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Abstract

Referring image segmentation aims to localize the ob-
ject in an image referred by a natural language expression.
Most previous studies learn referring image segmentation
with a large-scale dataset containing segmentation labels,
but they are costly. We present a weakly supervised learn-
ing method for referring image segmentation that only uses
readily available image-text pairs. We first train a visual-
linguistic model for image-text matching and extract a visual
saliency map through Grad-CAM to identify the image re-
gions corresponding to each word. However, we found two
major problems with Grad-CAM. First, it lacks considera-
tion of critical semantic relationships between words. We
tackle this problem by modeling the relationship between
words through intra-chunk and inter-chunk consistency. Sec-
ond, Grad-CAM identifies only small regions of the referred
object, leading to low recall. Therefore, we refine the local-
ization maps with self-attention in Transformer and unsu-
pervised object shape prior. On three popular benchmarks
(RefCOCO, RefCOCO+, G-Ref), our method significantly
outperforms recent comparable techniques. We also show
that our method is applicable to various levels of supervision
and obtains better performance than recent methods.

1. Introduction

Referring image segmentation aims to obtain a pixel-level
segmentation mask of the object in an image referred by a
natural language expression. It has a wide range of practical
applications in the real world such as human-robot interac-
tion [38, 46] and visual navigation [37]. To learn referring
image segmentation, a neural network should not only com-
prehend the semantics of image and text respectively, but
also be able to capture the semantic alignment between the
two modalities. A general approach to achieving this objec-
tive is to leverage the dataset with fully supervised labels.
It necessitates numerous pairs of images and texts, together
with a pixel-level segmentation mask of the referred object.
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Figure 1: (a) Examples of Grad-CAMs of each word corre-
sponding to red word given “gray shirt woman”. (b) Final
resulting maps of baseline and ours for “gray shirt woman”.
(c) Illustration of intra-chunk and inter-chunk relationship.

By using these explicit connections between image and text,
recent studies [19, 47, 50] have successfully performed refer-
ring image segmentation.

However, constructing a dataset equipped with pixel-level
segmentation labels is extremely laborious and expensive.
For instance, annotating a segmentation label for a single im-
age featuring a complex scene (e.g., CityScapes [8]) requires
more than 90 minutes. As such, our objective is to mitigate
this quandary with weakly supervised learning, which trains
a neural network by using only readily available image-text
pairs, without expensive segmentation labels.

There have been some weakly supervised approaches [10,
35, 43] to localize the object referred by the given text, in
the form of a bounding box instead of a segmentation mask.
Nevertheless, these approaches are hindered by two key
drawbacks: 1) they do not provide pixel-level localization of
the referred object, and 2) most of them heavily depend on
pre-trained object detector, which actually requires explicit
object localization labels (i.e., box [21]). To the best of our
knowledge, there is only one recent work [42] that learns
referring image segmentation using only image-text pairs,
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but their performance lags behind fully supervised methods.
To accomplish referring image segmentation utilizing

solely image-text pairs, we first train a visual-linguistic
Transformer [27] via an image-text matching (ITM) objec-
tive, where the model is trained to determine whether a given
text describes the corresponding image or not. To realize
ITM, the model should learn the joint semantics of image
and text. We then extract the knowledge of the trained model
using Grad-CAM [40]. It computes the rationale for why
the model thinks the given image-text pair is matched. As a
result, Grad-CAM provides a visual saliency map represent-
ing which image regions are correlated with each word in a
given sentence.

Ideally, the Grad-CAM of each word in a given sentence
should be generated by considering the semantics of its
neighboring words, where the relationship between words
can be modeled by self-attention in Transformer [44]. For
instance, in the sentence “gray shirt woman” as depicted in
Figure 1(a), the Grad-CAM of ‘woman’ should identify only
the woman wearing a gray shirt, not other women in the
image, by taking into account the semantics of ‘gray’ and
‘shirt’. However, our baseline model, which was trained only
with ITM, struggles to capture the compositional consistency
between words, resulting in inconsistent localization of the
Grad-CAMs of each word in the sentence. For example, in
Figure 1(a), the baseline’s Grad-CAM for ‘woman’ identifies
all the women in the image without considering the neigh-
boring words. As a result, the final localization, obtained
by averaging Grad-CAMs over the words in the sentence,
fails to exclusively locate the woman wearing a gray shirt,
as shown in Figure 1(b). This means that the baseline lacks
consideration of the relationships between words, which is
problematic for referring image segmentation where only
the referred object should be identified. Therefore, in this
work, we propose a novel regularization technique to incor-
porate the intra-chunk and inter-chunk relationships so that
the model considers the relationships between words in the
given expression.

