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Abstract

The goal of this paper is to localize action instances in
a long untrimmed query video using just meager trimmed
support videos representing a common action whose class
information is not given. In this task, it is crucial to mine
reliable temporal cues representing a common action from
handful support videos. In our work, we develop an at-
tention mechanism using cross-correlation. Based on this
cross-attention, we first transform the support videos into
query video’s context to emphasize query-relevant impor-
tant frames, and suppress less relevant ones. Next, we
summarize sub-sequences of support video frames to rep-
resent temporal dynamics in coarse temporal granularity,
which is then propagated to the fine-grained support video
features through the cross-attention. In each case, the
cross-attentions are applied to each support video in the
individual-to-all strategy to balance heterogeneity and com-
patibility of the support videos. In contrast, the candidate
instances in the query video are lastly attended by the re-
sulting support video features, at once. In addition, we also
develop a relational classifier head based on the query and
support video representations. We show the effectiveness of
our work with the state-of-the-art (SOTA) performance in
benchmark datasets (ActivityNet1.3 and THUMOS14), and
analyze each component extensively.

1. Introduction
Temporal action localization [2, 4, 33, 23, 31, 18, 15, 16,

20] have been widely studied in fully or weakly-supervised
manner. However, they require collecting massive videos
labeled by action classes, and also only detect the action
classes observed in training. Whereas, we aim to tempo-
rally localize action instances in a long untrimmed query

*Work completed during employment at Qualcomm Technolo-
gies, Inc.

†Qualcomm AI Research is an initiative of Qualcomm Tech-
nologies, Inc.

Figure 1: Attention represents the relationship between a
moment of query and support videos. (a) Vanilla: atten-
tion of a query proposal is obtained simultaneously for the
frames of all the support videos. (b) Ours: the attention is
computed for the frames of one support video, at a time.
While important frames of support video #2 cannot be at-
tended by the related query proposal in (a), they are appro-
priately transformed to the context of the query in (b).

video based on the few trimmed support videos describing
a common action class. As the testing action class is unseen
in training and no ground-truth class cue is given, the only
cue is the commonality of the few support videos.

In this task, the alignment between query and support
videos is important, which can be attained by representing
the common action cues of interest from the support videos
considering the query video’s context. For better alignment,
we divide this problem into two points: re-calibrating sup-
port video features under query video’s context, and en-
hancing temporal dynamics and compatibility of the re-
calibrated support video features.

Existing methods [39, 22, 7, 3] have mainly focused on
the former point, handling the multiple support videos as a
whole. However, as exemplified in Fig. 1, though the sup-
port videos represent a common action class, their context
(e.g background, camera angle) can be different. Hence,
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Figure 2: Overall process of few-shot common action local-
ization in our work.

when all the support videos are transformed to query con-
text simultaneously, the support videos cluttered by back-
ground are overly suppressed although they include useful
information (Fig. 1(a)). Whereas, in Fig. 1(b), we can lever-
age the support videos by attending each individually.

Regarding the latter point, we pay attention to that the
temporal dynamics can be enriched from multiple tempo-
ral granularities. Hence, we try to collaboratively fuse the
support video features in different temporal granularities,
considering the compatibility of different support videos as
well. Based on the insight for each point, we propose a
novel few-shot common action localization method. The
overall process is briefly outlined in Fig. 2. First, the long
untrimmed query video is split to query proposals, and they
are aligned with the support videos through our three-stage
cross-attention. Then, the proposals representing the com-
mon action class are detected with temporal location refine-
ment.

For the query-support alignment, we develop a three-
stage cross-attention (CA) mechanism. In each stage, cross-
correlation between two different features (e.g. support
and query, supports in different temporal granularity) is ex-
ploited with a learnable weight matrix. The 1st stage, query-
to-support Context-CA transforms the support videos into
the query video’s context by cross-correlating them with the
query proposal features. Each support video is individually
attended to emphasize its most informative features. In 2nd
stage of Dynamics-CA, low-temporal granularity features
summarize the tuples of snippets of each support video, and
they attend the fine-grained snippet-level features. Here,
each support video is attended by the entire support videos
in low-temporal granularity. It helps the complementary
use of all the individually attended support video features
as well as enhancing temporal dynamics. Finally, in the
last stage (support-to-query Context-CA), the query video
features are simultaneously attended with all the resulting
support video features. We call this CA process (Context,
Dynamics, Context-CAs) CDC-CA.

