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Abstract

Multi-contrast MRI super-resolution (SR) and recon-
struction methods aim to explore complementary informa-
tion from the reference image to help the reconstruction of
the target image. Existing deep learning-based methods
usually manually design fusion rules to aggregate the multi-
contrast images, fail to model their correlations accurately
and lack certain interpretations. Against these issues, we
propose a multi-contrast variational network (MC-VarNet)
to explicitly model the relationship of multi-contrast im-
ages. Our model is constructed based on an intuitive mo-
tivation that multi-contrast images have consistent (edges
and structures) and inconsistent (contrast) information. We
thus build a model to reconstruct the target image and de-
compose the reference image as a common component and
a unique component. In the feature interaction phase, only
the common component is transferred to the target image.
We solve the variational model and unfold the iterative so-
lutions into a deep network. Hence, the proposed method
combines the good interpretability of model-based methods
with the powerful representation ability of deep learning-
based methods. Experimental results on the multi-contrast
MRI reconstruction and SR demonstrate the effectiveness of
the proposed model. Especially, since we explicitly model
the multi-contrast images, our model is more robust to the
reference images with noises and large inconsistent struc-
tures. The code is available at https://github.com/lpcccc-
cv/MC-VarNet.

1. Introduction
Magnetic Resonance Imaging (MRI) is a noninvasive

and non-ionizing medical imaging technique, which has
been widely used in medical diagnosis, clinical analysis,
and staging of disease [27]. However, MRI scanning is
always time-consuming due to physics and physiological
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Figure 1. The visualization of the multi-contrast images, i.e. T2
and PD, on IXI dataset. They have their unique contrast informa-
tion (as shown in (e)), and they also share some common structure
information (as shown in (f)).

constraints. The scanning time of each patient usually takes
more than ten minutes, which will affect the efficiency of
diagnosis and cause discomfort to patients [8]. To accel-
erate the acquisition of MRI, it is common to acquire the
undersampled k-space measurements and then use the post-
processing algorithms (e.g. super-resolution (SR) and re-
construction) to restore its fully-sampled one.

The purpose of the MRI reconstruction is to eliminate
aliasing artifacts caused by k-space undersampling and the
MRI SR aims to restore the missing high-frequency details
from the low-resolution (LR) ones. In recent years, numer-
ous MRI SR [44, 31, 42] and reconstruction [34, 29, 45, 23]
methods have been emerged. However, they only use
single-contrast MR images and fail to utilize the informa-
tion from other modalities. In fact, radiologists tend to ac-
quire images of bodies with different contrasts (e.g. T1-
weighted and T2-weighted) to comprehensively evaluate
patients’ conditions. Besides, since the sampling time of
different contrasts is quite different, it is promising to utilize
an HR (or fully-sampled) reference image with a shorter ac-
quisition time to reconstruct the image with a longer scan-
ning time [14]. We call them multi-contrast reconstruction
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and multi-contrast SR.
In recent years, deep convolution neural network

(DCNN) has become a mainstream approach for solving
the multi-contrast reconstruction [36, 30, 1, 40, 8] and
multi-contrast SR [20, 7, 14, 6] problems. By designing
proper fusion rules, reference information can be effec-
tively transferred to the target image. Despite the promis-
ing results of them, their networks are always handcrafted
black boxes, which lack certain interpretations. Model-
based methods [11, 35, 28] construct optimization models
by designing priors for specific problems, and then they are
solved by optimization algorithms, which are more inter-
pretable than black-box DCNN methods. To incorporate
interpretability and domain knowledge into deep networks,
the model-driven DCNN methods have emerged to tackle
various problems of image processing, including derain-
ing [33], debluring [17], super-resolution [2, 3], CT metal
artifact reduction [32] and so on. Their success also inspired
us to design an interpretable and powerful model for the
multi-contrast SR and reconstruction tasks.

In this paper, we propose a deep unfolding multi-contrast
variational network (MC-VarNet) to explicitly model the
correlations of multi-contrast images. According to our
observation, as shown in Figure 1, multi-contrast images
have the following two characteristics. Firstly, since they
are sampled from the same body part, they usually contain
some common structural information. Secondly, since the
two images are sampled under different scan settings, they
have their unique contrast information and some inconsis-
tent structures. To effectively transfer useful information to
the target image as well as avoid the interference of incon-
sistent information, we build a variational model to recon-
struct the target image and decompose the reference image
into a common component and a unique component. In the
feature interaction phase, only the common component is
transferred to the target image.

