This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

ICE-NeRF: Interactive Color Editing of NeRFs via
Decomposition-Aware Weight Optimization

Jae-Hyeok Lee

Dae-Shik Kim

KAIST
Daejeon, South Korea
{heuyklee, daeshik}@kaist.ac.kr

Abstract

Neural Radiance Fields (NeRFs) have gained consider-
able attention for their high-quality results in 3D scene re-
construction and rendering. Recently, there have been ac-
tive studies on various tasks such as novel view synthesis
and scene editing. However, editing NeRF's is challenging
as accurately decomposing the desired area of 3D space
and ensuring the consistency of edited results from differ-
ent angles is difficult. In this paper, we propose ICE-NeRF,
an Interactive Color Editing framework that performs color
editing by taking a pre-trained NeRF and a rough user mask
as input. Our proposed method performs the entire color
editing process in only under a minute using a partial fine-
tuning approach. To perform effective color editing, we ad-
dress two issues: (1) the entanglement of the implicit repre-
sentation that causes unwanted color changes in undesired
areas when learning weights, and (2) the loss of multi-view
consistency when fine-tuning for a single or a few views.
To address these issues, we introduce two techniques: Acti-
vation Field-based Regularization (AFR) and Single-mask
Multi-view Rendering (SMR). The AFR performs weight
regularization during fine-tuning based on the assumption
that not all weights have an equal impact on the desired
area. The SMR maps the 2D mask to 3D space through
inverse projection and renders it from other views to gen-
erate multi-view masks. ICE-NeRF not only enables well-
decomposed, multi-view consistent color editing but also
significantly reduces processing time compared to existing
methods.

1. Introduction

Neural Radiance Fields (NeRF) [16] is a 3D reconstruc-
tion method that utilizes multiple 2D images taken from var-
ious angles to generate photorealistic reconstructions. Due
to its high-quality results, NeRF has gained considerable
attention in various fields [31, 1, 28, 15]. With the grow-

Proposed Concept 0verview

PaletteNeRF + Semantic-guide

!;'

RecolorNeRF Our Method
Detailed Results for Undesired Area

i SN == g

PaletteNeRF

PaletteNeRF +
Semantic-guide

Figure 1. Concept overview and color editing results: We compare
our method with the state-of-the-art NeRF color editing methods,
PaletteNeRF [14] and RecolorNeRF [10]. While PaletteNeRF and
RecolorNeRF effectively change the colors of the target object,
they also inadvertently cause unwanted color alterations in areas
that should remain unchanged.

Reference Our Method

ing interest in NeRFs, there is an increasing demand for
techniques that can modify the contents of the 3D scenes
learned by NeRFs [14, 10, 27, 29]. Similar to how images
and videos are edited to suit user preferences, NeRFs are

3491



also being developed to enable scene editing according to
user tastes. However, editing NeRFs is challenging because
it involves accurately decomposing the desired parts of the
3D space and ensuring that they are modified consistently
across various views.

Various methods have been proposed to support NeRF
appearance editing. One approach recovers physical scene
properties, such as albedo and specular roughness, to en-
able rendering under novel lighting conditions or material
property adjustments [4, 37]. Another approach learns la-
tent codes together with the NeRF reconstruction to control
its appearance, including changes in illumination or color
[22, 32]. Recently, the state-of-the-art NeRF recoloring
method, called PaletteNeRF [14] and RecolorNeRF [10],
were introduced. With a novel framework and regulariza-
tion techniques, both methods achieved high-quality, multi-
view consistent recolored results for general 3D scenes.
However, these methods are palette-based, meaning they
represent the scene by extracting a few basic colors and
combining them through weighted summation. A limitation
of these approaches is that they cannot selectively recolor a
specific object when multiple objects with similar colors are
present in the scene. In this case, the colors of undesired ob-
jects change simultaneously (please see Fig. 1).

In this paper, we propose ICE-NeRF, a method that al-
lows the user to interactively and intuitively edit NeRF
scenes. Our approach is simple and efficient: We use a
pre-trained model and take the user’s rough mask for a sin-
gle view as input. We then fine-tune some of the model’s
weights to achieve the desired color in the user mask region.
Since only some of the model’s weights are fine-tuned,
without requiring additional weights, the recolored model
is obtained in less than a minute. This makes our method
both time and memory efficient. Additionally, our method
is flexible and can be applied to various model structures.
This versatility makes our approach a practical solution for
NeRF recoloring across various model structures.

Our proposed method, while simple in concept, requires
careful consideration of a couple of issues to ensure its prac-
ticality. One issue is the entanglement of the implicit repre-
sentation, where the color of a particular part is embedded
across the entire weight of the model. A simple fine-tuning
approach without consideration of this will result in changes
in areas where color changes are not desired, leading to poor
decomposition performance. A second issue is that radiance
in most NeRFs depends on view direction, which can lead to
poor multi-view consistency when training with user masks
for a small number of views. Ignoring this issue will lead
to the sudden and unexpected changes in the color of the
target area when the viewpoint is altered during the process
of novel view synthesis.