Also, for the commonality prediction and refinement, we
design a relational classifier with an action classifier and
an auxiliary relational module. To prevent overfitting and
boost performance, the latter matches the support and query
video features using pseudo-label cues as we avoid the use
of class labels. In testing, this module is not used.

Major contributions: (i) We suggest a three-stage CA to

enhance the representation of query video by support videos
and vice versa. (ii) We attend each support video individ-
ually to increase its discriminative ability in the first two
stages. (iii) We develop a relational classifier including an
action classifier and an auxiliary relational module. The lat-
ter is only needed during training. (iv) Extensive experi-
mental analyses are done on two benchmark datasets, where
we achieve SOTA performance.

2. Related work
Temporal action localization The goal is to predict

the temporal boundary and the label of action instances in
untrimmed videos. In the fully-supervised case where tem-
poral annotations are given during training, several works
tried to obtain better temporal proposals [5, 4, 19], while
others improved temporal searching [41, 42] or classi-
fiers [29]. R-C3D [35] proposed an end-to-end trainable
activity detector based on Faster-RCNN [27]. GNNs [45,
37] are recently used to capture the temporal relationship
among proposals/snippets. In the weakly-supervised set-
ting, as only video-level annotations are given, most meth-
ods have aimed to obtain discriminative snippet-level acti-
vations and conduct post-processing to localize action in-
stances. A co-activity similarity loss to enforce the fea-
ture similarity for video pairs with a common class was
introduced in [25], and videos are segmented into inter-
pretable fragments in [10]. Some works focused on dis-
tinguishing action and near-action/background snippets ex-
ploiting variational auto-encoder [28], entropy maximiza-
tion [20], and an additional class-agnostic model [21]. Also,
to better localize difficult snippets, multi-modal (audio-
visual) fusion [14] or a contrastive loss with easy fore-
ground/background snippets [43] are devised. Although
those fully- and weakly-supervised methods attained large
progress in this field, the learned models can only localize
activity categories observed in the training dataset.

Few-shot temporal action localization [38] pioneered
few-shot action localization, where a few (or only one) pos-
itive and several negative labeled videos steer the localiza-
tion via an end-to-end meta-learning strategy. [36] also
temporally localized an action from a few positive labeled
and several negative labeled videos. They adopted a re-
gion proposal network [27] to produce proposals with flex-
ible boundaries. [44] performed few-shot action localiza-
tion where video-level annotations are needed. They con-
structed a multi-scale feature pyramid to directly produce
temporal features at variable scales. Unlike those works,
few-shot common action localization is less tied up with
the need for labels. It localizes the action instances in a
long untrimmed query video according to the commonality
between the query and support inputs. Assuming a query
with only one common action instance, [3] computed the
probabilities for starting, ending, inside, or outside of ac-
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tion instances at every time-step, and decided the window
with the highest joint probability as the action instance. Ex-
tending to the query videos with multiple action instances
of the same action class, [39] generated action proposals,
and then classified the proposals and regressed their tem-
poral locations. [22] set a linear classifier itself as a proto-
type, which needs fine-tuning by support videos for every
target action, then the prototype is cross-attended by query
proposals using multiple self-attentions. [7] boosted [39]
adding a single-head transformer where two different affin-
ity matrices are used for the cross-attention weight between
query and support videos.

Cross-attention To leverage the relationship between
two heterogeneous representations, diverse cross-attention
schemes have been devised. Inspired by self-attention
(scaled dot-product of key, query, and value), [34] applied
the scaled dot-product operation for the concatenation of
image and text features for VQA. Also, [12] attended stu-
dent using key and value of teacher for knowledge propaga-
tion. Several works exploited the cross-correlation between
the heterogeneous representation as the attention weights
for image and sentence matching in visual question answer-
ing (VQA) [17, 13], query and prototype matching in proto-
typical few-shot learning [6], and audio-visual fusion [26].
Here, we exploit the cross-attention to improve the match-
ing between query and support video clips as well as to bet-
ter utilize multiple support videos in the context of few-shot
action localization.