Specifically, sentences consist of several noun-chunks. A
noun-chunk is a group of words, which consists of a head
noun and its modifying (dependent) words. In the training of
ITM, we add regularization terms to produce consistent local-
ization maps between words in a single chunk (intra-chunk),
and between chunks (inter-chunk) (Figure 1(c)). Although
tree-based recursive linguistic structure [6] is popular for
capturing such relationships, they usually contain too much
of unrelated details, thereby making it hard to extract only
necessary information. Thus, we simplify this with noun-
chunk-level representations.

The Grad-CAM obtained with intra-chunk and inter-
chunk consistency provides a more accurate localization
of the referred object, but it still has two drawbacks. First, it
identifies only small regions of the referred object because

all the regions of the target object are not necessary for ITM.
Second, due to the absence of object shape information in
the image-text pair, Grad-CAM does not represent the exact
boundary of the object. Therefore, we propose two refine-
ment techniques to obtain a more complete segmentation
of the referred object, using patch affinities obtained from
visual Transformers and unsupervised object shape prior.

Our main contributions include (1) intra-chunk and inter-
chunk consistency to improve Grad-CAMs by considering
the relationship between words in a given text; (2) two re-
finement techniques for a more accurate segmentation of the
referred object; (3) significantly better performance on the
three popular benchmarks than existing methods under the
same level of supervision; and (4) versatility of our approach
that allows integration with various levels of supervision.

2. Related Works
2.1. Referring Image Segmentation

Most of referring image segmentation methods depend
on fully supervised labels. Early methods [14, 28, 31] ob-
tain visual features from convolutional neural network and
text features from recurrent neural network separately, and
merge the two types of information with a simple fusion
technique such as concatenation or summation. With the de-
velopment of Transformers and attention modules, many re-
cent works [19, 30, 47, 50] have focused on deep interactions
between image and text through multi-modal cross-attention.
Tremendous progress on referring image segmentation has
been made with advancements in Transformers and attention
modules. However, exact segmentation labels are essential
to such methods, which are costly.

2.2. Localizing Referred Object from Weak Labels

To alleviate the heavy dependency on fully supervised
labels, many researchers have tried to localize the object
referred by a natural language expression from weak labels.
However, most are limited to localizing the referred object
in the form of bounding boxes, also known as weakly su-
pervised visual grounding [10, 12, 35, 43, 45, 48, 52]. They
frequently depend on a pre-trained object detector, but the
large-scale dataset with bounding box labels is required to
pre-train the object detector. Therefore, it is difficult to con-
sider that these methods use only image-text pairs to per-
form referred object localization. Some detector-free meth-
ods have also been proposed [1, 3, 17, 53]. However, since
they have difficulties in capturing the whole regions of a
target object, they evaluate their localization performance
using pointing game accuracy [53] that only considers the
most confident region in the predicted localization.

Weakly supervised semantic segmentation provides seg-
mentation masks from the class names [18,22–25] or bound-
ing boxes [26], but limited to pre-defined and fixed set of

21871



classes. Zero-shot segmentation and open-world segmen-
tation from the text are also recent active topics. Most
works [32, 39, 54] still require segmentation labels for a
set of specific classes (base classes) to segment objects of
novel classes, but these segmentation labels are still expen-
sive. Recent works [29, 49] achieve zero-shot segmentation
without any segmentation labels, by using only image-text
pairs. However, they are only applicable when the given
expression is a class name, which is short and simple, and
they also require delicate prompt engineering. Therefore,
those methods are not suitable for referring image segmenta-
tion, which requires the ability to process long and complex
textual expressions.

A few works learn referring image segmentation using
only image-text pairs. TSEG [42] learns the local matching
between image regions and text through the multiple instance
learning technique, but its performance is far from that of
fully supervised ones. Peekaboo [5] leverages diffusion mod-
els [7, 13, 41]. Another work, Feng et al. [11], proposes a
method of utilizing bounding boxes as supervision for refer-
ring image segmentation. However, the box labels are pretty
expensive compared to image-text pairs.

3. Proposed Method
We first obtain the matching between image regions and

each word in a given sentence from the knowledge of the
visual-linguistic Transformer in Section 3.1. To obtain more
accurate region-word matching, we introduce intra-chunk
and inter-chunk consistency in Section 3.2. We then propose
refinement techniques to obtain complete segmentation of
the referred object in Section 3.3. Finally, we propose a
method of utilizing additional supervision in Section 3.4.

3.1. Localization of Referred Object

To localize the referred object in an image using only
image-text pairs, a powerful joint representation between
image and text is required. One way to obtain such a rep-
resentation is to leverage a visual-linguistic multi-modal
Transformer equipped with cross-attention layers. To this
end, we choose ALBEF [27] as our base model. It contains
a visual encoder Ev and a text encoder Et. Image tokens
xv ∈ R(1+Np)×d can be obtained by dividing a given image
into Np non-overlapping patches and encoding each patch
into d−dimension vector. Word tokens xt ∈ R(1+Nw)×d

can be obtained by tokenizing and encoding each word into
d−dimension vector, where Nw is the number of words in
the given expression. Note that a learnable [CLS] token is
attached to each modality’s token.