To address these issues, we propose two novel tech-
niques: Activation Field-based Regularization (AFR) and

Single-mask Multi-view Rendering (SMR) techniques. To
address the entanglement issue caused by the implicit rep-
resentation’s nature, we propose the AFR. We assume that
specific weights in the model contain more color informa-
tion for particular regions of the scene. Based on this as-
sumption, we perform weight regularization, through which
the model can minimize learning weights that cause color
changes in undesired areas and focus on learning weights
that have a greater impact on color changes in the desired ar-
eas. The SMR technique performs an inverse projection of
the user’s 2D mask onto the object in 3D space and renders
it from multiple views, achieving a similar effect to having a
multi-view mask. As a result, our approach achieves well-
decomposed and multi-view consistent results, even when
the user provides only a rough mask for a single view or a
small number of views. Our contributions are as follows:

o We propose the ICE-NeRF framework, which allows
users to selectively recolor desired regions with inter-
active control while avoiding color changes in unde-
sired areas.

e Our approach is not only efficient as it only fine-tunes
some of the weights of a pre-trained model, but also
enjoys a high speed of only one minute to complete
the entire process.

e Through the proposed AFR and SMR techniques, our
method achieves strong decomposition performance
and ensures solid multi-view consistency.

2. Related Work

Neural radiance field (NeRF). NeRF [16] is one of the
representations of 3D spaces, similar to triangle meshes
and polygons. It learns to output the density and view-
dependent radiance of a point in 3D space, given its co-
ordinates (z,y, z) and viewing direction (6, ¢) as inputs to
MLP. Since the introduction of NeRF, its simplicity and
high-quality 3D reconstruction performance have led to var-
ious related studies [15, 35, 23, 2, 4]. However, the vanilla-
NeRF model suffers from long training and rendering times.
Recent research has therefore focused on hybrid structures,
where deep Multilayer Perceptrons (MLPs) are combined
with explicit structures like hash tables [18] or voxel grids
[7, 34], and used alongside more lightweight MLPs [21].
Although employing neural network-based representations
enables photorealistic reconstruction, modifying these rep-
resentations to achieve desired editing results in 3D space
is not intuitive since it is unclear which weights need to be
modified. The difficulty in modifying the represented 3D
space, as opposed to using traditional graphics pipelines,
limits the usability of NeRF.

Editing NeRFs. Editing NeRF is challenging due to
their implicit scene representations, which make the accu-

3492



1%}
<
= Multi-View
Recolor Mask < “Recolor Mask
g
c
o)
User-Specified
Binary Mask
Multi-View
Frozen Mask Frozen Mask

Pre-Trained

Masking Recol i
ﬂ = ’—<1)j NE S >
Y .

Masking

Optimization

Recoloring Loss
iy Desired Color [H]

Original Intensity

Frozen Freezing Loss
Area Somseeessosmonos >

= e

Recolor ~ Frozen
Learnable Reg. Mat. Reg. Mat.

Original Colors

Original Weights

azaa.f
uipa|

!

1
NeRF !
!
1

‘._______
=D

\
\

*',»

Original Scene

Weights ~ € rz===r=<-====->

AF Regularization
m s
Reco d
, NeRF | > QH\ Rl v

Recolored Scene

Figure 2. Overview of our framework: We utilize a pre-trained NeRF and a user-specified mask for the region to be recolored or frozen,
training specific weights of the model. To enhance decomposition and ensure view-consistency performance across multiple views using a
mask for just one view, we introduce two novel techniques: the Activation Field-based Regularization (AFR) and Single-mask Multi-view

Rendering (SMR).

rate decomposition of desired parts of the 3D space and
ensuring consistency across various views more difficult.
Therefore, some attempts have been made to modify scenes
by transferring the style of reference images to the NeRF
scene without limiting it to specific parts of the scene [36].
Recent studies have proposed using the vision-language
model CLIP to input text prompts or example images to
modify the scene accordingly [29]. Instruct-NeRF2NeRF
[11] also modifies the pre-trained NeRF according to the
description by using the diffusion-based text-to-image gen-
eration model, InstructPix2Pix [5]. Other approaches have
proposed modeling meshes that include cages or objects in
the scene to modify the scene’s geometry [20, 12].