To solve the variational model, we employ the half-
quadratic splitting algorithm to optimize each variable and
construct an MC-VarNet by unfolding the iterative steps
into deep neural networks. Similar to learning-based meth-
ods, MC-VarNet adaptively learns the deep priors from the
reconstructed images and the decomposed components in a
data-driven manner. Similar to model-based methods, MC-
VarNet explicitly models the correlations of multi-contrast
images, which is more transparent. The proposed MC-
VarNet thus combines the advantages of model-based and
deep learning-based methods. Our contributions can be
summarized as:

• We propose a variational model to solve the multi-
contrast MRI SR and reconstruction problems simul-
taneously. In our model, we explicitly model the rela-
tionship of multi-contrast images based on an observa-
tion that different contrast images have consistent and

inconsistent information.

• We optimize the variational model using the half-
quadratic splitting algorithm and unfold the iterative
step into deep networks. Thus our model combines the
good interpretability of the model-based methods with
the powerful feature expression ability of the deep neu-
ral networks.

• We test our model on guided MRI SR and reconstruc-
tion tasks. Experiments demonstrate the effectiveness
of the proposed model. Besides, since we explicitly
model the multi-contrast images, the proposed model
is more robust to the noise-polluted and inconsistent
reference images compared with existing methods.

2. Related work
2.1. Single-contrast MRI SR and reconstruction

DCNN has been the mainstream solution for solving the
MRI SR and reconstruction problems. Qui et al. [24] de-
signed a DCNN model for knee MRI SR. Lyu et al. [21]
employed ensemble learning to improve the performance of
a single model. Zhao et al. [44] design a channel-splitting
network to fully utilize the hierarchical features. Li et
al. [15] used attention mechanisms for pelvic image SR.
Zhang et al. [42] proposed a squeeze and excitation rea-
soning attention network to sense the entire space of the
MR images. For MRI reconstruction, Wang et al. [34]
first proposed a multi-layer CNN model for MRI recon-
struction. Jin et al. [12] and Yang et al. [38] proposed
model-based unrolling methods by combining prior regu-
larization. [29, 9, 4] proposed variational networks to solve
the single-contrast MRI reconstruction problem. To further
improve the model performance, the cross-domain meth-
ods [5, 23, 46] were proposed. These methods have got
satisfactory results, however, they all focus on reconstruct-
ing images by using single-contrast MR images and fail to
utilize the multi-contrast information.

2.2. Multi-contrast MRI SR and reconstruction

Multi-contrast imaging is a main feature of MR images.
For solving the multi-contrast MRI SR task, Lyu et al. [20]
fused the multi-contrast information in the high-level fea-
ture space. Feng et al. [7] designed a multi-stage integra-
tion network to fuse the multi-contrast features at different
stages. Li et al. [14] proposed a transformer-empowered
multi-scale contextual matching network to capture long-
range dependencies for MR images. Fang et al. [6] pro-
posed the cross-modality transformer network to explore
valuable prior knowledge from multi-contrast images. For
the multi-contrast MRI reconstruction task, Xiang and Dar
et al. [36, 1] simply concatenated the multi-contrast images
as their model inputs. Sun et al. [30] sent the multi-contrast
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images into the network together and restore them simulta-
neously. Feng et al. [8] proposed a multi-modal transformer
to transform the features from the reference contrast to the
target contrast. Although they have achieved good recon-
struction results, they fuse the multi-contrast information
by manually designing fusion rules, which lack sufficient
interpretability, thus limiting further performance improve-
ments.

3. Variational model for multi-contrast MRI
3.1. Degradation model

The problem is to reconstruct HR (or fully-sampled) im-
ages from under-sampled k-space data. The acquisition pro-
cess of the under-sampled data can be written as:

kx = M �F(x̂) + ε. (1)

Here x̂ ∈ Rm×n is the fully-sampled MR image, kx ∈
Rm×n is the under-sampled k-space data what we actually
observed, ε is the measurement noise, and F(·) is Fourier
Transform operator. The values of M ∈ Rm×n stand for
the corresponding k-space positions are sampled or not. �
is the pixel-wise multiply operation. For the reconstruction
task, M represents the cartesian sampling mask [8]. For
the MRI SR task, M is the center cropping mask [44, 14],
where only the central low-frequency data are kept and the
peripheral areas are set to zero. The under-sampled MR
image x̃ can be obtained by F−1(kx), where F−1(·) repre-
sents inverse Fourier Transform.