3. Method

In this section, we first describe the three-stage cross-
attention, CDC-CA, which consists of query-to-support
Context, support-to-support (in different temporal granu-
larity) temporal Dynamics, support-to-query Context CAs.
Then, we explain the relational classifier.

Problem statement Given an untrimmed query video
VQ and L trimmed support videos {V 1

S , V
2
S , . . . , V

L
S }, the

goal is to train a network (which consists of backbone g,
proposal-net h, CDC-CA and relational classifier f ) to tem-
porally localize action instances in the query video based on
the commonality of the support videos whose action classes
are same and unseen during training. Note that any ground-
truth class cues are not given even during training.

In training, we resort to a meta-learning strategy. Here,
the action classes in the training set (Ctrain) and those of the
testing set (Ctest) have no overlapping. Also, to simulate
the few-shot configuration of support and query videos that
will be encountered at the testing phase, we exploit episode-
based training. Specifically, in a training iteration, we com-
pose an episode as a set of a query and L support videos
{(VQ, V 1

S , V
2
S , . . . , V

L
S )} from a randomly selected class of

Ctrain. In our work, we set L to 1 or 5. Formally, the objec-

tive function is represented by

arg min
g,h,f

E(VQ,{V l
S}Ll=1)∼Ctrain

[L(Y, f(h(g(VQ)),

g({V l
S}Ll=1)) ],

(1)

where Y denotes the set of temporal positions for the
ground-truth action segments of the interest in VQ. L is
the loss function.

3.1. Overall framework

Fig. 3 depicts the overall framework of our method. To
obtain the initial representations of the input query and
support videos, we follow the preprocessing of [39]. The
backbone network g [32] generates video representations
for each input. Then, for the query video, the proposal
subnet h [35] yields potential temporal action instances
Q = {qi}

NQ

i=1, called action proposals, with diverse tempo-
ral lengths (details are in Sec. S-4 of supplementary materi-
als). NQ is the number of the proposals, and qi denotes ith
action proposal representation. For every lth support video,
we uniformly split each support video into NS fine-grained
temporal snippets by S(l) = {s(l)i }

NS
i=1. Then, CDC-CA

alignsQ and {S(l)}Ll=1. Next, in the relational classifier, the
action classifier detects the action proposals with the target
common action, and yields their temporal offsets to refine
the start and end times of the proposals. In training, learn-
ing an auxiliary relational module in parallel with the action
classifier is beneficial. In testing, the auxiliary relational
module is discarded, and the localization head suppresses
redundant proposals which is explained in Sec. 4.1.

3.2. CDC-CA

The green box of Fig. 3 illustrates three stages of CDC-
CA. We first introduce the cross-attention mechanism to
individually attend the fine-grained (snippet-level) support
video features by the query’s context (QtoS Context-CA).
Next, we explain the cross-attention to enhance the tem-
poral dynamics of each support video from all the support
videos in different temporal granularity (Dynamics-CA).
Then, we present the way to attend the features of query
proposals via the cross-attention with all the resulting sup-
port features (StoQ Context-CA). These enhanced features
serve as crucial inputs to the following relational classifier.

QtoS Context-CA: We first enhance the support fea-
tures in consideration of the context of the query video (i.e.
query to support, dubbed QtoS). To this end, we develop a
cross-attention mechanism. When we suppose a vanilla ap-
proach such as Fig. 1(a), the attention weight is obtained at
once based on the relationship between the query propos-
als and all the support videos. In this case, a support video,
which is relatively less relevant to the query video than the
other support videos, gets tiny attention weights and cannot
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Figure 3: An overview of the proposed method. lth support video, X(l)
S , is attended by query proposals XQ, individually.

Next, the temporal dynamics of all L the support videos are propagated to each support video. The resulting support videos
{Ỹ (l)

S }Ll=1 give attention to the query proposals. X̃Q is the resulting attended query proposals. Then, the relational classifier
predicts the commonality scores of the proposals for the action of support videos, and the localization head finalizes action
localization removing redundant proposals.

