particu-
larly prominent in fine-grained visual tasks that rely on spa-
tial localization information, we mainly evaluate our meth-
ods on them. We also present the result of MKD on the
classification task in Tab. 6, which further verifies its effec-
tiveness.

4.2. Ablation Study

Masking ratio. We first examine the influence of different
masking ratios on the performance shown in Fig. 7. Large
masking ratios benefit more from longer training schedules.
For example, a masking ratio of 0.1 achieves the best under
a 1x schedule, while the best one changes to 0.3 under a 3x
schedule. This is because a larger masking ratio introduces
more difficulty to the distillation process and needs more
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Patch Size mAP AP50 AP75
Baseline 37.4 56.7 39.6

16 39.8 59.2 42.5
32 39.9 59.3 42.5
64 39.8 59.0 42.7

(a) The patch size.

Resolution mAP AP50 AP75
w/o SAM, SRM OOM - -
[H/16,W/16] 38.9 58.0 41.6
[H/32,W/32] 39.9 59.3 42.5
[H/64,W/64] 39.7 59.1 42.2

(b) The aligned resolution in SAM.

λ mAP AP50 AP75
0 39.6 58.8 42.5
1 39.9 59.2 42.8
3 39.9 59.3 42.5
5 39.7 59.0 42.6

(c) The loss weights λ.

γ mAP AP50 AP75
0 39.7 59.0 42.6

1e-6 39.7 58.9 42.2
3e-6 39.9 59.3 42.5
5e-6 39.8 59.2 42.6

(d) The loss weights γ.

Depth mAP AP50 AP75
Baseline 37.4 56.7 39.6

2 39.6 58.7 42.4
4 39.9 59.3 42.5
8 39.8 59.0 42.3

(e) The depth of the adaptive decoder N .

Masked
Convolution mAP AP50 AP75

Baseline 37.4 56.7 39.6
w/o 39.6 58.8 42.5
w/ 39.9 59.3 42.5

(f) The masked convolution.

Mask Strategy mAP AP50 AP75
Baseline 37.4 56.7 39.6
Random 39.9 59.3 42.5
Grid 37.8 57.0 40.2
Block 39.7 59.2 42.7

(g) The masking strategy.

Table 4: Ablation study on the MKD design with RetinaNet-ResNet50 as student and RetinaNet-ResNeXt101 as a teacher
under 1x training schedule. If not specified, the patch size is 32, λ = 3, γ = 3e − 6, the decoder has a depth of 4, and the
mask is randomly sampled.

Method inputsize mIoU
PspNet-Res101(T) 512x1024 78.34
PspNet-Res18(S) 512x512 69.85
SKDS [25] 512x512 72.70
CWD [30] 512x512 73.53
MGD [41] 512x512 73.63
MGD* [41] 512x512 74.10
ours 512x512 73.99
ours* 512x512 74.70
PspNet-Res101(T) 512x1024 78.34
DeepLabV3-Res18(S) 512x512 73.20
SKDS [25] 512x512 73.87
CWD [30] 512x512 75.93
MGD [41] 512x512 76.02
MGD* [41] 512x512 76.31
ours 512x512 76.14
ours* 512x512 76.63

Table 5: Semantic segmentation result on Cityscape dataset.
* means adopting an extra logits loss from CWD [30].

Method Top-1 Top-5
ResNet-34(T) 73.62 91.59
ResNet-18(S) 69.90 89.43
FitNet [29] 71.50 90.27
SRRL [39] 71.73 90.60
MGD [41] 71.80 90.40
Ours 72.01 90.43

Table 6: The performance of classification on ImageNet.

optimization steps for the student to converge.
Masked convolution. To keep the masked patches not af-
fected by others in the convolution block, we introduce the
masked convolution in our MKD, and the results of ablation
on masked convolution are shown in Tab. 4f. Removing
masked convolution from MKD will lead to a reduction of
0.3 mAP, which is still better than that of the baseline. This
demonstrates that the masking operation indeed hinders the
optimization of convolution blocks, and adopting masked
convolution can effectively alleviate this issue.

1x 2x 3x
schedule

2.5

3.0

3.5

4.0

+A
P

FitNet
FGD
MGD
MKD w/ mask 0.1
MKD w/ mask 0.2
MKD w/ mask 0.3
MKD w/ mask 0.4

Figure 7: Illustration of the performance improvement of
different masking ratios under different schedules. It ap-
pears that MKD (green) brings the greatest boost to the
baseline (36.5mAP).