3.2. Model formulation

Let x̂1 ∈ Rm×n and x̂2 ∈ Rm×n represent two HR (or
fully-sampled) MR images with different contrasts (e.g. T2
and PD). The LR (or under-sampled) image of x̂1 is x̃1.
Here we regard x̂1 as the target modality and regard x̂2 as
the reference modality. Take guided-SR for example, our
model aims to restore the HR image x1 from LR image x̃1
with the aid of x̂2. As aforementioned, multi-contrast im-
ages are sampled under the same anatomical structure, they
usually share some common structure information. Since
they are sampled with different scan settings, they have their
unique contrast information. Based on such observations,
we build the variational model:

argmin
{x1,C,U}

1

2
‖MF(x1)− kx1‖22 +

1

2
‖C + U − x̂2‖22

+
γ

2
‖Ax1 −BC‖22 + λ1R(x1)

+ λ2ψ2(C) + λ3ψ3(U),

(2)

where the first term in Eq. (2) is the data fidelity for the
target modality that ensures consistency between the re-
constructed image x1 and the under-sampled k-space data

kx1 , the second term is the data fidelity for the reference
modality that decompose it into common component C and
unique component U . A and B are two transformation ma-
trices to transform the two images to the feature domain, as
well as constrain their similarity in the feature domain. γ,
λ1, λ2, λ3 are the trade-off parameters. R(·), ψ2(·), ψ3(·)
are the regularization terms.

3.3. Optimization algorithm
Half-quadratic splitting (HQS) algorithm is employed to

solve Eq. (2). To be specific, we introduce auxiliary vari-
ables P,Q to replace C and U . Eq. (2) can be reformulated
as:

argmin
{x1,C,U,P,Q}

1

2
‖MF(x1)− kx1‖

2
2 +

1

2
‖C + U − x̂2‖22

+
γ

2
‖Ax1 −BC‖22 +

α

2
‖P − C‖22 +

β

2
‖Q− U‖22

+ λ1R(x1) + λ2ψ2(P ) + λ3ψ3(Q),
(3)

where α and β are hyper-parameters. Eq. (3) can be solved
via the following iterative scheme:

xt+1
1 = argmin

x1

1

2
‖MF(x1)− kx1‖

2
2 +

γt

2
‖Ax1 −BCt‖22

+ λ1R(x1),
(4)

Ct+1 = argmin
C

1

2
‖C + U t − x̂2‖22 +

γt

2
‖Axt1 −BC‖22

+
αt

2
‖P t − C‖22,

U t+1 = argmin
U

1

2
‖Ct + U − x̂2‖22 +

βt

2
‖Qt − U‖22,

(5)
P t+1 = argmin

P

α

2
‖P − Ct+1‖22 + λ2ψ2(P ),

Qt+1 = argmin
Q

β

2
‖Q− U t+1‖22 + λ3ψ3(Q),

(6)

where t is the number of iterations. Next, we will solve
these sub-problems separately.

Solving x1: Eq. (4) can be solved by gradient descent
algorithm [29] and the image xt+1

1 can be updated from xt1
using:

xt+1
1 =xt1 − µtF ∗(F (xt1)− kx1

)

− µt(γtA>(Axt1 −BCt) + λ1φ(xt1)).
(7)

Here µt is the learning rate, F (·) is the linear forward
operator that applies 2D Fourier Transform and then
under-samples the data using sampling mask M , φ(xt1) is
the gradient operator of R with respect to x1, F ∗(·) is the
hermitian of the forward operator F (·) [29].
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Figure 2. The overall structure of the proposed multi-contrast variational network for the multi-contrast guided-SR task.

Solving C and U : The sub-problem (5) can be directly
solved. Thus we can get the closed-form solution of C and
U as follows:

Ct+1 = (I + γtB>B + αtI)−1(x̂2 − U t

+ γtB>Axt1 + αtP t),

U t+1 = (x̂2 + βtQt − Ct)/(1 + βt),

(8)

where I is the identity matrix. In the above iteration steps,
we estimate the common component C and unique com-
ponent U simultaneously. The key problem is how to de-
fine the implicit priors and how to solve the sub-problem
(6). Inspired by recent model-based deep unfolding meth-
ods [41, 4, 37], we regard sub-problems (6) as denoising
problems for C and U . Thus deep priors can be extracted
from these networks and Eq. (6) can be described as fol-
lows: {

P t+1 = NC(Ct+1; ΘC),
Qt+1 = NU (U t+1; ΘU ),

(9)

whereNC ,NU are the deep networks for the common com-
ponent and unique component, respectively. ΘC , ΘU are
the parameters of the deniosing networks.