Figure 4: Cross-attention (best view in color). (a) QtoS Context-CA for lth support video by the query proposals. (b)
Dynamics-CA for lth support video by L support videos in different temporal granularity. (c) StoQ Context-CA of all the
query proposals by the attended support videos, at once.

represent its action information in the context of the query
video. As depicted in Fig. 4(a), to utilize the query video’s
context faithfully, we individually attend the support videos.

In specific, for lth support video, we first encode the
backbone features of the query proposals Q to XQ ∈
Rd×NQ and the support snippets S(l) to X(l)

S ∈ Rd×NS ,
with a linear layer. The columns of XQ and X(l)

S represent
the encoded d-dimensional features of the query proposal
and support snippets, respectively. After that, we compute
the cross-correlation of XQ and X(l)

S to measure their rele-
vance. To reduce the gap of the heterogeneity between the
query and support videos, we use a learnable weight matrix
WQ→S ∈ Rd×d and compute the cross-correlation as

Λ
(l)
Q→S = XT

QWQ→SX
(l)
S (2)

where Λ
(l)
Q→S ∈ RNQ×NS . Note that each column of XQ

and X
(l)
S are l2-normalized before the cross-correlation

computation, and the learnable weight WQ→S and the lin-
ear layer are shared across all l i.e. all the support videos.

In the cross-correlation matrix, a high correlation coef-
ficient means that the corresponding proposal and snippet
features are highly relevant. Accordingly, ith row of Λ

(l)
Q→S

corresponds to the relevance of ith query proposal to theNS

support snippets. Then, from row-wise soft-max of Λ
(l)
Q→S ,

we can obtain cross-attention weights A(l)
Q→S where each

row represents the relative relevance of a query proposal to
the support snippets.

The attention-weighted proposal features are summed to
the corresponding support snippet feature. This is to en-
sure that the meaningful action information of the support
video is well-preserved while applying the cross-attention.
Formally, the attended support snippet features X̃(l)

S are ob-
tained by

X̃
(l)
S = XQA

(l)
Q→S +X

(l)
S . (3)

Note that, through the attention weights, the query proposal
injects its context to the support snippets proportionally to
their relevance i.e. more to the highly relevant support snip-
pets. With this, the support snippet features are enhanced
to better guide the information about the target action to the
query proposals in the later stage of attending queries of
Fig. 4(a).

Dynamics-CA: Temporal dynamics is important to un-
derstand the actions, which is well-represented in consec-
utive snippets (tuple) rather than a single snippet. Hence,
as illustrated in Fig. 4(b), to extract temporal dynamics of
the attended support video features, we apply 1-dimensional
temporal convolution on each X̃(l)

S as

X̃
(l)
S′ = X̃

(l)
S �wk (4)

where � denotes the convolution operation along temporal
axis, wk denotes the weight of 1D-conv layer. k is the ker-
nel size of wk (k < L). The resulting X̃(l)

S′ is in different
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temporal granularity with X̃(l)
S , and its components are the

temporally-summarized features for the tuples of k neigh-
boring snippets, respectively.

Next, we propagate the temporal dynamics from tuple-
level features to the fine-grained snippet features. Here, we
also consider the compatible use of L support videos. In
other words, as the support videos represent a common ac-
tion, the support segment features should be closely located
in a latent feature space. However, since the QtoS Context-
CA are applied individually for each support video, the het-
erogeneity may be overly increased, which can degenerate
the effect of attention on query videos in the following last
stage. To compensate this, we attend the snippet-level fea-
tures of lth support video X̃(l)

S from the tuple-level features
of all L support videos, i.e, X̃S′ = {X̃(l)

S′ }Ll=1.
Concretely, like eq. (2), we first compute cross-

correlation between X̃S′ and X̃(l)
S by

Λ
(l)
S′→S = X̃T

S′WS′→SX̃
(l)
S (5)

Then, the temporal dynamics-attended support video
feature Ỹ (l)

S is generated by

Ỹ
(l)
S = X̃S′A

(l)
S′→S + X̃

′(l)
S , (6)

where A(l)
S′→S is the cross-attention weight from Λ

(l)
S′→S .

StoQ Context-CA: In this stage, we attend query videos
with the support videos using the cross-attention. This
support-to-query context attention is called StoQ Context-
CA described in Fig. 4(c). To mine the richer information
for target action from all the support videos, we attend query
proposal features using the entire stabilized support seg-
ment features ỸS = {Ỹ (1)

S , Ỹ
(2)
S , . . . , Ỹ

(L)
S } ∈ Rd×LNS .