The state-of-the-art color editing methods that share
similar goals with our proposed method are PaletteNeRF
[14, 30] and RecolorNeRF [10], which aim to achieve pho-
torealistic and view-consistent results through palette-based
editing applied to NeRF. The palette-based editing approach
represents the scene by extracting a few basis colors and us-
ing their weighted summation [6, 9, 24]. While this ap-
proach has the benefit of being able to perform recolor-
ing with simple color selection, it also has difficulty accu-
rately decomposing multiple objects with similar colors in
the scene, which is a significant limitation. Additionally,
PaletteNeRF is limited to applying recoloring to models
with specific structures, and it requires a substantial train-
ing time of between 1 and 2 hours on an RTX 3090 GPU. In
contrast, our proposed method can accomplish recoloring
focused on desired parts in various NeRF structures within
a much shorter time of about one minute.

3. Preliminaries

Volumetric rendering. Our method is developed to be
applicable to most NeRF-based models that perform volu-
metric rendering. Typically, NeRFs learn the volume den-
sity and directional radiance at any point in a specific scene
through multi-view images. Here, the volume density o (x)
takes the coordinate x = (x,y, z) in space as input, which
represents the probability of a specific ray being terminated
at position X, i.e., the probability of an opaque surface ex-
isting. Directional radiance c(x, d) takes the coordinate x
and the direction d = (6, ¢) in which the point is observed
as input, which represents the color when location x is ob-
served in direction d.

When NeRF performs rendering, a pixel is computed
through a process called volumetric rendering, which uses
the volume density and directional radiance of points on
a single ray in 3D space. Here, the ray r = (o0,d) is
defined as a ray shot from origin o in the direction of d.
The points x;__ y on this ray are defined by depth ¢;_ x as
x; = o + t;d. The color of this ray is computed according
to the following equation:

S ORI
ey
= exp ( 25 o(x; ) (1 —exp(— (5i0'<Xi)))a

where §; = ti+1 — t; represents the distance between ad-
jacent samples. The above equation represents the process
where the color of a single ray is determined by a weighted
sum of the points x; on this ray and their rendering weights
Wws.

3493



4. Proposed Method

In this section, we outline the overall procedure of the
proposed method (Sec. 4.1) and provide a detailed expla-
nation of two techniques that address the challenges of the
straightforward approach (Sec. 4.2 and 4.3). Finally, we
demonstrate how the explained elements are applied during
the optimization process (Sec. 4.4).

4.1. Overall Procedure for NeRF Recoloring

Fig. 2 provides an overview of our framework. We per-
form scene recoloring by training specific weights of a pre-
trained NeRF model. To facilitate the user’s masking task,
we use the model to render a frame from an arbitrary view.
On the rendered frame, the user draws a mask that indicates
the areas where they want to change the color (MC, mask
for changing) and the areas they want to keep the same (MF,
mask for frozen), and selects the target color. Note that even
with masking for only one frame, high-quality recoloring
results can be obtained, although increasing the number of
frames for masking according to the user’s preference can
lead to better results.

Afterwards, optimization is performed to obtain the re-
colored model. During the optimization process, we freeze
most of the weights of the pre-trained model and selectively
train some of the last three layers of the MLP responsible
for color computation. The selection of layers to be trained
is determined empirically according to the model’s struc-
ture. For a specific structure, we found that training certain
layers consistently produces the best results regardless of
the learned scene.

However, this black-box weight optimization strategy
may lead to undesired changes in the scene. These can
include poor decomposition or challenges in maintaining
color consistency in the target region when the camera pose
changes. This is due to the implicit representation of the
scene being entangled in the neural network’s weights. In
this regard, we propose two methods to address these de-
composition and view-consistency issues without introduc-
ing additional modules or data while maintaining the simple
optimization scheme. Details on these two methods will be
discussed in the following sections.

4.2. Activation Field-based Regularization (AFR)

In the learning process for recoloring of a specific area
in the scene, we focused on the fact that not all weights
have equal importance. Due to the nature of the implicit
representation, color information for a specific area in the
scene is entangled across all weights of the neural network.
However, we assume that certain subsets of weights may
contain more concentrated color information for specific ar-
eas. Drawing inspiration from GAN Dissection [3], which
analyzes the semantics embedded in GANs, we examined

wq \T

o ELEE - B
o) | I

w1 \T

IRl T S g

A_, ® M¢ = 3w A ® M€
AL, @ MF = @' A @MF = gfour

" - EiE T

G(aClN) G(aFIN) G(aCOUT) G(aCOUT)

3Cour

J

Figure 3. Illustration of AFR: We use the same procedure as
volume rendering on the activation field to generate a volume-
rendered activations A, and compute the matrix R for AFR us-
ing Eq. 3 and Eq. 5. The symbol ® represents Avg(Mask(-)),
and G(-) represents Normalize(Rank(-)) function, which has an
option of ascend or descend. Please see Sec. 4.2 for more details.

which neurons in NeRF’s MLP contain color information
for specific areas.