4. Deep unfolding multi-contrast network
Based on the above analysis, we will construct our deep

unfolding multi-contrast variational network following the
updating rules of Eq.(7), (8) and (9). As shown in Figure 2,
the proposed model contains three submodules: variables
initialization module, iteration module and reconstruction
module.

4.1. Initialization module

Since the original MR image only has one grey chan-
nel, in this paper, we expand the channel number to allow

more diverse information for reconstructing the target im-
age [25, 32]. Specifically, we copy each image along the
channel dimension to expand the channel number from 1 to
ci. In the interation stages, our model reconstructs ci images
simultaneously. To initialize the five variables that appeared
in our model, we first employ two denoising networks Nx

and Nc to initialize x01 and C0. Then U0 is initialized as
x̂2 − C0, P 0 and Q0 are initialized as C0 and U0 respec-
tively.

4.2. Iteration module

The structure of the proposed model is shown in Fig-
ure 2. It contains of T iteration blocks, representing T iter-
ations of the algorithm for solving Eq. (2). To be specific,
we regard the input images x̃1 and x̂2, and the previous out-
puts xt1, Ct, U t, P t and Qt as inputs, and outputs the up-
dated xt+1

1 , Ct+1, U t+1, P t+1 and Qt+1 in each iteration
block. The iteration blocks are designed following the up-
dating rules of Eq. (7), (8) and (9). Next, we will introduce
the design details of each deep unfolding module.

Modules for updating x1: Eq. (7) has shown how to
update variable x1 from xt1 to xt+1

1 . In practice, there are
two key problems to be solved. The first problem is how to
define implicit prior term φ(xi1). Inspired by existing varia-
tional networks [9, 29], we directly use a DCNN to learn the
prior information. The second problem is the implementa-
tion of the modality transformation term A>(Axt1 −BCt),
which transforms the information from the reference com-
mon componentCt to target image xt+1

1 . Inspired by recent
convolutional dictionary (CDic) learning methods [3, 18],
we implement the transformation operators as CDic layers.
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Figure 3. The structure of the proposed subnodules of the proposed MC-VarNet. (a) Data consistency layer (DCL), (b) detail refinement
layer (DRL), and (c) submodule for updating C.

Thus, Eq. (7) can be reformulated as:

xt+1
1 =xt1 − µt

xF
∗(F (xt1)− kx1)+

µt
x(γtDx ⊗> (Ex ⊗ xt1 − Ec ⊗ Ct) + λ1Nx(xt1)),

(10)
where ⊗ denotes the convolutional operation, ⊗> denotes
the transposed convolution. Ex ∈ Rcf×3×3×ci and Ec ∈
Rcf×3×3×ci are the encoder convolutional dictionary lay-
ers to transform images xt1 and Ct to the feature domain.
Dx ∈ Rci×3×3×cf is the decoder convolutional dictionary
layer to transform features to the image domain. Note that
ci and cf are the channel numbers of the input image and
the intermediate feature, respectively. Nx(·) is a modified
UNet [26], which is used to learn the implicit priors from
xt1.

Similar to [29], Eq. (10) can be regarded as a data-
consistency layer (DCL) in the k-space and a detail refine-
ment layer (DRL) in the image domain, which can be refor-
mulated as:

xt+1
1 = F−1(kt1,dc) + xt1,dr, (11)

where kt1,dc = kt1 − µt
xM(kt1 − kx1

), and xt1,dr =

µt
x(γtDx ⊗> (Ex ⊗ xt1 − Ec ⊗ Ct) + λ1Nx(xt1)). Here
kt1,dc is the reconstructed k-space data after DCL, xt1,dr is
the refinement details learned by DRL. kt1 is the intermedi-
ate k-space data and kt1 = F(xt1), kx1

is the original input
k-space data and kx1

= F(x̃1).
In Figure 3, we show the network structures of the DCL

and DRL. DCL enforces the k-space data-consistency be-
tween the intermediate reconstruction images and the orig-
inal input images. DRL has two branches, one branch em-
ploys a U-Net to learn the deep priors from the target image,
and the other branch transfers the complementary informa-
tion from the reference image to the target image. Adding
the results of the two branches, we can get the refinement
details of the target image.