Similar to attending support features, we exploit the cross-
attention to obtain the attended query proposals X̃Q with a
learnable weight matrix WS→Q ∈ Rd×d by

X̃Q = ỸSAS→Q +XQ (7)

where AS→Q is attention weight computed by row-wise
soft-max of cross-correlation, ΛS→Q = Ỹ T

S WS→QXQ.
From this cross-attention, the query proposals, which have
high relevance to crucial support segments, better delineate
the target action.

3.3. Relational classifier

Up to this point, we described how CDC-CA gener-
ates better representations of query proposals and support
videos. Here, we explain the way to obtain the final decision
from the attended representations. Fig. 5 depicts our rela-
tional classifier including an action classifier and an aux-
iliary relational module. The auxiliary module facilitates

Figure 5: Relational classifier consists of auxiliary rela-
tional module and action classifier.

learning how to understand the relationship between query
proposals and a target action with pseudo action class cues.
As the auxiliary relational module is discarded in the de-
ployed network, no action class label is required in testing.

Auxiliary relational module: In episodic few-shot
learning, an auxiliary classifier can be co-trained to cate-
gorize an input into one of the ground-truth classes rather
than the target classes of an episode. This is beneficial for
feature extractors to prevent overfitting, stabilize the train-
ing, and boost the performance [24, 11].

However, since the ground-truth action classes are not
available in our task, we utilize pseudo action classes. As
in Fig. 5, we develop the auxiliary relational module which
takes as an input the concatenation of the attended query
proposal (green), support prototype (purple), and a pseudo-
class identifier (white). The support prototype is the aver-
age of all the attended support segments. The pseudo-class
identifier is a multi-hot vector with 1 for the pseudo action
classes present in the support videos and 0 otherwise. As
action class annotations are unavailable, the pseudo action
classes are simply obtained by k-means clustering of the
pre-trained backbone features extracted from all the ground-
truth positive action instances in the training set. Then,
these pseudo action classes can provide the cue to capture
the commonality of the support videos with the same ac-
tion across episodes. Hence, joint training with the auxiliary
module assists the action classifier to learn to more correctly
find the common actions in the query video without getting
distracted by the non-target actions. The auxiliary relational
module predicts whether the query proposal and the proto-
type are similar or not. Note that this module is only needed
for training and discarded in the testing phase as the training
and testing classes are mutually exclusive.

Action classifier: The action classifier consists of two
parallel linear layers. Taking only the query proposal fea-
tures X̃Q as inputs, the action classifier computes two out-
puts. The first is soft-max activated and decides if a query
proposal contains target action or not. The second regresses
the temporal offsets from the corresponding ground-truth.

3.4. Loss functions

To optimize the entire network, as in [39], we use loss
terms for both support-agnostic and -conditioned parts. In
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the support-agnostic part, the binary cross-entropy loss Lag
cls

predicts if the proposal contains any activity or not, and the
smooth l1 regression loss Lag

reg optimizes the relative dis-
placement between proposals and ground-truths.

In the auxiliary relational module of the support-
conditioned part, we simply use the binary cross-entropy
loss Laux to predict if the proposal and support videos
are similar or not. In the action classifier of the support-
conditioned part, similar to the support-agnostic part, the
classification loss Lco

cls predicts if the proposal includes the
same common action of support videos, and the regression
loss Lco

reg optimizes the relative displacement between the
proposals and the ground-truths. Also, we design a pairwise
ranking loss to add constraints to the action classifier. Con-
sidering a pair of proposals qi and qj , where at least one of
them is a positive query proposal, we let the proposal with
the larger IoU (intersection over union) for the ground-truth
action instance have a higher soft-max score for the action
class. Formally, the pairwise ranking loss Lrank is repre-
sented by

Lrank =
1

Npair

∑
(i,j)