Mask patch size. Here we examine how the masked patch
size influences the distillation process. As shown in Tab. 4a,
a patch size of 32 performs the best than other options.
A smaller patch will lead to the confusing assignment of
masked position in the last stage, which leads to inferior
performance. On the contrary, using a larger patch size may
distort the objects too much and make the edge vague. So
we use a masked patch size of 32 by default in our work.
SAM and SRM. We compare different aligned resolutions
in SAM, and the results are shown in Tab. 4b. The training
process appears to be out of memory(OOM) without spatial
alignment operation, indicating that SAM and SRM are im-
portant in reducing computation and memory. We further
found that setting the target resolution as H

32 × W
32 performs

the best because it is the same size as the masked patches.
Mask sampling strategies. Here we examine the influence
of different masking strategies, e.g., masking randomly,
masking in grids, and masking by block. Recent masked
image modeling works show that random strategy works the
best, and we observe a similar trend in our MKD. Note that
to prevent the student network from learning the mask pat-
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tern, it is necessary to use a global random mask. As shown
in Tab. 4g, random masking surpasses other ways and is se-
lected in other experiments in this paper.
Adaptive decoder design. Adaptive decoder helps to re-
construct masked features from visible ones and is an im-
portant module in MKD. We choose different numbers of
decoder layers and examine their effects on distillation per-
formance. As shown in Tab. 4e, four layers perform the
best. Due to the feature dimension and length of the se-
quence, we use four layers by default. Objects of different
scales correspond to different feature levels of FPN, so we
use unshared tokens for the reconstruction. While shared
tokens cause a performance drop from 37.3 mAP to 37.0
mAP.
Loss weight. In Eq. 5, we use two hyper-parameters λ
and γ to balance the distillation loss, and we conduct abla-
tion studies to investigate their sensitivities of them. From
Tab. 4d and 4c, it can be seen that the performance of the
student model is not sensitive to the choices of λ and γ, as
the gap between the worst and the best is within 0.2 mAP.
Note that Lfeat and Lglobal are both distillation losses to
calculate the similarity between the reconstructed output of
the decoder F̂S and teacher feature FT . The main differ-
ence is that Lfeat directly calculates MSE, and Lglobal goes
through a GCblock. Hence, the performance drop is small
when λ = 0 or γ = 0, as MKD already works when using
either of the loss alone.

5. Conclusion
In this paper, we propose a new distillation paradigm

Masked Knowledge Distillation (MKD), which introduces
the masked autoencoding scheme to enhance the knowledge
distillation process. MKD takes the masked image as in-
put and predicts the whole feature map that is used to im-
itate the corresponding feature of the teacher network. By
forcing the student network to learn the knowledge of the
nearby region of the masked part to recover the full feature,
the student can better transfer the corresponding informa-
tion from the teacher, which helps to excavate the potential
of the small student network. Extensive experimental re-
sults on various fine-grained visual tasks show its power in
enhancing the improvement of knowledge distillation.

Acknowledgement
This work was partly supported by the National Natu-

ral Science Foundation of China (Grant No. 61991451)
and the Shenzhen Science and Technology Program
(JCYJ20220818101001004).

References
[1] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-

mohan Chandraker. Learning efficient object detection mod-

els with knowledge distillation. In NIPS, pages 742–751,
2017. 2, 3, 5

[2] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv preprint arXiv:1906.07155, 2019.
6

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 7

[4] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia.
Distilling knowledge via knowledge review. In CVPR, pages
5008–5017, 2021. 1, 5

[5] MMSegmentation Contributors. Mmsegmentation:
Openmmlab semantic segmentation toolbox and bench-
mark. https://github.com/open-mmlab/
mmsegmentation, 2020. 6

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
pages 3213–3223, 2016. 6

[7] Xing Dai, Zeren Jiang, Zhao Wu, Yiping Bao, Zhicheng
Wang, Si Liu, and Erjin Zhou. General instance distillation
for object detection. In CVPR, pages 7842–7851, 2021. 1, 3,
5, 6, 7

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2020. 4

[9] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In ICCV, pages 6569–6578, 2019. 3

[10] Peng Gao, Teli Ma, Hongsheng Li, Jifeng Dai, and Yu Qiao.
Convmae: Masked convolution meets masked autoencoders.
arXiv preprint arXiv:2205.03892, 2022. 2, 4

[11] Kunyang Han, Yong Liu, Jun Hao Liew, Henghui Ding,
Yunchao Wei, Jiajun Liu, Yitong Wang, Yansong Tang, Yu-
jiu Yang, Jiashi Feng, et al. Global knowledge calibra-
tion for fast open-vocabulary segmentation. arXiv preprint
arXiv:2303.09181, 2023. 1

[12] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network.
NIPS, 28, 2015. 3

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, pages 16000–16009, 2022. 4

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 3

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 1

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. Computer Science,
14(7):38–39, 2015. 1, 3