Modules for updating C and P : For updating C, we
first introduce the CDic layers to implement the transfor-
mation functions in Eq. (8) and then simplify the operation
(I + γtB>B + αtI)−1 as a simple feature transformation
layer (FTL). The equation for updating C and P can be for-

mulated as:{
Ct+1 = Tc(x̂2 − U t + γtDc ⊗> Ex ⊗ xt1 + αtP t),

P t+1 = NC(Ct+1; ΘC),
(12)

NC(·) is implemented as a deep denoising network for up-
dating auxiliary variable P . T (·) denotes the FTL, which
contains two “Conv” layers and a “ReLU” activation layer.
The network structure for updating C is shown in Figure 3.
It contains three branches. The first branch employs a de-
noising network to suppress the noises of Ct. The second
branch employs an encoder CDic layer and a decoder CDic
layer to transfer the information from the target image to
the common component of the reference image. The third
branch is the decomposition-based data fidelity term. Fi-
nally, a simple FTL is employed to get the updated C.

Modules for updating U and Q: Variables U and Q
can be directly updated by:{

U t+1 = (x̂2 + βtQt − Ct)/(1 + βt),

Qt+1 = NU (U t+1; ΘU ).
(13)

Denoising network: We design a modified U-Net as our
deep denoising network to update the estimated P and Q in
Eq. (12) and (13). Our denoising U-Net consists of three
encoder blocks and three decoder blocks. Each block con-
tains several “Conv” layers and “ReLU” layers. Besides,
skip connections are used to fuse the information between
the encoders and decoders. It should be noticed that the de-
noising networks in different iteration stages share the same
network parameters in our model. More details about the
denoising network can be found in our supplementary ma-
terial.

4.3. Reconstruction module

After T iterations, we have got the reconstruction re-
sults of the target image xT1 and the decomposed common
components CT and unique components UT . As depicted
above, we reconstruct ci images in the iteration stages si-
multaneously. Here we employ a weighted average layer
(WAL) to get the final reconstruction result. The final result
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Figure 4. Visual comparison of different single-contrast SR (ZP, RCAN [43] and SwinIR [16]) and multi-contrast guided SR (MCSR [20],
CUNet [3], MASA [19], MCMRSR [14] and MINet [7]) on the IXI and BrainTS testing sets when the scaling factor is ×4.

can be obtained by:
x1 =

1

ci

ci∑
i=1

wi
1x

T
1 (i),

x2 =
1

ci

ci∑
i=1

wi
2(CT (i) + UT (i)),

(14)

where wi
1 and wi

2 are the learnable weights for reconstruct-
ing x1 and x2, respectively.

4.4. Loss function

The L1 loss is used to supervise the reconstruction re-
sults, which can be represented as:

L = η1||x1 − x̂1||1 + η2||x2 − x̂2||1, (15)

where η1 and η2 are the hyper-parameters to weigh the im-
portance of different contrast images. Here we set η = 1
and η2 = 0.1. The loss on the reference image is for better
decomposition.

5. Experiments
5.1. Datasets and implementation details

Datasets. Following [20, 6], two publicly available
multi-modal MR image datasets (IXI and BraTS2018 [22])
is used to evaluate the performance of the proposed model.
The IXI dataset contains 576 multi-contrast MR volumes.
In our experiments, the PD modality is used as the refer-
ence image to guide the target T2 modality. The BraTS2018
dataset has 285 multi-contrast MR volumes. We regard the
T1 modality as the reference image to guide the reconstruc-
tion of the target T2 modality. The two datasets are splitted

into the training, validation, and testing sets with a ratio of
7:1:2. Note that only the middle 100 slices are used in our
experiments. In the following experiments, we set the ac-
celeration ratio (multi-contrast reconstruction task) and the
scale factor (multi-contrast SR task) to 4.

Training details. Our model is constructed based on
PyTorch with two NVIDIA RTX3090 GPUs. The Adam
optimizer is used to optimize the model. In the training
phase, the batch size is set to 6 and the learning rate is set to
1× 10−4. The models are trained 50 epochs on the training
data. The peak-to-noise-ratio (PSNR), structural similar-
ity index (SSIM), and root mean squared error (RMSE) are
employed to evaluate the model performance. The higher
PSNR and SSIM, the lower RMSE indicates the better re-
sult.

Model details. In the large version MC-VarNet-L, the
iteration stages T are set to 4. The input channel ci and the
intermediate feature channel cf are set to 64. In the small
version MC-VarNet-S, the iteration stages T are set to 4. ci
and cf are set to 32.