(∆IoUij −∆pactionij )2 (8)

where Npair is the number of considered proposal pairs.
∆IoUij is the difference between IoUs of qi and qj with
their corresponding ground-truths, and ∆pactionij is the dif-
ference of soft-max predictions for the proposals on the ac-
tion class from the action classifier. Note that to relax the
relationship between IoU and soft-max prediction, we give
temperature to the soft-max predictions in Lrank. Finally,
total loss (more details in Sec. S-1 of supplementary mate-
rials) is given by

L = Lag
cls + Lag

reg + Lco
cls + Lco

reg + Laux + λLrank. (9)

4. Experiments

4.1. Datasets and evaluation

To evaluate few-shot common action localization, we use
the revised versions [3, 39] of ActivityNet1.3 [1] and THU-
MOS14 [9]. In the revised, there are two cases depend-
ing on queries: single-instance and multi-instance. We ad-
dress 1- or 5-shot settings in both cases. For meta-learning
strategy, the entire action classes of each dataset are split
into 80% for training, 10% for validation, and 10% for test-
ing. For a fair comparison, we follow the data configura-
tion of [39], which will be described in the following para-
graphs. Further details are in Sec. S-4 of supplementary
material.

Common single-instance: For both datasets, videos
with multiple actions are divided into independent videos
where each video contains just one action instance and

background. Then, videos longer than 768 frames are dis-
carded. If a video is selected as a support video, its fore-
ground action instance is only used as the support input. For
ActivityNet1.3, there are 10,035 and 2,483 videos for train-
ing and validation+testing, each. The average video length
is 89.0s. For THUMOS14, there are 3,580 and 775 train-
ing and validation+testing videos, respectively. The average
length is 11.4s.

Common multi-instance: In real-world scenarios, the
lengths of query videos are usually not constrained, and the
query videos may contain multiple action instances. Hence,
we exploit the original videos of ActivityNet1.3 and THU-
MOS14 without any processing for query videos. Sup-
port videos are still trimmed ones. For ActivityNet1.3,
the numbers of videos are 6,747 and 1,545 for training
and validation+testing, respectively. The average video
length is 148.2s. For THUMOS14, there are 1,664 train-
ing videos and 323 validation+testing videos. The average
video length is 230.6s.

Inference: In testing, the backbone-generated query
proposals are refined by non-maximum suppression (NMS)
with a threshold 0.7. Also, following [39], if the query
video is longer than 768 frames, we generate the multi-scale
segments [30]. We slide windows with sizes of 512 and 768
frames along the temporal axis with 75% overlap. The gen-
erated proposals of the windows go through the NMS to
remove redundant proposals. Then, the selected proposals
are fed into our CDC-CA and relational classifier. Finally,
we perform NMS (threshold 0.3) for the regressed propos-
als based on the outputs of the relational classifier to remove
redundant ones.

Evaluation: We measure the temporal action local-
ization performance with mean Average Precision (mAP).
A prediction is correct when it has the correct fore-
ground/background classification and has IoU with its
ground-truth larger than a threshold. The threshold is set
to 0.5 unless specified.

4.2. Comparative assessment

We report the performance of compared methods from
the literature. Due to the variance of k-means clustering of
the pseudo label generation, we report the average of three
runs for our method.

For AcitivityNet1.3, the left of Table 1 demonstrates
the comparative results on both common single- and multi-
instance cases when L = 1 or 5. [3, 39, 22, 7] were de-
veloped for the common temporal action localization (our
task) in videos, and [8] was for the common object de-
tection in images. Compared to them, our method shows
notably higher performance for all the settings ([3] was
designed to use one support video). Specifically, in the
single-instance case, we outperform those methods by at
least 1.4% and 5.1% in the 1- and 5-shot settings, respec-
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Table 1: Comparison with state-of-the-arts in terms of mAP@0.5.

ActivityNet1.3 THUMOS14

Method Single-instance Multi-instance Single-instance Multi-instance

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Feng et al. [3] 43.5 n/a 31.4 n/a 34.1 n/a 4.3 n/a
Hu et al. [8] 41.0 45.4 29.6 38.9 - 42.2 - 6.8
Yang et al. [39] 53.1 56.5 42.1 43.9 48.7 51.9 7.5 8.6
Yang et al. [40] 57.5 60.6 47.8 48.7 - - - -
Nag et al. [22] 55.1 63.0 44.1 48.2 49.2 54.3 7.3 10.4
Hsieh et al. [7] 60.7 61.2 - - - - - -

Ours 62.1± 1.0 66.3± 1.2 48.2± 1.2 53.5± 1.1 53.8± 1.2 59.2± 1.3 9.8± 0.4 15.7± 0.5

Table 2: Ablation study on CDC-CA for the single-instance
setting.

