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Abstract

We question the current evaluation practice on diffusion-
based purification methods. Diffusion-based purification
methods aim to remove adversarial effects from an input
data point at test time. The approach gains increasing at-
tention as an alternative to adversarial training due to the
disentangling between training and testing. Well-known
white-box attacks are often employed to measure the robust-
ness of the purification. However, it is unknown whether
these attacks are the most effective for the diffusion-based
purification since the attacks are often tailored for adver-
sarial training. We analyze the current practices and pro-
vide a new guideline for measuring the robustness of purifi-
cation methods against adversarial attacks. Based on our
analysis, we further propose a new purification strategy im-
proving robustness compared to the current diffusion-based
purification methods.

1. Introduction
Adversarial attacks [21, 6] can cause deep neural net-

works (DNNs) to produce incorrect outputs by adding im-
perceptible perturbations to inputs. While various adver-
sarial defenses have been proposed, adversarial training
[41, 13] has shown promising results in building robust
DNNs. Since adversarial training feeds the model both
normal and adversarial examples during training time, one
needs to pre-determine which attack method is used to gen-
erate the adversarial examples. On the other hand, adaptive
test-time defense [19, 16] has recently gained increasing at-
tention since it adaptively removes the adversarial effect at
test time without adversarial training. Adversarial purifica-
tion [31, 24], one of the adaptive test-time defenses, uses
generative models to restore the clean examples from the
adversarial examples.

Diffusion-based generative models [17, 35] has been
suggested as a potential solution for adversarial purifica-
tion [24, 36]. Diffusion models learn transformations from
data distributions to well-known simple distributions such
as the Gaussian and vice versa through forward and reverse

processes, respectively. When applied to the purification,
the forward process gradually adds noise to the input, and
the reverse process gradually removes the noises to uncover
the original image without imperceptible adversarial noise.
With a theoretical guarantee, the recent success of Diff-
Pure [24] against many adversarial training methods shows
the potential of using diffusion processes for improving the
robustness against adversarial attacks.

Evaluating the robustness of adaptive test-time defenses
is, however, known to be difficult due to their complex de-
fense algorithms and properties. Croce et al. [8] shows that
finding worse-case perturbation is important to measure the
robustness of the defenses. Randomness and iterative calls
of adaptive test-time defenses, however, make their gradi-
ents obfuscated. Therefore, the gradient-based attack meth-
ods [21, 6] might be inappropriate for measuring the ro-
bustness under such obfuscation. New algorithms, such as
Backward Pass Differentiable Approximation (BPDA) [3],
and additional recommendations [8] have been proposed to
evaluate their robustness accurately. However, it is unclear
whether these algorithms and recommendations can still be
used to evaluate diffusion-based purification.

In the first part of this work, we analyze the existing
evaluation methods for diffusion-based purification. We
find that the adjoint method, often used to compute a full
gradient of the iterative process, relies on the performance
of an underlying numerical solver. Tailored to the diffu-
sion models, we propose a surrogate process, an alterna-
tive method to approximate the gradient from the iterative
procedure and show the strong robustness in recent work
can be weaker than claimed with the surrogate process. We
then compare two gradient-based attack methods, AutoAt-
tack [6] and PGD [21], with the surrogate process and find
that PGD is more effective for the diffusion-based purifica-
tion. To this end, we propose a practical recommendation
to evaluate the robustness of diffusion-based purification.

In the second part of this work, we analyze the impor-
tance of the hyperparameter for successive defenses with
purification. The diffusion models are trained without ad-
versarial examples. Thus, proper validation of hyperparam-
eters is impossible in general. Instead, we empirically an-
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alyze the influence of different hyperparameter selections
from the attacker’s and defender’s perspectives. Based on
our analysis, we propose a gradual noise-scheduling for
multi-step purification. We show that our defense strat-
egy highly improves robustness compared to the current
diffusion-based purification methods under our proposed
evaluation scheme.

We summarize our contributions as follows:

• We analyze the current evaluation of diffusion-based
purification and provide a recommendation for robust
evaluation.

• We investigate the influence of hyperparameters on the
robustness of diffusion-based purification.

• We propose a gradual noise-scheduling strategy for
diffusion-based purification, improving the robustness
of diffusion-based purification.

2. Preliminary
We provide the background on the adversarial attack, dif-

fusion models, and adversarial purification in this section.