We now obtain visual features Ev(xv) ∈ R(1+Np)×d

from xv and word features Et(xt) ∈ R(1+Nw)×d from xt.
These uni-modal features are merged by multi-modal en-
coder Em that contains several cross-attention layers, result-
ing in multi-modal features. The [CLS] token of the multi-

modal feature contains the joint representation of image and
text, so we obtain image-text matching (ITM) score sITM

by appending a fully connected layer to the [CLS] token.
The ITM score sITM is trained to produce positive scores
for matched image-text pairs, and negative scores for mis-
matched ones. As a result of the training, the model obtains
the ability to model the joint semantics of image and text,
which in turn allows us to extract the relationship between
image regions and words using model interpretation tech-
niques such as Grad-CAM [40].

Grad-CAM [40] is a popular technique to interpret the
output of the neural network. It computes the contribution
of intermediate features of the network to its output from
gradient flows. We obtain Grad-CAM for ALBEF [27] as
follows: We first obtain the cross-attention map1 Amulti ∈
R(1+Np)×(1+Nw) from Em, and compute the contribution of
Amulti to the sITM as ∂sITM/∂Amulti. The Grad-CAM M ∈
R(1+Np)×(1+Nw) can be expressed as follows:

M = ReLU(Amulti ×
∂sITM

∂Amulti
). (1)

Each element in M ∈ R(1+Np)×(1+Nw) measures how
much of a contribution each word-patch pair makes to sITM.
Therefore, we can obtain the visual saliency map for each
word w, i.e., Mw ∈ R

√
Np×

√
Np , by collecting all of the

contribution scores with respect to w. More specifically, we
collect the Grad-CAM scores corresponding to word w (i.e.,
M [:, idw] ∈ R(1+Np) where idw is the index corresponding
to w), remove [CLS] token in image patch tokens, and re-
shape it to 2-D matrix. The examples of Grad-CAM of each
word are shown in Figure 1(a).

Ideally, the Grad-CAM of each word should be gener-
ated by considering the semantics of its neighboring words,
which can be realized by self-attention between words in
Transformer [44]. However, the model trained only with
ITM struggles to capture the compositional consistency be-
tween words, resulting in inconsistent localization of the
Grad-CAMs of each word in the sentence. For example, in
Figure 1(a), the baseline’s Grad-CAM for ‘woman’ identifies
all the women in the image without considering the neighbor-
ing words such as ‘gray’ and ‘shirt’. This is problematic for
referring image segmentation where only the referred object
should be identified. Therefore, in this work, we propose a
novel regularization technique to incorporate the intra-chunk
and inter-chunk relationships so that the model considers the
relationships between words in the given expression.

3.2. Chunk-Level Representation Learning

Although tree-based recursive linguistic structure [6] is
popular for capturing the compositional relationship, they
usually contain too much of unrelated details, essentially

1For simplicity, the multi-head attentions are averaged.

21872



making it hard to extract only necessary information. Thus,
we employ a chunk-level representation through noun chunk-
ing. Specifically, we assume a given text contains a set of
noun-chunks C = {c}. A noun-chunk is a group of words
c = {w}, which consists of a head noun and its modifying
(dependent) words. We model the relationship between the
words in a noun-chunk (Intra-chunk relationship) and the
relationship between chunks (Inter-chunk relationship) to
consider both local and global relationships (Figure 1(c)).
In order to incorporate these consistency requirements, we
train our model with the loss L:

L = LALBEF + λ1Lintra + λ2Linter, (2)

where LALBEF is the one used in ALBEF [27] and Lintra
and Linter are intra-chunk and inter-chunk consistency losses
respectively, described in detail in the following sections.

3.2.1 Intra-Chunk Consistency

Since a single noun-chunk consists of a head noun and its
dependent words describing the head noun, all the words in
a noun-chunk should indicate the same object in an image.
However, Grad-CAMs of each word in a noun-chunk tend
to identify different objects, as shown in Figure 1(a). There-
fore, we introduce a regularization such that the words in a
single noun-chunk have similar Grad-CAMs. For each pair
of words (wi, wj) in a chunk c, we introduce Lintra to reduce
the difference between the two Grad-CAMs of wi and wj

(Mwi
and Mwj

). Specifically, Lintra is defined as follows:

Lintra =
∑
c∈C

∑
(wi,wj)∈c

cos(vec(Mwi
),vec(Mwj

)), (3)

where vec is to vectorize the 2-D matrix into 1-D vector, and
cos is the cosine distance between two maps. We choose
cosine distance, which inherently normalizes its inputs, be-
cause Mwi

and Mwj
may have different scales.