To this end, we propose the concept of Activation Fields
in this section. It is important to note that activation field
is not a separate module but an expanded interpretation of
information generated during the rendering process of the
radiance field. Just as the radiance field contains color in-
formation at each position in 3D space, the activation field
contains activation information of the model at each posi-
tion in 3D space. Specifically, while the radiance field out-
puts color and density for a 5D input (x, y, z, 0, ¢), the acti-
vation field outputs activations generated by a specific layer
of the network during the computation of color and density
for the same 5D input. This also can be rendered through
the volume rendering shown in Eq. 1:

N
Z 1(xi,d), )

where w; is the rendering weight for points on the ray r used
in Eq. 1, and a; denotes the activation in layer /. This equa-
tion can be interpreted as a weighted sum of model activa-
tions using the same rendering weights w; as when comput-
ing the color of a ray in the radiance field rendering process.

3494



To obtain the activations for each region, we use the
mean activation by applying a mask to the rendered acti-
vation map A (where [ is omitted for simplicity) for the
regions that need to be changed and the regions that need to
be preserved:

a® = Avg(Mask(M°€, A)),

3
a" = Avg(Mask(M" , A)), @

where Avg(-) and Mask(-) represent a averaging function
and a masking function, respectively. We use these mean
activations for each region to perform weight regularization
during the model training process for recoloring.

To incorporate activation information from both the in-
put/output sides of a specific layer into weight regulariza-
tion, we obtain both a® and a" using Eq. 3 at both the
input/output sides of the layer (i.e., a“™, aCour, aFiv and
afour). Fig. 3 demonstrates how the activations obtained
from the input/output sides are used. The intuition behind
the weight regularization is as follows: for instance, weights
connected to the input side with low activation in region C,
a’N_ will have less influence on the final color of region
MC. Therefore, we give a large penalty to the weights when
their values change during the model training process. Sim-
ilarly, weights connected to elements with high values in
afour have a high influence on the color of the MF region,
so we regularize them during training to prevent significant
changes in their values. We perform weight regularization
as follows:

Larr = |W; — W/|OR, “4)

where W; and W7 represent the matrices of original and
updated weights of layer [ in the model, respectively, while
R denotes the penalty matrix applied to the change in
each weight, and ® represents the Hadamard product. The
penalty matrix R is calculated as follows:

|
@]
o
c
=
[=N
a
w2
(@]
(¢}
=
(=N
&
=
+

’ 5
Finascend)); + ®

Four ascend));,

where Normalize(-) performs vector normalization, making
the sum of the vector equal to 1. Rank(-) returns a vector
of the same size as the input, providing the ranking of each
element based on its position when the values are sorted
either in ascending or descending order.

To aid understanding, we provide an example for the
first line of Eq. 5. Assume the input a“™ (average acti-
vation of the object region) is [3, 1, 4, 2], the second el-
ement has little color influence on the object, hence the
weights connected to that element (the second column of
‘W) should be heavily regularized to stay close to the orig-
inal weights, whereas the third element should be treated

v

=)
3
= X
view#1 & 3
Binary Mask -o? 3
g Point Cloud Mask 3
o I
: -~ view#n > > =S
4 4
view #1 — View #37
Depth Map
Visibility-Aware |

Filtering

(b) Visibility-Aware
Rendered Mask

Figure 4. [llustration of SMR: We generate multi-view masks us-
ing a single binary mask and depth information obtained from pre-
trained NeRF. During multi-view mask rendering, a rendered mask
is generated for each view with visibility considerations.

Original Scene

oppositely. Thus, Rank(a®™, desc.) —[1, 3, 0, 2], Normal-
ize([1, 3, 0, 2])—1[0.17, 0.5, 0, 0.33]. The j-th value of this
result is used for the regularization of the j-th column of
W. If the input is a®ov, the i-th value of the result is used
for the i-th row. When the input is the background region’s
activation, af~vouty | Rank(.) uses ascend as larger activa-
tions require heavier regularization of weights W to restrict
changes in background region.

4.3. Single-mask Multi-view Rendering (SMR)

Generally, the output of NeRF is conditioned on the
view direction, so training using only a given user mask
from a single view can lead to poor view-consistency. To
address this, we adopt the Depth-Image-Based Rendering
(DIBR) approach [8], which reprojects 2D contents into 3D
space using a depth map, to conduct multi-view training.
By employing this approach, we can guarantee the view-
consistency of the edited model, even when there is only
one or a small number of user masks, by rendering masks
in novel views. Specifically, we extract the pixel-wise depth
for the view where masking has been performed using the
following equation:

D(r(t)) = Z w; - b, (6)

where w; and ¢; represent the rendering weight and the dis-
tance from the origin o of the ray r to the i-th point x; on
the ray, respectively, as defined in Eq. 1.