5.2. Comparison with state-of-the-arts

Evaluations on multi-contrast MRI SR. We com-
pare our models with various single image SR approaches,
including zero padding (ZP), VDSR [13], CSN [44],
RCAN [43] and SwinIR [16], and some existing SOTA
multi-contrast MRI SR methods, including MCSR [20],
CUNet [3], MASA [19], MINet [7] and MCMRSR [14].
The qualitative results of these methods are shown in Ta-
ble 1. From the table, we can find that the proposed MC-
VarNet-L model achieves the best performance. Specif-
ically, it outperforms the second-place MINet by 0.55dB
and 0.8dB in PSNR on the IXI and BrainTS datasets, re-
spectively. The proposed MC-VarNet-S has only 1.4M pa-
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Figure 5. Visual comparison of different single-contrast reconstruction (ZF, UNet [26] and MUSC [18]) and multi-contrast guided recon-
struction (CUNet [3], MDUNet [36], MTrans [8] and Restormer [39])) on the BrainTS testing sets when acceleration is ×4.

Table 1. Quantitative results of different single-contrast MRI SR
and multi-contrast MRI guided-SR algorithms when scaling factor
is ×4.

Method Params IXI-T2 BrainTS-T2
PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

ZP - 30.43 0.8840 8.15 32.40 0.8873 6.38
VDSR [13] 0.7M 32.51 0.9162 6.37 35.53 0.9580 4.46
CSN [44] 11.2M 34.04 0.9365 5.35 36.30 0.9633 4.08
RCAN [43] 15.6M 34.44 0.9413 5.12 36.81 0.9670 3.84
SwinIR [16] 11.9M 34.37 0.9402 5.17 36.99 0.9680 3.77

CUNet [3] 0.2M 39.65 0.9720 2.77 38.17 0.9710 3.32
MCSR [20] 3.5M 40.00 0.9734 2.67 38.09 0.9718 3.36
MASA [19] 4.0M 41.45 0.9786 2.23 37.66 0.9700 3.50
MCMRSR [14] 3.5M 40.93 0.9753 2.53 37.82 0.9660 3.45
MINet [7] 11.9M 41.70 0.9784 2.22 39.46 0.9758 2.88
Ours-S 1.4M 41.71 0.9787 2.21 39.81 0.9775 2.78
Ours-L 5.7M 42.25 0.9787 2.08 40.26 0.9791 2.65

rameters, but it performs better than most existing methods.
In Figure 4, We visualize the reconstruction error maps of
different methods on two images. It can be clearly seen
that our methods have fewer reconstruction errors than other
methods.

Evaluations on multi-contrast MRI reconstruction.
We compare our models with various single-contrast recon-
struction methods, including zero filling (ZF), UNet [26],
MUSC [18] and Restormer [39], and some SOTA
multi-contrast guided-reconstruction methods, including
MDUNet [36], MTrans [8] and Restormer∗ [39]. Note that
we concatenate the multi-contrast images as the input of the
Restormer∗ to restore the target image. We show the results
in Table 2. As listed in the table, our MC-VarNet-L and
MC-VarNet-S achieve the best and the second-best perfor-
mance on the two testing sets. Figure 5 (a) shows the visual
comparisons of these methods. Among them, our method
restores more anatomical details than other methods.

Robustness analysis. We manually add Gaussian noise
σ = (5, 7, 9, 11, 13, 15) in the reference images when test-
ing different models. In Figure 8, we show the changes
of PSNR under different noise levels. Among them, our

Table 2. Quantitative results of different single-contrast MRI re-
construction and multi-contrast MRI guided-reconstruction algo-
rithms ×4 acceleration.

Method Params IXI-T2 BrainTS-T2
PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

ZF - 27.27 0.6188 11.69 28.72 0.6932 9.70
UNet [26] 7.8M 33.24 0.9246 5.85 31.07 0.9443 7.83
MUSC [18] 13.9M 34.39 0.9326 5.23 37.11 0.9644 3.71
Restormer [39] 26.1M 35.79 0.9481 4.40 38.15 0.9699 3.31

CUNet [3] 0.2M 37.30 0.9577 3.61 36.46 0.9629 4.04
MDUNet [36] 5.2M 39.79 0.9715 2.75 35.26 0.9632 5.68
MTrans [8] 86.1M 39.48 0.9700 2.96 34.02 0.9473 5.33
Restormer∗ [39] 26.1M 41.61 0.9780 2.24 39.91 0.9778 2.75
Ours-S 1.4M 42.18 0.9804 2.10 41.60 0.9821 2.30
Ours-L 5.7M 42.93 0.9821 1.93 42.58 0.9848 2.05

method achieves the best performance, showing better ro-
bustness than other methods. In Figure 6, we can see that
the noise in the reference image brings serious artifacts to
the target image in existing multi-contrast reconstruction
methods [3, 36, 8, 39]. By contrast, our method is least
affected by noise. Figure 5 (b) show a special case in the
BrainTS test set that the left side of the reference image
is missing. Other multi-contrast MRI reconstruction meth-
ods restore the left side of the target image that has severe
artifacts, while our method avoids this problem. It indi-
cates that our decomposition-based model is more robust
than other methods when dealing with noise-polluted and
inconsistent reference images.