3.2.2 Inter-Chunk Consistency

Since all the words in a single noun-chunk indicate the same
object in an image, we were able to make the Grad-CAMs
of words in a chunk similar to each other in Eq. 3. However,
incorporating the relationship between chunks is not straight-
forward because two chunks may indicate the same object
or different objects depending on the semantic meaning of
the predicate that connects the two chunks. For example, for
the sentence “man wearing white shirt”, the chunk ‘man’
and the chunk ‘white shirt’ correspond to the same object.
Whereas, for the sentence “man holding a donut”, the chunk
‘man’ and the chunk ‘a donut’ should not be mapped to the
same object. Thus, without explicit localization cues, it is
difficult to model the relationships between chunks.

Expression: Man in blue shirt

Image Localization of ‘man’ Localization of ‘blue shirt’

Figure 2: Example of inter-chunk consistency given “Man
in blue shirt”. (left) Image. (middle) Localization of ‘man’
and resulting isolated regions. (right) Localization of ‘blue
shirt’. Of the three isolated regions, the yellow one is closest
to the ‘blue shirt’. We thus enhance the scores in the yellow
region, and suppress the scores of the blue and red regions.

Therefore, we propose a closeness prior: The objects
corresponded to adjacent chunks must be spatially close to
each other in the image. In the example of “man holding a
donut”, among many men in an image, a man near a donut is
likely to be the target object. Our goal is to make the regions
identified by two related chunks spatially close to each other
in the pixel-space. However, the definition of closeness is
ambiguous because the pixel distance criterion of ‘close’ and
‘far’ depends on the object sizes.

We thus define closeness using the isolated regions of
Grad-CAM. We first compute the localization map of a
chunk c by averaging the Grad-CAMs of words in the chunk:
Mc = 1

|c|
∑

w∈c Mw. Without loss of generality, for adja-
cent chunks ci and cj (i ̸= j), we make the region indicated
by Mci spatially close to that indicated by Mcj . In the ex-
ample of Figure 2, ci is ‘man’ and cj is ‘blue shirt’. If Mci

identifies some wrong objects, it often has multiple isolated
regions, as shown in Figure 2. Following the closeness prior,
the isolated region close to Mcj is likely to be the referred
object, so the isolated regions far from Mcj should be sup-
pressed. To realize this, we obtain a set of isolated regions
R from Mci , which can be readily obtained by using the
cv2 library. Note that each r ∈ R is a set of pixel loca-
tions within each isolated region. We then select the closest
isolated region r∗ ∈ R to Mcj as follows:

r∗ = argmin
r∈R

dH(r, p(Mcj , τ)), (4)

where dH is the distance between two sets of locations, and
p(X, τ) is the set of point locations whose localization scores
in X are larger than τ . Motivated by Hausdorff distance [16],
we define dH(X,Y ) as the distance between two closest pair
of points in X and Y , as follows:

dH(X,Y ) = min
x∈X

min
y∈Y

||x− y||2. (5)

We now design Linter to enhance the scores of Mci corre-
sponding to locations of r∗, which is the closest region to
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Figure 3: Illustration of the refinement with affinity. The
score of each pixel is propagated to the semantically similar
regions (orange-red circles), not to the dissimilar regions
(orange-yellow circles). This can be realized by the patch
affinity obtained from self-attention in visual Transformer.

Mcj , while suppressing the scores of Mci corresponding to
locations of R \ r∗, as follows:

Linter = −
∑
k∈r∗

Mk
ci +

∑
k∈R\r∗

Mk
ci , (6)

where k denotes the location index and Mk is the score of
M at the location k. In practice, we compute Eq 6 for all the
neighboring chunks and average them.

3.3. Refinement Technique

During the inference process, we consider the average of
Grad-CAMs over words in the given sentence as the final
localization map of the referred object, Mfinal. The Mfinal
provides an accurate indication of the referred object. How-
ever, because only a small part of the target object can pro-
vide strong signals for the ITM, the Grad-CAMs tend to
cover only small regions of the target object, as shown in
Figure 1(a). In addition, because image-text pairs do not
provide any object shape prior, the resulting Grad-CAMs do
not depict the exact boundary of the object. Therefore, we
propose two refinement techniques to obtain a more accurate
segmentation of the referred object.