We use the extracted depth map to project the user’s
mask into 3D space, constructing a point cloud. As this
point cloud consists of coordinates within the 3D scene, it
can be rendered from different viewpoints. However, sim-
ple rendering of the point cloud does not reflect occlusion

3495



caused by objects in the scene for the masked region as the
view changes. To address this, we reflect the reachability
by comparing the pixel-wise depth of each point in the point
cloud when viewed from the changed view to the pixel-wise
depth at that location during the rendering process for the
changed view.

4.4. Optimization Strategy

Recoloring loss is a loss function used to make the color
of MC match the user-selected target color. It is calculated
using the following equation:

Ly = |Mask(M€,T) — C™=|,, (7)

where I is the image rendered by the network being trained,
and C™! i5 the user-selected target color.

Intensity preserving loss is a loss function used to prevent
a decrease in photorealism of the scene when only the re-
color loss is used. It helps to maintain the intensity of each
pixel in M€ of the original scene even after recoloring:

L; = ||Int(Mask(M®€, T)) — Int(Mask(MS, T%))|[2, (8)

where Int(-) is a function that converts RGB to intensity,
and I* is the image rendered by the original model.
Freezing loss is a loss function used to ensure that the color
of the scene in MY provided by the user remains the same
as the original scene:

Lg = ||Mask(MF, T) — Mask(MF, %) o. ©)

Total loss. The training is performed using the above
three losses and the Activation Field-based Regularization
method. If the user provides only a mask for a single view,
the Single-mask Multi-view Rendering technique is applied
to perform the training in multi-view:

Lot = Lr + Ly + Lg + Lapr. (10)

5. Experimental Results
5.1. Implementation Details

To demonstrate the applicability of ICE-NeRF, we ap-
plied our method to three different NeRF models: the orig-
inal NeRF [16], Instant-NGP [18], and TensoRF [7]. We
used the code and pre-trained weights from the nerf-pytorch
Github repository [33] to apply ICE-NeRF to the origi-
nal NeRF [16]. For InstantNGP [18] and TensoRF [7],
we utilized the code from the torch-ngp Github repository
[25,26]. Each model contains a 3-layer MLP for color com-
putation, with layer selections for learning in each model
determined empirically: the penultimate layer for the origi-
nal NeRF, and the second and third layers from the last for
Instant-NGP and TensoRF.

Lego

Drums

Reference PosterNeRF RecolorNeRF

Ours
(w/ InstantNGP)

&y
e
Ry

Decomposed Color Palette of RecolorNeRF

Figure 5. Qualitative comparison with PosterNeRF [27] and Re-
colorNeRF [10]. Our results include the Lego scene, which ap-
plied our method to the original NeRF, and the Drums scene,
which applied our method to Instant-NGP. The two masks below
our results are the recolor mask and the frozen mask, from left
to right. PosterNeRF could not perform the desired level of color
editing on objects with only one color editing.

The code used for training and testing was implemented
using Pytorch [19] on a single NVIDIA Geforce RTX 3090.
Training was conducted for pre-trained models in under 100
iterations with a mini-batch size of 1024. We used Adam
[13] optimizer with a learning rate of 0.01. The training
time was less than one minute. To apply SMR, we gener-
ated a multi-view mask by using a single mask and render-
ing it from fewer than five additional views. We then trained
the model for the same number of iterations as we did with
the single mask. The training process involves N iterations
of simultaneous learning for recoloring target regions and
preserving non-target regions, followed by M iterations of
learning solely for preserving non-target regions. Empir-
ically, a balanced outcome was observed with N and M
values set to 10 and 90, respectively.

Datasets. We conduct experiments on scenes sourced
from three different datasets: the NeRF Blender dataset
[16], which includes Lego, Drums, Hotdog, Chair, and
Ship; the forward-facing LLFF dataset [17], containing
Horns, Flower, and Fortress; and the Mip-NeRF360 dataset
[2], featuring Kitchen and Bonsai.

5.2. Comparisons

Qualitative comparison. Figure 5 illustrates the color
editing results for the Lego and Drums scenes in the NeRF
Blender dataset. We applied our proposed method to both
the original NeRF and the Instant-NGP. In the Lego scene,
we observed that the other two existing methods showed
poor decomposition performance. For RecolorNeRF, the

3496



Horns

Flower

Fortress

Reference Ours

RecolorNeRF

PaletteNeRF +

PaletteNeRF Semantic-guide

Figure 6. Qualitative comparison with the state-of-the-art NeRF color editing methods. We compare our method with PaletteNeRF [14]

and RecolorNeRF [10]. Zoom-in view is in the blue box.