2.1. Adversarial Attacks
Adversarial attacks aim to manipulate or trick machine

learning models by adding imperceptible perturbations to
input data that can cause the model to misclassify or pro-
duce incorrect outputs. The adversarial attacks can be cat-
egorized into black-box, grey-box, and white-box attacks.
The black-box attack assumes that the attacker knows noth-
ing about the internal structure of the classifier and de-
fender. The white-box attack assumes that the attacker can
obtain any information about the defender and the target
classifier, including the architecture and parameter weights.
The grey-box lies between the white- and black-box attacks,
where the attacker partially knows the target model. In this
work, we only focus on the performance of purification in
the white-box attack since the white-box attack is the most
difficult to defend from the defender’s perspective.

The Projected Gradient Descent (PGD) [21] method is
a common white-box attack. PGD is a gradient-based at-
tack that iteratively updates an adversarial example using
the following rule

xi+1 = ⇧X (xi + ↵isignrxL(f�(x), y)|x=xi) , (1)

where f� represents a classifier, and ⇧X indicates a projec-
tion operation onto X . PGD can only be applied for the
differentiable defense methods. For non-differentiable de-
fense methods, the Backward Pass Differentiable Approx-
imation (BPDA) [3] is widely used, which computes the
gradient of the non-differentiable function by using a differ-
entiable approximation. Expectation over Transformation

(EOT) [2] can be additionally employed for randomized de-
fenses, which optimizes the expectation of the randomness.
AutoAttack [6] is an ensemble of four different types of at-
tacks. In this work, we measure the robustness of purifica-
tion methods against these attack methods.

2.2. Diffusion Models
Recently, diffusion-based models [17, 35] have gained

increasing attention in generative models. Unlike the VAEs
and GANs, the diffusion-based models produce samples by
gradually removing noise from random noise. The train-
ing of diffusion-based models consists of two processes, the
forward process, and the reverse denoising process. The
forward process adds Gaussian noise over T steps to the
observed input x0 with a predefined variance scheduler �t,
whose joint distribution is defined as

q(x1:T |x0) =
TY

t=1

q(xt|xt�1), (2)

where q(xt|xt�1) is a Gaussian transition kernel from xt�1

to xt

q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI). (3)

The reverse process denoises the random noise xT over T
times, whose joint distribution is defined as

p✓(x0:T ) = p(xT )
TY

t=1

p✓(xt�1|xt). (4)

The transition distribution from xt to xt�1 is often modeled
by Gaussian distribution

p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �
2
t I), (5)

where �t is a variance, and µ✓ is a predicted mean of xt�1

derived from a learnable denoising model ✏✓. The denoising
model is often trained by predicting a random noise at each
time step via following objective

L(✓) = Et,x0,✏

h
k✏ � ✏✓(xt, t)k2

i
, (6)

where ✏ is a Gaussian noise, i.e., ✏ ⇠ N (0, I). The model
✏✓ takes the noisy input xt and the time step t to predict the
actual noise ✏ at time t. In the Denoising Diffusion Proba-
bilistic Model (DDPM) [17], the reverse denoising process
is performed over T steps through random sampling, result-
ing in a slower generation of samples compared with GANs
and VAEs.

Based on the fact that the multiple denoising steps can
be performed at a single step via a non-Markovian process,
Song et al. [33] proposes a new sampling strategy, which we
call Denoising Diffusion Implicit Model (DDIM) sampler,
to accelerate the reverse denoising process. In this work, we
compare the performances of DDPM and DDIM samplers
in the diffusion-based purification approach.
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2.3. Adversarial Purification
Adversarial purification via generative models is a tech-

nique used to improve the robustness of machine learning
models against adversarial attacks [31]. The idea behind
this technique is to use a generative model to learn the un-
derlying distribution of the clean data and use it to purify
the adversarial examples.

Diffusion-based generative models can be used as a pu-
rification process if we assume that the imperceptible adver-
sarial signals as noise [24]. To do so, the purification pro-
cess adds noise to the adversarial example via the forward
process with t⇤ steps, and it removes noises via the denois-
ing process. The choice of the number of forward steps t⇤

is essential since too much noise can remove the semantic
information of the original example, or too little noise can-
not remove adversarial perturbation. In theory, as we add
more noise to the adversarial example, the distributions over
the noisy adversarial example and the true example become
close to each other [24]. Therefore, the denoised examples
are likely to be similar.

3. Evaluation for Diffusion-Based Purification
In this section, we first review the current practices

in evaluating diffusion-based purification methods. We
then curate three research questions to address their poten-
tial limitations and provide our answers to these questions
through empirical evaluations.