3.3.1 Patch Affinity in Vision Transformer

Similar to Vision Transformer (ViT) [9], our base model
ALBEF [27] has a visual encoder consisting of self-attention
layers. The self-attention layer captures the semantic rela-
tionship between image patches, and this relationship can
be considered the affinity between patches. We thus propa-
gate the localization score of each pixel to its semantically
relevant neighbors based on the affinities, as shown in Fig-
ure 3. More specifically, we have the self-attention map
Av ∈ RNp×Np obtained from the lth layer in the visual en-
coder2. The refined map Mr can be obtained by propagating
the scores in Mfinal using Av , as follows:

Mr = reshape2d(A
T
v vec(Mfinal)), (7)

where reshape2d is to reshape 1-D vector back to 2-D
matrix. The self-attention map Av is automatically obtained

2we choose l =9, and the multi-head attentions are simply averaged.

during the forward process of ALBEF, so that the additional
process for this refinement is only a single matrix multiplica-
tion in Eq. 7, which incurs negligible additional computation.

3.3.2 Unsupervised Shape Prior

The refinement with affinity in Section 3.3.1 enables us to
find a more complete region of the referred object. However,
due to the absence of the object shape prior, the resulting
localization maps cannot represent the exact boundary of
the referred object. Therefore, we further refine our localiza-
tion maps using unsupervised object shape prior. We utilize
multi-scale combinatorial grouping (MCG) [2] to refine our
localization maps. MCG operates on the low-level informa-
tion of images in an unsupervised manner, so that it does not
violate the basic requirements of weakly supervised learning.
MCG generates multiple mask proposals {m} for a single
image. Among these proposals, we choose the proposal m∗

that overlaps the most with Mr, in terms of intersection-
over-union (IoU). We determine m∗ as the final localization.

3.4. Utilization of Additional Supervision

Our method can operate with various levels of super-
vision, which shows the generality and practicality of our
method. We consider two settings: 1) weakly supervised
setting with bounding box labels and 2) semi-supervised
setting. In the setting 1), we assume we have bounding box
labels of the referred objects for the training images. We
obtain the pixel-level localization in the given box using the
BBAM [26] technique, which is the mask generator from a
box. We consider the resulting localization map as a pseudo
ground truth segmentation Ybox. We then add a box loss Lbox
to Eq. 2 so that the produced Grad-CAM Mfinal is similar
to Ybox: Lbox = cos(Mfinal, Ybox). In the setting 2), we as-
sume we have fully supervised pixel-level labels Yfull only
for a small number of training images. For these images,
we compute Lsemi = cos(Mfinal, Yfull) and optimize the net-
work together with Eq. 2. Note that we do not apply any
refinement techniques in these two settings because the pro-
vided explicit localization cues can inherently address the
drawbacks of Grad-CAMs mentioned in Section 3.3.

4. Experiments
4.1. Experimental Setup

Dataset: We conducted experiments on the three popular
benchmarks: RefCOCO [51], RefCOCO+ [51], and G-Ref
with Google split [33]. RefCOCO, RefCOCO+, and G-Ref
datasets contain respectively 142,209, 141,564, and 104,560
expressions. It is known that RefCOCO+ and G-Ref are more
challenging datasets than RefCOCO, becuase RefCOCO+
prohibits object location information in the expression, and
G-Ref has a longer average expression length.
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Table 1: Comparison with referring image segmentation methods. All the results are obtained before applying CRF [20].
F–full supervision, W–weak supervision (image-text pairs).

RefCOCO RefCOCO+ GRef
Method Sup. val testA testB val testA testB val

RMI ICCV ’17 [31] F 44.33 44.74 44.63 29.91 30.37 29.43 33.11
DMN ECCV ’18 [34] F 49.78 54.83 45.13 38.88 44.22 32.29 34.52
Hu et al. CVPR ’20 [15] F 60.98 62.99 59.21 48.17 52.32 42.11 47.57
Kim et al. CVPR ’22 [19] F 67.22 69.30 64.45 55.78 60.44 48.27 54.48

GroupViT CVPR ’22 [49] W 12.97 14.98 12.02 13.21 15.08 12.41 16.84
TSEG arXiv ’22 [42] W 25.44 - - 22.01 - - 22.05
ALBEF NeurIPS ’21 [27] W 23.11 22.79 23.42 22.44 22.07 22.51 24.18
Ours W 31.06 32.30 30.11 31.28 32.11 30.13 32.88

Table 2: Precision @30, 50, 70 of weakly supervised meth-
ods on the RefCOCO+ validation set.

Method Pr@30 Pr@50 Pr@70

GroupViT CVPR ’22 [49] 16.13 4.47 0.55
ALBEF NeurIPS ’21 [27] 26.06 3.49 0.22
Ours w/o. MCG 45.32 15.09 1.83
Ours w/. MCG 46.81 25.07 9.72

Evaluation metric: We evaluate our results by calculat-
ing mean intersection-over-union (mIoU) values for valida-
tion and test images. We also present the values of Precision
@τ (τ = 30, 50, 70), which represent the percentage of test
samples that has higher IoU than the threshold τ .