] PNF PNF PNF
Reference Ours (+ Semantic-guide) (+Blending)  (+ Mask-guide)

Figure 7. Qualitative comparison for a fair evaluation, apply-
ing mask-based blending and mask-guide to enable PaletteNeRF
(PNF) to utilize masks.

palette editing for the light-yellow basis did not result in
any noticeable change in the scene’s color (refer to Re-
colorNeRF’s decomposed basis for the Lego scene in Fig.
5). For the Drums scene, our proposed method applied to
the Instant-NGP model showed better decomposition per-
formance than the other two existing methods (refer to the
color of the cymbal part).

Figure 6 shows a comparison of our method with state-
of-the-art NeRF color editing methods, PaletteNeRF and
RecolorNeRF, on the LLFF dataset. The Horns scene is
one of the most challenging scenes for recoloring since it
has multiple objects with similar colors and identical se-
mantic objects (dinosaur skull bones). In the case of Recol-
orNeRF and PaletteNeRF (without semantic guidance) ap-
plied to the Horns scene, both methods were able to change
the color of the bones well. However, the color of the floor
also changed significantly. When PaletteNeRF was applied
with semantic guidance, the color change was relatively fo-
cused on the bone parts. However, the color of small bones
with the same semantics also changed, as shown in the blue
box. For Flower and Fortress scenes, both methods per-
formed well in color editing because there was a large color
difference between the objects and backgrounds. However,
in the case of RecolorNeREF, a single palette editing was not
enough to achieve the desired level of color change.

Since existing methods do not utilize masks, we have im-
plemented two simple approaches to enable PaletteNeRF to

Y \ \\ “.\" ‘ &v ’
Figure 8. Example of annotated object mask. We measure the de-
composition performance by computing the Mean Squared Error
(MSE) of the area outside the object mask.

Method Horns | Fortress | Flower | Average
RecolorNeRF | 0.1867 | 0.0013 | 0.0003 | 0.0627
PaletteNeRF | 0.0818 | 0.0013 | 0.0003 | 0.0277
Ours 0.0213 | 0.0010 | 0.0003 | 0.0075

Table 1. Quantitative comparison between our method, Recol-
orNeRF, and PaletteNeRF. The numbers in each cell indicate the
Mean Squared Error (MSE) used to measure the color change of
the background area in annotated object masks after applying color
editing.

use masks. This allows for a fairer comparison with our re-
sults, as illustrated in Fig. 7. The two methods are: 1) mask-
based blending; and 2) switching from a semantic-guide to
a mask-guide. PaletteNeRF’s semantic-guide uses semantic
segmentation to recolor surfaces that have the same seman-
tic features as a specific point. We modify this by using
masks to assign average semantics within a distinct area.
Our results confirm that ICE-NeRF exhibits superior de-
composition performance, delivering higher-quality results
compared to other baselines.

Quantitative comparison. Table 1 presents the quan-
titative results obtained from the evaluation of the pro-
posed method, RecolorNeRF, and PaletteNeRF on Horns,
Fortress, and Flower scenes. To assess decomposition per-
formance, we annotated segmentation masks (Fig. 8) for
the centered object in each scene’s testset and computed the
Mean Squared Error (MSE) of the background region. In

3497



Zoom-in view w/o AFR w/ AFR

Figure 9. Effect of AFR.

Mask #4

Mask #3

88| /o Intensity

Figure 10. Effect of intensity loss and mask sparsity.

consideration of color selection variation, we repeated each
experiment ten times with different settings and reported
the average results. The obtained results indicate that ICE-
NeRF significantly outperforms the two baseline methods
in terms of decomposition performance.

Time comparison for a given pre-trained NeRF, up until
saving the first frame, is as follows: Our method takes 25
sec, RecolorNeRF takes 160 sec, and PaletteNeRF takes 49
min.

5.3. Ablation Study

Effect of AFR. Figure 9 shows the results of an ablation
study on AFR. As shown in the figure, when the user’s input
mask is too rough, unwanted color changes may occur in
areas with similar colors to the target area. In this case, the
proposed AFR successfully suppresses color changes in this
region.

Effect of intensity loss and mask sparsity. The bottom
left image in Fig. 10 shows the result when intensity loss is
not applied. As shown in the figure, the intensity of the ref-
erence scene is not properly maintained. The four images
on the right each show the results of recoloring while erod-
ing the mask. The figure shows that recoloring can be per-
formed effectively even when the mask is extremely sparse.

Multi-Color Editing Results

T

Mask #1 [ Mask #2 @ Mask #3 @

Frozen Mask

Figure 11. Multi-color editing results with user masks.