Method QtoS Context-CA Dynamics-CA mAP (%)

1-shot 5-shot

C-0 52.0 54.3

C-1 X 61.5 65.4

C-2 X 61.3 65.1

C-3 X X 62.1 66.3

tively. In the multi-instance, the margins are at least 4.1%
and 5.3% for 1- and 5-shot, each. Note that [40] was devel-
oped for object-level common temporal action localization.
Although object-level localization is more challenging, it
requires further information to learn their model such as the
coordinates of foreground object bounding boxes. Hence,
they have advantages in the frame-level localization task.
Even so, our method yields better results than [40] in all
the settings. Also, in the 5-shot setting, the score margins
to the existing works are larger than those of 1-shot in both
single- and multi-instance. This means that enhancing the
temporal dynamics of a support video by the entire support
video in Dynamics-CA and aligning individually each sup-
port video to the query video’s context in QtoS Context-
CA are helpful to mine the knowledge for a common ac-
tion from multiple support videos. Unlike ActivityNet1.3,
THUMOS14 includes shorter action instances which make
correct localization more difficult. Nevertheless, we outper-
form the compared methods over all the settings.

4.3. Component analysis
We analyze our method on ActivitNet1.3. More studies

are in supplementary materials.
Impact of cross-attention: First, to see the component-

wise impact of our cross-attention, we ablate QtoS Context-
CA and Dynamics-CA in Table 2, we can see that without
any of them (C-0), the performance is severely degraded.

Table 3: Ablation study on the relational classifier on the
single-instance setting.

Method Lrank Auxiliary rel. module mAP (%)

1-shot 5-shot

R-0 61.8 65.8

R-1 X 61.9 66.0

R-2 X 61.9 66.1

R-3 X X 62.1 66.3

Table 4: Analysis of the individual cross-attention strategy
on QtoS Context-CA and Dynamics-CA, comparing with
the aggregated cross-attention on the 5-shot setting.

Single-inst. Multi-inst.

QtoS Context-CA Aggregated 65.7 52.8
Individual (Ours) 66.3 53.5

Dynamics-CA Aggregated 65.8 52.9
Individual (Ours) 66.3 53.5

Also, when comparing C-1 and C-2, both cross-attentions
show meaningful improvements on C-0, but QtoS Context-
CA is slightly more important. Using both shows the best
performance in our final method C-3.

We can also consider changing the order of QtoS
Context-CA and Dynamics-CA. In this case, we observed
that the performance is slightly lowered (62.1%→61.7% in
1-shot, 66.3%→ 65.6% in 5-shot). Hence, the temporal dy-
namics extracted under the query video’s context is more
useful in our task.

Further, we evaluate the efficacy of our cross-attention,
comparing it with other cross-attention mechanisms. To
this end, we compare our CDC-CA itself (corresponding
to R-0 in Table 3) to the progressive cross-attention [39],
and the multi-head cross-attention with fine-tuned (50-100
iterations) prototype [22], light-weight transformer-based
booster [7]. For a fair comparison, the pairwise ranking
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Table 5: Cosine similarity between support videos and be-
tween support and query videos in embedding space be-
fore/after passing through Dynamics-CA.

Support-Support Support-Query

Pos. query Neg. query ∆

Cos. Sim. (before) 0.49 0.41 0.38 0.05
Cos. Sim. (after) 0.61 0.43 0.34 0.13

loss and auxiliary relational module are not used in R-0.
CDC-CA yields mAP gain of at least +1.1% and +2.8%
in 1-shot (60.7% [7] in Table 1 vs 61.8% R-0) and 5-shot
(63.0% [22] in Table 1 vs 65.8% R-0), each. Hence, we
conclude our cross-attention more effectively enhances the
query and support videos in this task.