Reproducibility: We set (λ1, λ2) to (0.5, 3.0), (1.0,
3.0), and (1.0, 5.0) for the RefCOCO, RefCOCO+, and
G-Ref datasets, respectively. We set τ to 0.3. We obtain
noun-chunks from the expression sentence using the spacy
python library. More details are presented in the Appendix.

4.2. Experimental Results

Comparison with State-of-the-Arts: Table 1 compares
our method with various state-of-the-art methods. Our
method outperforms all strong baselines under the same level
of supervision, including GroupViT [49] and TSEG [42].
Specifically, our method obtains a 41.7% relative gain com-
pared to our baseline ALBEF [27] on the RefCOCO+ testA
set. We also note that our method obtains better perfor-
mance than the fully supervised method RMI [31] on the
RefCOCO+ dataset, by using only weakly supervised image-
text pairs. Examples of generated localization maps by
GroupViT [49], ALBEF [27], and our method are shown
in Figure 4. Since our baseline ALBEF [27] has difficulty in
capturing the relationship between words, it also localizes
another pizza in the first example and another truck in the
third example. With intra-chunk and inter-chunk consistency,
the referred objects are correctly identified.

Precision at τ : We compare precision values at various
IoU thresholds in Table 2. Our method can obtain consis-

Table 3: oIoU values of Feng et al. [11] and our method
under bounding box supervision.

Method val testA testB

Dataset: RefCOCO
Feng et al. TNNLS ’22 [11] 58.01 60.52 55.48
Ours 58.12 61.23 55.47
Dataset: RefCOCO+
Feng et al. TNNLS ’22 [11] 47.12 50.86 40.26
Ours 48.19 53.01 42.83
Dataset: G-Ref
Feng et al. TNNLS ’22 [11] 46.03 - -
Ours 49.64 - -

tently better results on all thresholds than other strong base-
lines. All the methods using only image-text pairs produce
poor precision @70, due to the absence of object boundary
information. By using unsupervised shape prior provided
by MCG [2], our method significantly improves precision
@70. Note that GroupViT [49] produces low IoU (Table 1)
but higher precision @50 and 70 than ALBEF [27]. This
is because zero-shot segmentation methods like GroupViT
have strong segmentation ability, but struggle to identify the
actual referred object. They are specialized for the expres-
sions of a class name, which are short and simple. Therefore,
when given long and complex sentences, they tend to iden-
tify all objects of the same category as referred objects, as
shown in Figure 4. The results in Table 1 also support this:
GroupViT [49] works better on G-Ref than RefCOCO and
RefCOCO+, because the G-Ref’s average number of objects
of the same category in an image is less than other datasets.

Weakly Supervised Learning with Boxes: To our knowl-
edge, there is only one comparable work using bounding box
labels: Feng et al. [11], which is very recently published. In
this experiment, we choose overall IoU (oIoU) instead of
mIoU as the evaluation metric, for a fair comparison with
Feng et al. [11]. oIoU is computed as the total intersection
over the total union over all the test images. Table 3 com-
pares our method with Feng et al. [11] on three datasets.
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Expression: Pizza with mozzarella

Expression: Black shirt showing back

Image G.T. GroupViT ALBEF +Intra + Inter +Refine w/ aff

Expression: The tow truck carrying plane

Figure 4: Examples of localization maps obtained by GroupViT [49], our baseline ALBEF [27], and ours by sequentially
adding intra-chunk consistency, inter-chunk consistency, and refinement with affinity.

Our method obtains significantly better results than Feng et
al. [11] on RefCOCO+ and G-Ref (e.g., 3.61%p on G-Ref)
and comparable performance on RefCOCO, showing that
our method is more beneficial for the challenging datasets.
In addition, by using only 13% of the label cost3, our method
outperforms Hu et al. [15], a fully supervised method pub-
lished in CVPR 2020 (Table 1), on the RefCOCO+ and
G-Ref datasets.

Semi-Supervised Learning: We also discuss the perfor-
mance under the semi-supervised setting. We choose Ref-
COCO+ [51] for the experiments. We vary the amount of
fully supervised labels from 1% to 50%, and compare the
results using 100% fully supervised labels. Figure 5 shows
that competitive performance can be obtained with very few
labels. Using only 1% of fully supervised labels, we ob-
tain 68.1% relative gain over the weakly supervised setting
(i.e., 0% of fully supervised labels) on the testA set. Further-
more, with only 10% of fully supervised labels, our method
achieved 90% of the performance of the fully supervised
equivalent. The above analyses show that our method can be
effectively combined with various types of supervision.

Comparison to Fully Supervised Counterparts: Our
achievable upper-bound performance, by using 100% fully
supervised labels, can be found in Figure 5. For instance, it
exhibits 47.6 mIoU and 44.4 oIoU on RefCOCO+ testB. This
means that our method achieves 63.3% and 96.5% of fully
supervised performance by using image-text pairs and boxes
respectively. We expect a better performance by using more
powerful architecture (e.g., advanced attention modules like
LAVT [50] and larger-scale model), but the search for this
architecture is out of our current priorities.