3.1. Current Practices and Research Questions
Evaluation of the diffusion-based purification against

gradient-based white-box attacks is non-trivial due to many
function calls on the denoising process. Multiple func-
tion calls in the denoising step often require an impracti-
cal amount of memory, making it unfeasible to compute
the gradient of the full defense process. Because of this
problem, most defenses [39, 36, 16] consider BPDA the
strongest adaptive white-box attack in the current practice
since it does not rely on the gradients of defense methods.
However, the vulnerability of diffusion-based purification
on white-box attacks has yet to be fully identified. The im-
portance of testing in adaptive white-box attacks of purifi-
cation has been recognized only recently by the work of
DiffPure [24].

DiffPure calculates the full gradients of their defense
process using an adjoint method. The adjoint method is
employed to avoid the extensive use of memory while ob-
taining the full gradient. DiffPure is evaluated on AutoAt-
tack, a de facto evaluation method in adversarial training.
Although their evaluation framework is more robust than
the previous work, the design choices of their evaluation
still raise questions since 1) the adjoint method relies on the
performance of an underlying numerical solver [42], and 2)

there is no comprehensive comparison between different at-
tacks using the full gradient.

Based on our observation, we carefully curate the fol-
lowing three research questions to address the robustness of
the current evaluation framework in diffusion-based purifi-
cation:

• RQ1. Is the adjoint method the best way to generate
adversarial examples with full gradients? Is there any
alternative to the adjoint method?

• RQ2. Is AutoAttack still better than the other gradient-
based attacks, such as PGD, when the alternative is
available?

• RQ3. Is BPDA still more effective than the best com-
bination of full-gradient attacks?

In the next section, we re-evaluate the existing purification
methods to answer these questions.

3.2. Experimental Results & Analysis
We evaluate the performance of three diffusion-

based purification methods: ADP1 [39], DiffPure [24],
GDMP [36]. We additionally evaluate two non-diffusion-
based adaptive test-time defenses: SODEF [19], and
DISCO [16] to address whether our findings still hold for
the non-diffusion-based purification methods. We evaluate
their robustness on CIFAR-10 against three gradient-based
attacks, including PGD, BPDA, and AutoAttack, with a
maximum attack strength of `1(✏ = 8/255). A compre-
hensive description of evaluation configurations is provided
in Appendix A.

Surrogate process and its gradient. The adjoint method
can compute the exact gradient in theory, but in practice, the
adjoint relies on the performance of the numerical solver,
whose performance becomes problematic in some cases as
reported by Zhuang et al. [42]. To answer the RQ1, we
compare the adjoint method against the full gradient ob-
tained from back-propagation if possible, and if not due to
the memory issue, we use the approximated gradient ob-
tained from a surrogate process. The surrogate process uti-
lizes the fact that given the total amount of noise, we can
denoise the same amount of noise with different numbers
of denoising steps [33]. Therefore, instead of using the
entire denoising steps, we can mimic the original denois-
ing process with fewer function calls, whose gradients can
be obtained by back-propagating the forward and denosing
process directly.

The gradients obtained from the surrogate process dif-
fer from the exact gradients. However, if the accumulated

1Although ADP uses a score-based model and Langevin dynamics,
since the concept is similar to the diffusion model, we consider ADP
diffusion-based purification.
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Defense Gradient of Def Robust Accuracy (%)

DiffPure [24] Adjoint 74.38±1.03
Surrogate 46.84±1.44

GDMP [36] BPDA 75.59±1.26
Surrogate 24.06±0.47

SODEF [19]
w/o 53.69

Adjoint 57.76
Full 49.28

Table 1: Robust accuracy of DiffPure, GDMP, and SODEF
against attacks (`1(✏ = 8/255)) on CIFAR-10. We use
PGD+EOT for DiffPure and GDMP and AutoAttack for
SODEF. Adjoint calculates full gradients using the adjoint
method, and Surrogate (or Full) calculates approximated
(or full) gradients using direct back-propgation. w/o is
the performance of the underlying classifier without the
SODEF.

denoising steps can be approximated with fewer denoising
steps, we can use the approximated gradients as a proxy of
the exact gradients. The surrogate process can also relax the
randomness occurring in multiple denoising steps.

RQ1: Is the adjoint method the best way to generate ad-
versarial examples with full gradients? We compare the
adjoint method with the full gradient obtained from direct
back-propagation of the defense process with the original
or surrogate processes.