5.3. Ablation studies

Effect of the number of stages. Figure 7 shows the
performance changes under different number of iterations
T ∈ [1, 5]. From the figure, we can find that the reconstruc-
tion performance of the model becomes better with the in-
crease of the number of iterations. Specifically, from T = 1
to T = 4, the PSNR improves by 3.35dB and 0.72dB on the
guided reconstruction and guided SR tasks, respectively. To
balance the model performance and the computational com-

21302



Figure 6. Visual comparison of different models on the BrainTS testing sets with additional noise in reference image.

Figure 7. The PSNR and SSIM curves on BrainTS testset with a
different number of stages T for reconstruction and SR tasks.

Figure 8. Robustness analysis of additional noise in reference im-
age. The red horizontal lines represent the SOTA results of single-
contrast methods.

Table 3. Quantitative comparisons of different MC-VarNet-S con-
figurations on IXI testset for multi-contrast SR task.

Fusion Rule Ablation PSNR↑ SSIM↑ RMSE↓
No fusion(single contrast) 33.50 0.9292 5.70
Concatenate fusion 41.05 0.9769 2.38
w/o decomposition 41.32 0.9776 2.31
with decomposition(Ours) 41.71 0.9787 2.21

Submodule Ablation PSNR↑ SSIM↑ RMSE↓
w/o DCL 41.25 0.9774 2.33
with DCL(Ours) 41.71 0.9787 2.21

Denoising Network Ablation PSNR↑ SSIM↑ RMSE↓
ResNet 41.21 0.9772 2.33
Modified U-Net(Ours) 41.71 0.9787 2.21

plexity, we set T = 4 in our final model.
Effect of different fusion rules. We compare the

performance of different multi-contrast information fu-
sion rules, including without fusion (single contrast), con-
catenation fusion, fusion without decomposition, and our
decomposition-based fusion. We evaluate these models on
multi-contrast MRI SR task. The results of the IXI test set

Figure 9. The decomposed common (C) and unique (U) compo-
nents of the reference image in the last iteration for the multi-
contrast SR task.

Table 4. Quantitative comporison of the model with and without
channel expansion (CE) operation on BrainTS testset.

Method SR Reconstruction
PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

w/o CE 38.53 0.9726 3.20 39.28 0.9752 2.97
with CE 39.81 0.9775 2.78 41.60 0.9821 2.30

are shown in Table 3. Among them, our method achieves
the best performance. In Figure 9, we visualize the decom-
posed components of our MC-VarNet model on the multi-
contrast SR task. As shown in the figure, common com-
ponents decomposed from the reference image are mainly
high-frequency details that are related to the target image.
The unique components are mainly the low-frequency in-
formation of the reference HR image. It shows the effec-
tiveness of our method in decomposing the reference image
into common and unique components.

Effect of the denoising network and the DCL. To val-
idate the effectiveness of the modified U-Net for denoising,
we replace it with a ResNet [10] denoising module that has
a similar number of parameters. As shown in Table 3, the
U-Net outperforms the ResNet by 0.5dB PSNR on the IXI
test set. DCL ensures the k-space data consistency between
the reconstruction result and the input image. Ablation re-
sults in Table 3 show that DCL can effectively improve the
model performance by 0.46dB PSNR.

Effect of the channel expansion operation. To avoid
the problem of information loss caused by channel reduc-
tion, we simply repeat the input image along the channel
dimension to expand the channel number from 1 to ci and
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reconstruct ci images in the iteration stage simultaneously.
The expanded input help the network to learn more diverse
information. As listed in Table 4, channel expansion opera-
tion improves the performance by 1.28dB PSNR on multi-
contrast SR task. On multi-contrast reconstruction task, it
also leads to 2.32dB PSNR improvement. The significant
performance improvements fully demonstrate the effective-
ness of this operation.