3According to Bellver et al. [4], boxes can be obtained 6× more effi-
ciently than segmentation labels.

Fully Supervised Labels (%)

m
Io

U

Figure 5: Performance by using various numbers of fully
supervised labels for semi-supervised setting.

4.3. Analysis

Ablation Studies: We analyze the effectiveness of
each proposed technique through ablation studies. Table 4
presents the mIoU values by sequentially adding each pro-
posed module to the baseline ALBEF [27]. We can see con-
sistent improvements with each proposed technique. Inter-
chunk and intra-chunk consistency are beneficial for obtain-
ing accurate localization of the referred object, resulting in
improved precision @30. However, we do not observe signif-
icant improvements in precision @50 and 70 by intra-chunk
and inter-chunk consistency. Even if the target object is ac-
curately identified, it is difficult for Grad-CAM to make a
segmentation of IoU 50 or higher due to the inherent prob-
lems of Grad-CAM mentioned in Section 3.3. The proposed
refinement methods can expand the identified regions and
obtain a more accurate boundary, significantly improving the
values of precision @50 and 70. Analysis of hyper-parameter
values is discussed in the Appendix.
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Table 4: Effectiveness of each proposed technique on the val set. Starting from our baseline, we report mIoU and precision at
30, 50, and 70 by sequentially adding inter- and intra-chunk consistency, refinement with affinity, and refinement with MCG.

RefCOCO RefCOCO+ G-Ref
mIoU Pr@30 Pr@50 Pr@70 mIoU Pr@30 Pr@50 Pr@70 mIoU Pr@30 Pr@50 Pr@70

Baseline 23.11 28.50 4.08 0.30 22.44 26.58 4.02 0.20 24.18 32.14 6.07 0.48
+Inter-chunk 25.48 34.72 5.03 0.19 24.35 31.59 4.89 0.20 26.61 38.16 8.04 0.68
+Intra-chunk 26.52 37.15 6.28 0.46 25.68 35.03 5.99 0.34 27.14 39.15 8.86 0.84
+Refine w/ Aff 29.00 42.51 14.50 1.86 29.58 45.32 15.09 1.83 29.76 46.47 16.63 2.51
+Refine w/ MCG 31.06 46.12 23.88 9.02 31.28 46.81 25.07 9.72 32.88 48.96 26.46 11.08

(a) Expression: Blue eyed man smiling (b) Expression: Furthest cup of coffee

Baseline Ours Baseline Ours

Figure 6: Visualization of self-attention scores between word tokens of baseline and ours for (a) “Blue eyed man smiling” and
(b) “Furthest cup of coffee”.

Figure 4 presents qualitative comparison of each ablative
setting. Starting from our baseline ALBEF [27], we sequen-
tially add intra-chunk consistency, inter-chunk consistency,
and refinement with affinity. We can see that intra-chunk con-
sistency is beneficial, but it still tends to produce inconsistent
localization for the relationship across chunks (e.g., ‘pizza’
and ‘mozzarella’ in the first example, and ‘the tow truck’
and ‘plane’ in the last example). Inter-chunk consistency can
address this issue and produce a more accurate localization.
Finally, the refinement with affinity is effective for obtaining
more complete regions of the target object.

We now analyze the layer we use for patch affinity in
Section 3.3.1. We chose the 9th layer (among the 0 to 11
layers) because it contains information that is sufficiently
semantically meaningful yet not too biased towards the self-
supervised objectives. We tried to use other layers for ob-
taining patch affinities. The affinities obtained from 8th, 9th,
and 10th layers resulted in mIoU scores of 28.61, 29.58, and
20.71, respectively.

Relationships that our method can handle: As men-
tioned in Section 3.2.2, relationships between chunks demon-
strate various semantic meaning. We now analyze the rela-
tionships our method can handle. For a clear explanation, we
categorize the relationships into three distinct types: inclu-
sive, exclusive, and negative. Inclusive relationships imply
that the two connected chunks refer to the same object (e.g.,
A man wearing blue shirt). Exclusive relationships indicate
that the two connected chunks refer to different objects (e.g.,
Woman throwing a frisbee). Negative relationships indicate
that the two connected chunks have an opposing connection

(e.g., Donut without a hole).
Since our inter-chunk consistency regularizes that the two

masks of neighboring chunks are simply spatially close in
the pixel-space regardless of the relationships, our method
can handle both inclusive and exclusive relationships. We
empirically show that our method can handle both inclu-
sive and exclusive relationships. We create a subset of Re-
fCOCO+ val by selecting captions containing top-3 most
frequent inclusive and exclusive relationships. We specifi-
cally focus on the captions with the structure of “[chunk]
[relationship] [chunk]” because more complex captions can
often lead to ambiguity in determining inclusivity or exclu-
sivity. Table 5 demonstrates that our method bring significant
improvements for both inclusive and exclusive relationships.