Table 1 shows that the robust accuracy of DiffPure [24]
with the direct back-propagation is 46.84% on PGD+EOT
attack, which is 27.54% lower than the reported accuracy
with the adjoint method. The results show that direct back-
propagation is more effective than the adjoint method. Fur-
thermore, we use a surrogate process for GDMP [36], and
the robust accuracy is 24.06%, which is 51.53% lower than
the reported accuracy against the BPDA attack. It can be
concluded that, in cases where the gradients of the defense
process are unavailable to calculate, the surrogate process
can be an alternative to generate adversarial examples.

SODEF [19], a non-diffusion-based purification, origi-
nally uses the adjoint method to generate adversarial ex-
amples. We evaluate SODEF with direct back-propagation
for the attack and observe 49.28% robust accuracy against
AutoAttack, which is lower than 53.69% of the underlying
model without defense. This result suggests that the use of
a numerical solver would not be effective for the adversarial
attack.

RQ2: Is AutoAttack still better than the other gradient-
based attacks, such as PGD, when the alternative is

Threat Model Defense Attack Robust
Accuracy (%)

`1(✏ = 8/255)
ADP [39] PGD+EOT 33.48±0.86

AutoAttack 59.53±0.87

DiffPure [24] PGD+EOT 46.84±1.44
AutoAttack 63.60±0.81

`2(✏ = 0.5)
ADP [39] PGD+EOT 73.32±0.76

AutoAttack 79.57±0.38

DiffPure [24] PGD+EOT 79.45±1.16
AutoAttack 81.70±0.84

Table 2: Robust accuracy of DiffPure and ADP against
PGD+EOT and AutoAttack (`1(✏ = 8/255)) on CIFAR-
10.

Defense Type BPDA Ours

ADP [39] DSM+LD 66.91±1.75 33.48±0.86
DiffPure [24] Diffusion 81.45±1.51 46.84±1.44
GDMP [36] Diffusion 75.59±1.26 24.06±0.47
DISCO [16] Implicit function 47.18 0.00

Table 3: Robust accuracy of defenses against BPDA and
our full-gradient based attacks (`1(✏ = 8/255)) on CIFAR-
10. We report the lowest robust accuracy between PGD and
AutoAttack.

available? AutoAttack has recently been used as a stan-
dard method to evaluate defenses due to its robustness
against defenses. Although AutoAttack may not be an
ideal choice for randomized defenses2, still many purifica-
tion methods, such as DiffPure, rely on AutoAttack. How-
ever, as shown in Table 2, AutoAttack has a lower suc-
cess rate than PGD+EOT against diffusion-based purifi-
cation methods. For the `1 threat model (✏ = 8/255),
PGD+EOT shows 16.76% and 26.05% more attack suc-
cess rate than AutoAttack against DiffPure and ADP, re-
spectively. We observe a similar result with the `2 threat
model (✏ = 0.5). Therefore, evaluation with PGD+EOT
for diffusion-based purification can be useful to evaluate
their robustness. Further results of the difference between
PGD+EOT against DiffPure with additional settings can be
found in Appendix B.

RQ3: Is BPDA still more effective than the best com-
bination of full-gradient attacks? BPDA [3] has been
widely used to evaluate defenses that can cause gradient
obfuscation. Because multiple function calls can cause
gradient obfuscation, ADP, GDMP, and DISCO have been
evaluated on BPDA as the strongest adaptive white-box at-
tack. However, our evaluation shows that BPDA has a

2https://github.com/fra31/auto-attack/blob/
master/flags_doc.md
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lower attack success rate than the attacks using direct gra-
dients of the defense process, as shown in Table 3. Against
PGD+EOT using direct gradients of defense process, ADP
and GDMP show robust accuracy of 33.48% and 24.06%,
respectively, significantly lower than the reported accuracy
with BPDA [39, 36]. DISCO even has 0% robust accuracy.
From the results, we suggest that the direct gradients of the
defense process need to be tested to check the robustness.

Recommendation. We propose an overall guideline for
evaluating diffusion-based purifications as follows. We rec-
ommend using PGD+EOT rather than AutoAttack. When
calculating gradients, it is best to directly back-propagate
the full defense process. If this is unavailable due to mem-
ory constraints, using the surrogate process rather than the
adjoint method is recommended. Note that our recommen-
dation generally follows the suggestions made by Croce
et al. [8] but is more tailored for the diffusion-based pu-
rification.

4. Analysis of Hyperparameters
The performance of diffusion-based purification is sig-

nificantly influenced by varying hyperparameter configura-
tions. In this section, we explore the importance of hyper-
parameters in defense processes.