6392



[17] Zijian Kang, Peizhen Zhang, Xiangyu Zhang, Jian Sun, and
Nanning Zheng. Instance-conditional knowledge distillation
for object detection. NIPS, 34:16468–16480, 2021. 1, 3, 5,
7

[18] Quanquan Li, Shengying Jin, and Junjie Yan. Mimicking
very efficient network for object detection. In CVPR, pages
6356–6364, 2017. 1

[19] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie
Yan, and Rui Fan. Fully quantized network for object detec-
tion. In CVPR, pages 2810–2819, 2019. 3

[20] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, pages 2117–2125,
2017. 1

[21] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
pages 2980–2988, 2017. 3, 6

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755. Springer, 2014. 6

[23] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-
regular holes using partial convolutions. In ECCV, pages
85–100, 2018. 2, 4

[24] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In ECCV, pages
21–37. Springer, 2016. 3

[25] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo,
and Jingdong Wang. Structured knowledge distillation for
semantic segmentation. In CVPR, pages 2604–2613, 2019.
8

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 10012–10022, 2021. 6

[27] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Ur-
tasun. Sbnet: Sparse blocks network for fast inference. In
CVPR, pages 8711–8720, 2018. 4

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. NIPS, 28, 2015. 3, 6

[29] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014. 1, 3, 5, 8

[30] Changyong Shu, Yifan Liu, Jianfei Gao, Zheng Yan, and
Chunhua Shen. Channel-wise knowledge distillation for
dense prediction. In ICCV, pages 5311–5320, 2021. 8

[31] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficient-
det: Scalable and efficient object detection. In CVPR, pages
10781–10790, 2020. 3

[32] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In ICCV,
pages 9627–9636, 2019. 3

[33] Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, and
Yujiu Yang. Attention probe: Vision transformer distillation
in the wild. In ICASSP, pages 2220–2224. 3

[34] Tao Wang, Li Yuan, Xiaopeng Zhang, and Jiashi Feng. Dis-
tilling object detectors with fine-grained feature imitation. In
CVPR, pages 4933–4942, 2019. 1, 2, 3, 5, 7

[35] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. Solov2: Dynamic and fast instance segmentation.
NIPS, 33:17721–17732, 2020. 3

[36] Yi Wei, Xinyu Pan, Hongwei Qin, Wanli Ouyang, and Junjie
Yan. Quantization mimic: Towards very tiny cnn for object
detection. In ECCV, pages 267–283, 2018. 3

[37] Taiqiang Wu, Cheng Hou, Zhe Zhao, Shanshan Lao, Jiayi Li,
Ngai Wong, and Yujiu Yang. Weight-inherited distillation for
task-agnostic bert compression, 2023. 3

[38] Xiang Xiang, Zhiyuan Wang, Shanshan Lao, and Baochang
Zhang. Pruning multi-view stereo net for efficient 3d recon-
struction. ISPRS Journal of Photogrammetry and Remote
Sensing, 168:17–27, 2020. 3

[39] Jing Yang, Brais Martinez, Adrian Bulat, Georgios Tz-
imiropoulos, et al. Knowledge distillation via softmax re-
gression representation learning. ICLR, 2021. 8

[40] Zhendong Yang, Zhe Li, Xiaohu Jiang, Yuan Gong, Ze-
huan Yuan, Danpei Zhao, and Chun Yuan. Focal and global
knowledge distillation for detectors. In CVPR, pages 4643–
4652, 2022. 1, 2, 3, 5, 6, 7

[41] Zhendong Yang, Zhe Li, Mingqi Shao, Dachuan Shi, Zehuan
Yuan, and Chun Yuan. Masked generative distillation. arXiv
preprint arXiv:2205.01529, 2022. 3, 5, 6, 7, 8

[42] Zhendong Yang, Zhe Li, Ailing Zeng, Zexian Li, Chun Yuan,
and Yu Li. Vitkd: Practical guidelines for vit feature knowl-
edge distillation. arXiv preprint arXiv:2209.02432, 2022. 3

[43] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen
Lin. Reppoints: Point set representation for object detection.
In ICCV, pages 9657–9666, 2019. 3, 6

[44] Zhendong Yang, Ailing Zeng, Zhe Li, Tianke Zhang,
Chun Yuan, and Yu Li. From knowledge distillation to
self-knowledge distillation: A unified approach with nor-
malized loss and customized soft labels. arXiv preprint
arXiv:2303.13005, 2023. 3

[45] Linfeng Zhang and Kaisheng Ma. Improve object detection
with feature-based knowledge distillation: Towards accurate
and efficient detectors. In ICLR, 2020. 1, 3, 5, 6, 7

[46] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun
Liang. Decoupled knowledge distillation. In CVPR, pages
11953–11962, 2022. 1, 2, 3

[47] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, pages 2881–2890, 2017. 7

6393