6. Conclusion
This paper proposed a variational network to solve the

multi-contrast MRI SR and reconstruction problem. Differ-
ent from existing DCNN-based methods that manually de-
signed fusion rules, our MC-VarNet was constructed under
the guidance of the optimization algorithm. We designed
an optimization algorithm to solve the model and unfolded
the iterative solutions into a deep neural network. Thus
our model combines the good interpretability of the model-
based methods with the powerful feature expression ability
of the deep neural networks. Our future works will employ
the proposed model to solve more guided-restoration prob-
lems, such as RGB-guided depth map SR and guided image
denoising.
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Prior-guided image reconstruction for accelerated multi-
contrast MRI via generative adversarial networks. IEEE
Journal of Selected Topics in Signal Processing, 14(6):1072–
1087, 2020.

[2] Xin Deng and Pier Luigi Dragotti. Deep coupled ista net-
work for multi-modal image super-resolution. IEEE Trans-
actions on Image Processing, 29:1683–1698, 2019.

[3] Xin Deng and Pier Luigi Dragotti. Deep convolutional neural
network for multi-modal image restoration and fusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43(10):3333–3348, 2020.

[4] Jinming Duan, Jo Schlemper, Chen Qin, Cheng Ouyang,
Wenjia Bai, Carlo Biffi, Ghalib Bello, Ben Statton, Declan P
O’regan, and Daniel Rueckert. Vs-net: Variable splitting net-
work for accelerated parallel mri reconstruction. In Medi-
cal Image Computing and Computer Assisted Intervention–
MICCAI 2019: 22nd International Conference, Shenzhen,

China, October 13–17, 2019, Proceedings, Part IV 22, pages
713–722. Springer, 2019.

[5] Taejoon Eo, Yohan Jun, Taeseong Kim, Jinseong Jang,
Ho-Joon Lee, and Dosik Hwang. Kiki-net: cross-domain
convolutional neural networks for reconstructing undersam-
pled magnetic resonance images. Magnetic resonance in
medicine, 80(5):2188–2201, 2018.

[6] Chaowei Fang, Dingwen Zhang, Liang Wang, Yulun Zhang,
Lechao Cheng, and Junwei Han. Cross-modality high-
frequency transformer for MR image super-resolution. In
Proceedings of the 30th ACM International Conference on
Multimedia, pages 1584–1592, 2022.

[7] Chun-Mei Feng, Huazhu Fu, Shuhao Yuan, and Yong Xu.
Multi-contrast MRI super-resolution via a multi-stage inte-
gration network. In International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, pages
140–149. Springer, 2021.

[8] Chun-Mei Feng, Yunlu Yan, Geng Chen, Yong Xu, Ying Hu,
Ling Shao, and Huazhu Fu. Multi-modal transformer for ac-
celerated MR imaging. IEEE Transactions on Medical Imag-
ing, pages 1–1, 2022.

[9] Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P
Recht, Daniel K Sodickson, Thomas Pock, and Florian
Knoll. Learning a variational network for reconstruction
of accelerated mri data. Magnetic Resonance in Medicine,
79(6):3055–3071, 2018.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[11] Junzhou Huang, Chen Chen, and Leon Axel. Fast multi-
contrast MRI reconstruction. Magnetic resonance imaging,
32(10):1344–1352, 2014.

[12] Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey,
and Michael Unser. Deep convolutional neural network for
inverse problems in imaging. IEEE Transactions on Image
Processing, 26(9):4509–4522, 2017.

[13] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1646–1654, 2016.

[14] Guangyuan Li, Jun Lv, Yapeng Tian, Qi Dou, Chengyan
Wang, Chenliang Xu, and Jing Qin. Transformer-empowered
multi-scale contextual matching and aggregation for multi-
contrast MRI super-resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20636–20645, 2022.

[15] Guangyuan Li, Jun Lv, Xiangrong Tong, Chengyan Wang,
and Guang Yang. High-resolution pelvic MRI reconstruc-
tion using a generative adversarial network with attention
and cyclic loss. IEEE Access, 9:105951–105964, 2021.

[16] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) Workshops,
pages 1833–1844, 2021.

21304



[17] Risheng Liu, Shichao Cheng, Long Ma, Xin Fan, and
Zhongxuan Luo. Deep proximal unrolling: Algorith-
mic framework, convergence analysis and applications.
IEEE Transactions on Image Processing, 28(10):5013–5026,
2019.

[18] Tianlin Liu, Anadi Chaman, David Belius, and Ivan Dok-
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