5.4. Analysis

Analysis of AFR’s impact on activations alCFlour,
We analyze the influence of AFR on the cosine similar-
ity between average activations before and after recoloring
within each M¢/MF region. By using random target col-
ors for scenes shown in Fig. 6, we present the average re-
sults from 100 trials each. Without AFR, the similarities
for M€ and MF are 0.4704 and 0.7207, respectively; with
AFR, these values become 0.4699 and 0.7363. Consistent
with our expectations, AFR decreases the changes in activa-
tion in MF, while causing M®’s activations to diverge more
from the original.

Analysis of AFR’s Impact on Weights W. We explore
the variation in each W;; value post-recoloring, related to
the corresponding R,;; value (utilizing the same setting as
previously mentioned). The average change in W;; is di-
vided into quartiles, beginning with the top 25% of cases
with the largest R;; values, yielding the following results:
0.0192, 0.0194, 0.0207, and 0.0249. These findings corrob-
orate that a greater R;; value leads to more modest changes
in Wz‘j .

5.5. Other Results

Multi-color editing. The proposed method offers a no-
table benefit by enabling the recoloring of individual scene
components with distinct colors. As illustrated in Fig. 11,
our approach facilitates color editing for objects that have
similar colors and semantics.

Various user masks. We performed color editing for
various types of user masks to verify how much our color
editing method is influenced by them. Fig. 12 demonstrates
that ICE-NeRF performs well in color editing with various
types of user masks, including dots, lines, curves, scribbles,
and areas.

Results with TensoRF. Figure 13 shows the color edit-
ing results obtained by applying our method to a pre-trained
TensoRF [7]. The figure shows that ICE-NeRF, a general
solution applicable to various NeRF variants, yields high-
quality results with TensoRF as well, which is based on a

3498



Hotdog

Reference Result #1

Chair

Reference Result #1 Result #2

4 %

Ship

Result #1 Result #2

Reference

Figure 13. Results of applying our method to the pre-trained Ten-
soRF on the NeRF Blender dataset.

decomposed voxel representation.

Results on Mip-NeRF360. Figure 14 shows the color
editing results obtained by applying our method to a pre-
trained Instant-NGP on Mip-NeRF360 dataset. Unlike the
results on synthetic (Blender) and forward-facing (LLFF)
scenes, we observed that 360° scenes, could generate arti-
facts in some areas (please see Sec. 6).

6. Limitations

We applied our proposed method to three different mod-
els and confirmed that it can perform high-quality recol-
oring for synthetic, forward-facing scenes. However, as
shown in Fig. 14, we observed unwanted color changes in

Fortress Flower

Figure 12. Color editing results with various type of user mask.

Reference Purple Bicycle

Figure 14. Results of applying our method to the pre-trained In-
stantNGP on the Mip-NeRF360 dataset.

some areas of the 360° scenes. We speculate that this phe-
nomenon occurs because, in the case of 360° scenes, the
model requires learning over a broader and more complex
3D space.

Due to the nature of the user-specified mask, our method
may not be practical for scenes with complex objects span-
ning the entire scene, such as scenes with complex entan-
gled branches. In such cases, to further increase user con-
venience, conventional segmentation algorithms or off-the-
shelf segmentation models can be used in combination with
our method to enhance its usability.

7. Conclusion

We have presented ICE-NeRF, a method that allows
users to interactively and intuitively edit NeRF scenes. Our
approach efficiently performs color editing through simple
fine-tuning, while also addressing two issues that can arise
in weight optimization-based NeRF color editing methods.
To address these issues, we introduced the AFR and SMR
techniques. Our experimental results demonstrate that ICE-
NeRF outperforms existing NeRF color editing methods in
terms of both decomposition performance and time effi-
ciency. In future work, we aim to explore scene geometry
editing through weight optimization and extend our method
to accommodate dynamic NeRFs.

Acknowledgement. This research has been supported by
the LG Electronics Corporation (Project No. G01220205).

3499



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In 2021 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 5835-5844. IEEE,
2021.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza,
Bolei Zhou, and Antonio Torralba. Understanding the role of
individual units in a deep neural network. Proceedings of the
National Academy of Sciences, 2020.

Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Bar-
ron, Ce Liu, and Hendrik P. A. Lensch. Nerd: Neural re-
flectance decomposition from image collections. In 2021
IEEE/CVF International Conference on Computer Vision,
ICCV 2021, Montreal, QC, Canada, October 10-17, 2021,
pages 12664-12674. IEEE, 2021.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. In-
structpix2pix: Learning to follow image editing instructions.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2023.

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi,
and Adam Finkelstein. Palette-based photo recoloring. ACM
Trans. Graph., 34(4):139-1, 2015.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. arXiv preprint
arXiv:2203.09517,2022.

Christoph Fehn. Depth-image-based rendering (dibr), com-
pression, and transmission for a new approach on 3d-tv. In
Stereoscopic displays and virtual reality systems XI, volume
5291, pages 93-104. SPIE, 2004.