4.1. Experimental Settings
Understanding the importance of hyperparameters can

help build a better defense mechanism. We investigate the
effect of various hyperparameters of diffusion-based purifi-
cation methods to determine the most robust configuration
for the adaptive attack. Specifically, the following three hy-
perparameters are evaluated 1) the number of forward steps,
2) the number of denoising steps, and 3) the number of pu-
rification steps. In addition, we re-evaluate the efficiency
of several techniques proposed in previous works under our
defense scheme.

We evaluate the purification against PGD+EOT on
CIFAR-10. We provide the additional results on CIFAR-10
and ImageNet in Appendix C. Although we do not report
ImageNet results in the main text, the overall findings are
similar to those from CIFAR-10. We use a naturally pre-
trained WideResNet-28-10 [40] as an underlying classifier
provided by Robustbench [7]. For a diffusion model, we use
pretrained DDPM++ [35]. The variances for the diffusion
model are linearly increasing from �1 = 10�4 to �T = 0.02
when T = 1000 [17]. We use two different denoising mod-
els: DDPM [17] and DDIM [33].

For all experiments, we report the mean and standard
deviation over five runs to measure the standard and ro-
bust accuracy. PGD uses 200 update iterations. 20 samples
are used to compute EOT. Following the settings in Diff-
Pure [24], we use a fixed subset of 512 randomly sampled
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Figure 1: Standard and robust accuracy as we change
the number of forward steps against PGD+EOT `1(✏ =
8/255) on CIFAR-10. Five denoising steps for both attack
and defense are used.

images. To calculate gradients, we use direct gradients of
the entire process. If impossible, we compute the approxi-
mated gradients from a surrogate process. In each experi-
ment, we explain the defense process and the surrogate pro-
cess in more detail.

4.2. The Number of Forward Steps
We explore the effect of forward noising steps on robust-

ness by varying the number of forward steps from 30 to 300,
resulting in the changes of total variance ranged from 0.012
to 0.606. The same number of forward steps are used for
both attack and defense, and we set five denoising steps for
attack and defense for all experiments.

As shown in Figure 1, the standard accuracy continu-
ously decreases as the number of forward steps increases
since more forward steps induce more noise. The robust ac-
curacy increases first and decreases after 200 forward steps,
i.e., t⇤ = 200. When the number of forward steps is small,
the DDPM is more robust than the DDIM. However, DDIM
shows better accuracy for both standard and robust than
DDPM after 200 forward steps.

4.3. The Number of Denoising Steps
Defenders may use fewer denoising steps to accelerate

the defense process. From the other perspective, attackers
may want to use fewer denoising steps than those used in
the defense due to memory constraints. We explore the in-
fluence of the number of denoising steps through the fol-
lowing three experimental settings:

(a) The number of denoising steps in attack is set to five,
and the number of denoising steps in defense is ranged
from one to the maximum number of denoising steps.

(b) The number of denoising steps in both the attack and
defense are the same, ranging from one to 20.
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Figure 2: Robust accuracy as we change the number of
denoising steps against PGD+EOT `1(✏ = 8/255) on
CIFAR-10. We change the number of denoising steps in (a)
defense, (b) both, and (c) attack for each experiment with
the other hyperparameters fixed.

(c) The number of denoising steps in defense is set to the
maximum number of denoising steps, and the number
of denoising steps in attack is ranged from one to 20.3

The results are displayed in Figure 2. From the defense
perspective, the results of (a) and (b) demonstrate that more
denoising steps can improve robustness. DDPM gains more
advantage from having more denoising steps than DDIM.
(c) shows the effect of the number of denoising steps in the
attack. As the number of denoising steps increases, the at-
tack success rate slightly increases. However, we also find
that increasing the number of denoising steps in an attack
can decrease the attack success rate when the number of
forward steps is 200 (i.e., t⇤ = 200).

3The 20 denoising steps is the maximum limit of 40GB of memory.
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Figure 3: The number of purification steps in defense and
its influence to the standard and robust accuracy against
PGD+EOT `1(✏ = 8/255) on CIFAR-10. The number
of forward steps is 100 (i.e., t⇤ = 100). The reported ro-
bust accuracy is the lowest performance of all settings of
the number of purification steps of the attack.
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Figure 4: The number of purification steps during attacks
and its influence on the robust accuracy against PGD+EOT
`1(✏ = 8/255) with CIFAR-10. The number of forward
steps is fixed as 100 (i.e., t⇤ = 100).

4.4. The Number of Purification Steps

Although a single forward and reverse process can pu-
rify the input image, one can apply the purification process
multiple times as proposed in Wang et al. [36]. We denote
the number of forward and denoising processes as the num-
ber of purification step. Similar to the case of the denoising
step, computing the gradients of multiple purification steps
is impossible due to memory constraints in most cases.