Individual vs aggregated: To study the effectiveness
of the individual cross-attention on QtoS Context-CA and
Dynamics-CA for multiple support videos, we compare
our individual cross-attention approach with the aggregated
cross-attention (‘Aggregated’) in Table 4. In ‘Aggregated’
of QtoS Context-CA, we concatenate all the support snip-
pets of the entire support videos, and simultaneously attend
them via query proposals. We see that ‘Aggregated’ de-
grades the localization performance. This result shows the
benefit of individual cross-attention in QtoS Context-CA.
Also, in Dynamics-CA, we identified a similar tendency.
Accordingly, mining the commonality of temporal dynam-
ics in multiple support videos is more beneficial when it is
propagated to each support video, individually.

Compatibility in support videos: In Dynamics-CA,
a snippet-level support video feature is attended by tuple-
level features from all the support videos to promote com-
patibility among multiple support videos. To identify this,
at two points (before or after passing through Dynamics-
CA), we measure the cosine similarities 1) between two
support videos, and 2) between a support video and a (posi-
tive or negative) query proposal. Table 5 reports the average
of cosine similarities. The increased support-support simi-
larity (0.49% → 0.61%) indicates that the support videos
get closer to each other in the embedding space. Also, we
can see that the discriminative ability is improved as seen by
the increased difference (∆) in the similarity of the support
to positive and negative query proposals.

Further, to more clearly show the effect of individual-
to-all cross-attention in Dynamics-CA, we also identified
individual-to-individual Dynacmis-CA where the snippet-
level features are attended by the corresponding temporally-
convolutioned features for each support video. Comparison
of ours with this variant is 66.3% vs 65.9% in 5-shot single
instance, and 53.5% vs 53.2% in 5-shot multiple instances.
Hence, we can see that our approach (individual-to-all) is
more beneficial for the collaborative use of a few support
videos.

Table 6: Effect of the multi-hot pseudo action indicator by
varying the number of pseudo action classes or removing it.

w/o
Indicator

k

80 160 240 320

Single Inst. 1-shot 61.9 61.9 62.1 62.1 62.3
5-shot 66.0 66.2 66.3 66.5 66.4

Multiple Inst. 1-shot 47.8 48.0 48.2 48.4 48.4
5-shot 53.3 53.4 53.5 53.4 53.5

Relational classifier: Here, we verify the auxiliary re-
lational module and the pairwise ranking loss by ablating
each. To show their effect, we compare each ablated version
to the baseline R-0 without any of them in Table 3. The pair-
wise ranking loss gives performance improvement by 0.1%
and 0.2% for 1- and 5-shot, respectively (R-1). Hence, this
loss lets the proposals with larger IoUs to ground-truths get
higher action scores. From the result of R-2, we also see that
learning the auxiliary module in parallel to the action clas-
sifier is useful to boost performance in both settings. And,
combining both works the best (R-3).

Adequacy to no. of pseudo action label: In the aux-
iliary relational module, we use the multi-hot indicator as
the pseudo-action cue in consideration that no true label is
available. To see its effectiveness, in Table 6, we report the
mAP scores by varying the number of pseudo action classes
(k) and w/o the indicator as well. In the single instance
case, compared to the R-1 of Table 3, the auxiliary rela-
tional module did not show an effect without the multi-hot
indicator. Also, for all other settings, as k gets larger, the
multi-hot indicator yields larger performance gains over-
all. Though the support videos represent a common action,
there is diversity in background or action details. Hence,
it is beneficial to distinguish the support videos with more
pseudo labels. Considering the computational cost, we set
k to 160 as the default value.

5. Conclusions
For few-shot common action localization, we proposed

the three-stage cross-attention (CDC-CA) and the rela-
tional classifier. CDC-CA increases the effect of the cross-
attention by individually attending each support video, en-
hancing the temporal dynamics of each and the compati-
bility of multiple support videos, and then attending the
query video via all the enhanced support videos. In the
relational classifier, we designed the pairwise ranking loss
which makes more precise action localization of the ac-
tion classifier. Learned in parallel with the action classi-
fier, the auxiliary relational module with the pseudo-class
labels prevents the network from overfitting to each training
episode. This module is discarded in testing. Extensive ex-
periments analyzed and validated each component. Finally,
we achieved SOTA on ActivityNet1.3 and THUMOS14.
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