Finally, we discuss negative captions. Because our
method assumes closeness of two neighboring chunks, nega-
tive captions may introduce bias during the training of our
model. To analyze this issue, we tested an additional simple
technique: We exclude negative captions when computing
Lintra (Eq. 3) and Linter (Eq. 6), while still considering them
for LALBEF in Eq. 2. This resulted in a slight improvement
in performance: On RefCOCO+, 25.68 → 25.76 (val), 26.11
→ 26.24 (testA), and 25.94 → 26.02 (testB). This results
indicate that negative captions were indeed hindering the
training of our model. However, we have found that the
impact was not excessively significant and can be easily mit-
igated by excluding them for Lintra and Linter. Failure cases
on negative captions are shown later.

Visualization of Attention Maps: To demonstrate the ef-
fectiveness of our consistency regularization in capturing the
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Table 5: Performance gain over baseline for inclusive and
exclusive relationships.

All Inclusive Exclusive
Baseline 25.22 24.46 19.62
Ours 29.23 +4.01 28.72 +4.26 23.57 +3.95

(a) Expression: Black jacket

(c) Expression: Donut no hole

(b) Expression: Gray luggae

Image Ours G.T.
Figure 7: Examples of failure cases. (a) The expression de-
scribes only a part of the object. (b) The expression includes
some typos. (c) The expression contains negative words.

relationship between words, we visualize the self-attention
scores between word tokens in Figure 6. Our method pro-
duces notably higher self-attention scores between semanti-
cally related words than the baseline, as shown in Figure 6(a).
Similarly, in Figure 6(b), while the baseline exhibits that the
word tokens ‘fur’ and ‘##thest’ primarily interact only with
each other, our method allows these word tokens to inter-
act with other semantically related words such as ‘cup’ and
‘coffee’. Furthermore, the baseline demonstrates a low corre-
lation between ‘cup’ and ‘coffee’, which causes Grad-CAM
of ‘cup’ to potentially identify other cups, such as a cup
of juice. In contrast, our method successfully captures the
relationship between ‘cup’ and ‘coffee’ as indicated by the
self-attention scores.

Performance by expression sentence length: We ana-
lyze the localization performance according to the length
of given sentences. For the comparison, we choose the G-
Ref dataset [36] because its average length of expression
sentences is longer than RefCOCO and RefCOCO+. Note
that we here omit refinement techniques to see the effective-
ness of intra-chunk and inter-chunk consistency. We split
the validation set by its sentence length and see the perfor-
mance of each bin in Figure 8. Because long and complex
sentence makes the referred object difficult to be accurately
segmented, it is natural for long sentences to produce low
performance. The baseline ALBEF [27] produces a 26.5%

Sentence Length

m
Io

U

Figure 8: mIoU values for different lengths of expression
sentences on the G-Ref dataset.

lower performance for long sentences (over 15 words) than
short ones (1–3 words), while our method exhibits a less
severe regression, 21.7%. This shows that our method can
handle long sentences better than our baseline ALBEF [27].

Failure examples: We now analyze some failure cases
where our method does not produce satisfactory results. As
shown in Figure 7(a), ambiguous labels in the dataset are
problematic, particularly for a person object. The expression
tends to indicate only the part of the person (e.g., black
jacket), but the segmentation label covers the region of the
whole person. Even though our method precisely localized
the referred object by the given expression, the segmentation
accuracy was low. The second example is a typo in the given
expression. In Figure 7(b), ‘luggage’ is mistakenly given as
‘luggae’, so it produces a poor localization for the unknown
word. Lastly, our method does not work properly for the
negative terms (e.g., ‘no’, ‘not’) as shown in Figure 7(c),
because it is difficult to learn the negative meanings without
explicit localization information of the referred object. We
can partly address this issue with the utilization of the box
labels, which are shown in the Appendix.

5. Conclusion

In this study, we proposed a novel method for learning
referring image segmentation using only image-text pairs.
Our approach leverages the linguistic structure of a given
textual expression through intra-chunk and inter-chunk con-
sistency to generate more precise localization maps. We
then refine these maps using patch affinities obtained from
self-attention maps of the visual Transformer and unsuper-
vised object shape priors. Through extensive experiments,
we showed that our proposed method outperforms the current
state-of-the-art on three popular benchmarks. Moreover, we
demonstrated the versatility of our approach by integrating it
with various levels of supervision. In future work, it would
be interesting to improve the robustness of our method by
applying spelling correction to the expression and exploring
new regularization techniques for negative constraints.
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