The number of purification steps can also differ between
attack and defense. Through experiments, we measure the
changes in robust accuracy with the different number of
purification steps in the defense and attack. For all ex-
periments, we fixed the number of forward steps to 100
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Guidance Accuracy (%)
Standard BPDA PGD+EOT

No guide 87.70±0.46 75.23±0.61 38.44±0.59
MSE 89.96±0.40 75.59±1.26 24.06±0.47
SSIM 93.75±0.39 74.02±1.17 6.88±0.21

Table 4: Standard and robust accuracy of GDMP [36]
against BPDA and PGD+EOT `1(✏ = 8/255) on CIFAR-
10. We compare two types of guidance, MSE and SSIM,
and the defense without guidance.
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Figure 5: Standard and robust accuracy against PGD+EOT
`1(✏ = 8/255) on CIFAR-10 when using an ensemble with
a different number of purification runs. Five denoising steps
are used for the surrogate process of the attack.

(t⇤ = 100), and the number of denoising steps is set to five.
Figure 3 shows the standard and robust accuracy with a

varying number of purification steps in defense. The robust
accuracy increases as the number of purification steps in-
creases while the standard accuracy steadily decreases. Fig-
ure 4 shows the effect of the number of purification steps in
the attack. When the number of purification steps in defense
is one or two, the same number of purification steps in at-
tack is the most effective. However, as we set the number of
purification steps in defense to three and five, two and three
purification steps in attack show a better attack success, re-
spectively.

4.5. Other Techniques
We evaluate several other techniques proposed in earlier

work [39, 24, 36] within our new evaluation framework.

Guidance. GDMP [36] proposes to use gradients of a
distance between an original input example and a target
example to preserve semantic information while denois-
ing. They show guidance can improve robustness against
preprocessor-blind attacks. However, as shown in Table 4,
when the gradients of the surrogate process are used in
the attack, the guidance of GDMP decreases the robust

Underlying Classifier t⇤ Robust Accuracy (%)

TRADES [41]
0 55.32

100 54.02±0.98
200 51.52±1.96

Gowal et al. [13]
0 69.03

100 58.24±0.49
200 52.97±1.38

Table 5: Combination of diffusion models with adversarial
training evaluated on CIFAR-10 against PGD+EOT `1(✏ =
8/255). Five denoising steps are used for both attack and
defense.

t⇤ Defense Attack Robust Accuracy (%)

100
DDPM DDPM 44.77±1.48

DDIM 46.68±1.25

DDIM DDPM 40.51±1.01
DDIM 37.15±1.31

200
DDPM DDPM 50.43±1.11

DDIM 52.15±1.88

DDIM DDPM 53.63±1.11
DDIM 51.29±1.00

Table 6: Robust accuracy against PGD+EOT `1(✏ =
8/255) on CIFAR-10 when using a denoising model in at-
tack different from the denoising model in defense.

accuracy. Specifically, the defense with guidance using
the SSIM similarity has 6.88% robust accuracy, which is
31.56% lower than the defense without guidance.

Ensemble of multiple purification runs. ADP [39] uses
the ensemble of multiple purification runs as the predicted
label to mitigate the randomness in the defense. For
diffusion-based purification methods, as shown in Figure 5,
multiple purification runs especially can help improve stan-
dard accuracy while the robust accuracy keeps the same
level. In particular, for t⇤ = 200 with 40 purification runs,
standard accuracy is 8.17% higher than the case without en-
semble.

Combination with adversarial training. An adjoint
method based DiffPure [24] shows robustness can be im-
proved by using diffusion models together with adversar-
ial training. However, as shown in Table 5, the adversarial
training with purification shows lower robustness than the
classifier without purification.

Transferability of gradients from different samplers in
the attack. One may employ a sampler of diffusion mod-
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Type Method Standard PGD AutoAttack

W
R

N
-2

8-
10 AT

Gowal et al. [13] 87.51 66.01 63.38
Gowal et al. [12]* 88.54 65.93 62.76
Pang et al. [25] 88.62 64.95 61.04

AP
Yoon et al. [39] 85.66±0.51 33.48±0.86 59.53±0.87
Nie et al. [24] 90.07±0.97 46.84±1.44 63.60±0.81
Ours 90.16±0.64 55.82±0.59 70.47±1.53

W
R

N
-7

0-
16 AT

Rebuffi et al. [29]* 92.22 69.97 66.56
Gowal et al. [13] 88.75 69.03 66.10
Gowal et al. [12]* 91.10 68.66 65.87