Chie Furusawa, Kazuyuki Hiroshiba, Keisuke Ogaki, and
Yuri Odagiri. Comicolorization: semi-automatic manga col-
orization. In Diego Gutierrez and Hui Huang, editors, SIG-
GRAPH Asia 2017 Technical Briefs, Bangkok, Thailand,
November 27 - 30, 2017, pages 12:1-12:4. ACM, 2017.
Bingchen Gong, Yuehao Wang, Xiaoguang Han, and Qi
Dou.  Recolornerf: Layer decomposed radiance field
for efficient color editing of 3d scenes. arXiv preprint
arXiv:2301.07958, 2023.

Ayaan Haque, Matthew Tancik, Alexei Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2023.

Clément Jambon, Bernhard Kerbl, Georgios Kopanas,
Stavros Diolatzis, Thomas Leimkiihler, and George” Dret-
takis. Nerfshop: Interactive editing of neural radiance
fields”. Proceedings of the ACM on Computer Graphics and
Interactive Techniques, 6(1), May 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,

(14]

[15]

[16]

(7]

(18]

(19]

[20]

(21]

(22]

(23]

3500

editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

Zhengfei Kuang, Fujun Luan, Sai Bi, Zhixin Shu, Gordon
Wetzstein, and Kalyan Sunkavalli. Palettenerf: Palette-based
appearance editing of neural radiance fields. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2023.

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June
19-25, 2021, pages 7210-7219. Computer Vision Founda-
tion / IEEE, 2021.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
representing scenes as neural radiance fields for view synthe-
sis. Commun. ACM, 65(1):99-106, 2022.

Pooneh Mohaghegh, Rabia Saeed, Francois Tieche, Alexis
Boegli, and Yves Perriard. Depth camera and electromag-
netic field localization system for iot application: High level,
lightweight data fusion. In ASSE 2021: 2nd Asia Service Sci-
ences and Software Engineering Conference, Macau, 24-26
February, 2021, pages 94-101. ACM, 2021.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1-
102:15, July 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024—8035. Curran Asso-
ciates, Inc., 2019.

Yicong Peng, Yichao Yan, Shengqi Liu, Yuhao Cheng,
Shanyan Guan, Bowen Pan, Guangtao Zhai, and Xiaokang
Yang. Cagenerf: Cage-based neural radiance field for gener-
alized 3d deformation and animation. In Advances in Neural
Information Processing Systems, 2022.

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 14315-14325. 1EEE,
2021.

Vincent Sitzmann, Michael Zollhofer, and Gordon Wet-
zstein.  Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances
in Neural Information Processing Systems, 2019.

Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.



[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Nerv: Neural reflectance and visibility fields for relighting
and view synthesis. In CVPR, 2021.

Jianchao Tan, Jose Echevarria, and Yotam Gingold. Effi-
cient palette-based decomposition and recoloring of images
via rgbxy-space geometry. ACM Transactions on Graphics
(TOG), 37(6):262:1-262:10, Dec. 2018.

Jiaxiang Tang. Torch-ngp: a pytorch implementation of
instant-ngp, 2022. https://github.com/ashawkey/torch-ngp.
Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang
Zeng. Compressible-composable nerf via rank-residual de-
composition. arXiv preprint arXiv:2205.14870, 2022.
Kenji Tojo and Nobuyuki Umetani. Recolorable posteriza-
tion of volumetric radiance fields using visibility-weighted
palette extraction. Comput. Graph. Forum, 41(4):149-160,
2022.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd E. Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
CoRR, abs/2112.03907, 2021.

Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manipula-
tion of neural radiance fields. CoRR, abs/2112.05139, 2021.
Qiling Wu, Jianchao Tan, and Kun Xu. Palettenerf:
Palette-based color editing for nerfs.  arXiv preprint
arXiv:2212.12871, 2022.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. Computer Graphics Forum,
2022.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman.
Volume rendering of neural implicit surfaces. In Thirty-
Fifth Conference on Neural Information Processing Systems,
2021.

Lin Yen-Chen. Nerf-pytorch. https://github.com/
yenchenlin/nerf-pytorch/, 2020.

Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenox-
els: Radiance fields without neural networks. CoRR,
abs/2112.05131, 2021.

Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva
Ramanan. Ners: Neural reflectance surfaces for sparse-view
3d reconstruction in the wild. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jen-
nifer Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIlPS 2021,
December 6-14, 2021, virtual, pages 29835-29847, 2021.
Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields, 2022.

Kai Zhang, Fujun Luan, Qiangian Wang, Kavita Bala, and
Noah Snavely. Physg: Inverse rendering with spherical gaus-
sians for physics-based material editing and relighting. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2021, virtual, June 19-25, 2021, pages 5453—
5462. Computer Vision Foundation / IEEE, 2021.

3501