AP
Yoon et al. [39] 86.76±1.15 37.11±1.35 60.86±0.56
Nie et al. [24] 90.43±0.60 51.13±0.87 66.06±1.17
Ours 90.53±0.14 56.88±1.06 70.31±0.62

Type Method Standard PGD AutoAttack

W
R

N
-2

8-
10 AT

Rebuffi et al. [29]* 91.79 85.05 78.80
Augustin et al. [4]† 93.96 86.14 78.79
Sehwag et al. [32]† 90.93 83.75 77.24

AP
Yoon et al. [39] 85.66±0.51 73.32±0.76 79.57±0.38
Nie et al. [24] 91.41±1.00 79.45±1.16 81.70±0.84
Ours 90.16±0.64 83.59±0.88 86.48±0.38

W
R

N
-7

0-
16 AT

Rebuffi et al. [29]* 95.74 89.62 82.32
Gowal et al. [12]* 94.74 88.18 80.53
Rebuffi et al. [29] 92.41 86.24 80.42

AP
Yoon et al. [39] 86.76±1.15 75.66±1.29 80.43±0.42
Nie et al. [24] 92.15±0.72 82.97±1.38 83.06±1.27
Ours 90.53±0.14 83.75±0.99 85.59±0.61

Table 7: Standard and robust accuracy against PGD+EOT (left: `1(✏ = 8/255), right: `2(✏ = 0.5)) on CIFAR-10. Adver-
sarial Training (AT) and Adversarial Purification (AP) methods are evaluated. † This method uses WideResNet-34-10 as a
classifier. * This method is trained with extra data.

Type Method Accuracy (%)
Standard Robust

AT
Salman et al. [30] 63.86 39.11
Engstrom et al. [11] 62.42 33.20
Wong et al. [37] 53.83 28.04

AP Nie et al. [24] 75.48±9.18 38.71±0.96
Ours 66.21±1.00 43.05±1.09

Table 8: Standard and robust accuracy against PGD+EOT
`1(✏ = 4/255) on ImageNet. ResNet-50 is used as a clas-
sifier.

els to generate adversarial examples different from those
used in defense. For example, attacks using gradients from
DDPM could be transferred to the defense using DDIM and
vice-versa. We test whether the gradients from a different
sampler of denoising models can improve the attack success
rate. As shown in Table 6, although the transferred attack is
valid, the attack success rates using different samplers are
slightly lower than those using the original samplers.

5. Gradual Noise-Scheduling for Multi-Step
Purification

In this section, we propose a new sampling strategy for
diffusion-based purification and compare the performance
with other state-of-the-art defenses.

Gradual noise-scheduling strategy. As highlighted in
Section 4, selecting appropriate hyperparameter values is
essential to improve robustness. Thus, we conduct an ex-
tensive exploration of hyperparameter settings to maximize
robust accuracy. In particular, we mainly focus on the fact
that each purification step can contain a different number of
forward steps. We empirically find that fewer forward steps
in the first few purification steps can improve robustness.

Type Defense Accuracy (%)
Standard Robust

AT
Rade and Moosavi-Dezfooli [27] 93.08 52.83

Gowal et al. [12] 92.87 56.83
Gowal et al. [13] 94.15 60.90

AP Nie et al. [24] 97.85±0.53 34.30±0.41
Ours 95.55±0.40 49.65±1.06

Table 9: Standard and robust accuracy against attacks
`1(✏ = 8/255) on SVHN. Adversarial training methods
are evaluated on AutoAttack, and adversarial purification
methods are evaluated on PGD+EOT. WideResNet-28-10 is
used as a classifier except for Rade and Moosavi-Dezfooli
[27], which uses ResNet-18.

Based on this observation, for CIFAR-10, we set the
number of forward steps as {30 ⇥ 4, 50 ⇥ 2, 125 ⇥ 2} for
eight purification steps. For ImageNet and SVHN, we set
the number of forward steps as {30 ⇥ 4, 50 ⇥ 2, 200 ⇥ 2}
and {30⇥4, 50⇥2, 80⇥2}, respectively. We set the number
of denoising steps to equal the number of forward steps for
all purification steps. We use the DDPM and an ensemble
of ten purification runs.

Experimental settings. We conduct evaluations
on three datasets, CIFAR-10 [20], ImageNet [9], and
SVHN [23]. We use three diffusion model archi-
tectures, DDPM++ [35], Guided Diffusion [10], and
DDPM [17] for each dataset. We use pretrained mod-
els for CIFAR-10 and ImageNet, but we trained a model
for SVHN. Pretrained WideResNet-28-10, WideResNet-
70-16, and ResNet-50 [40, 14] are served as baseline clas-
sifiers. We compare our method with adversarial train-
ing and diffusion-based purification methods. We evaluate
diffusion-based purification methods on the PGD+EOT at-
tack with 200 update iterations, except for ImageNet, which
uses 20 iterations. We set the number of EOT to 20. For ad-
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Method Purification Accuracy (%)
Standard Robust

Song et al. [34] Gibbs Update 95.00 9.00
Yang et al. [38] Mask+Recon 94.00 15.00
Hill et al. [15] EBM+LD 84.12 54.90

Yoon et al. [39] DSM+LD 85.66±0.51 66.91±1.75
Nie et al. [24] Diffusion 90.07±0.97 81.45±1.51
Ours Diffusion 90.16±0.64 88.40±0.88

Table 10: Standard and robust accuracy against
BPDA+EOT `1(✏ = 8/255) on CIFAR-10. WideResNet-
28-10 is used as the underlying classifier architecture.

versarial training methods, we use 20 update iterations for
the PGD attack. For our method, we report the worst robust
accuracy with surrogate processes. We explain the detailed
settings in Appendix D.

Results. Table 7 shows the defense performance against
`1(✏ = 8/255) and `2(✏ = 0.5) threat models on CIFAR-
10, respectively. Our method outperforms other diffusion-
based purification methods. Specifically, compared to Diff-
Pure on `1 PGD attack, our method improves robust accu-
racy by 8.98% with WideResNet-28-10 and by 5.75% with
WideResNet-70-16, respectively. Despite the improvement
in robustness, the purification methods perform worse than
the adversarial training methods. Table 8 shows the per-
formance against `1(✏ = 4/255) threat model on Im-
ageNet. Our method outperforms both adversarial train-
ing and purification methods. Compared to DiffPure and
Salman et al. [30], our method improves robust accuracy by
4.34% and 3.94%, respectively. Results on SVHN against
threats model `1(✏ = 8/255) are similar with CIFAR-
10. Although our method improves robust accuracy by
15.35% compared to the DiffPure framework, which uses
t⇤ = 0.075, our method performs worse than the adversar-
ial training methods.

We additionally compare the robustness of our defense
strategy with other adversarial purification methods against
BPDA (`1(✏ = 8/255)). As shown in Table 10, our pro-
posed method outperforms all other adversarial purification
methods, achieving a robust accuracy of 88.40%, 6.95%
greater than the robust accuracy of DiffPure. Furthermore,
Table 11 shows our robustness against other attacks, includ-
ing the Square attack [1], a black-box attack. Our defense
shows strong robustness higher than 80% against all attacks.

6. Related Work
Adversarial training [21, 41] is one of the most suc-

cessful adversarial defense methods. These methods train
a classifier with adversarial examples in a training phase.
Zhang et al. [41] and Pang et al. [25] propose loss functions
that can effectively utilize the trade-off between robustness

Attack Robust Accuracy (%)

Square [1] 89.38±0.26
FAB [5] 89.18±0.60
Deep Fool [22] 82.32±0.14
FMN Attack [26] 80.86±1.80

Table 11: Robust accuracy of our defense strategy against
several threat models `1(✏ = 8/255) on CIFAR-10. Square
attack is a black-box attack, and the others are white-box
attacks.

and accuracy. Huang et al. [18] analyze architectural factors
with respect to robustness. Rebuffi et al. [28] and Gowal
et al. [13] improve robustness by utilizing data augmenta-
tions.

Adaptive test-time defenses purify adversarial exam-
ples using extra neural networks that utilize techniques
from other domains. ADP [39] jointly uses denoising
score matching and Langevin dynamics for purification.
DiffPure [24] demonstrates from the stochastic differential
equations (SDE) perspective that diffusion models can pu-
rify adversarial examples. GDMP [36] uses the guidance of
diffusion models to recover adversarial examples as similar
as possible to the original examples. SODEF [19] uses a
Lyapunov-stable ODE block so that the input converges to
a stable point that can be correctly classified. DISCO [16]
is one of the denoising models that predict clean RGB value
using local implicit functions.

7. Conclusion

Throughout the paper, we first analyze the current eval-
uation methods for diffusion-based adversarial purification
and then propose a recommendation for the reliable evalua-
tion of the robustness of adversarial purification. We further
investigate the influence of hyperparameters of the diffusion
model on the robustness of the purification. Based on our
analysis, we propose a new strategy to maximize the benefit
of the purification methods.
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