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Abstract

Robust point cloud classification is crucial for real-
world applications, as consumer-type 3D sensors often
yield partial and noisy data, degraded by various artifacts.
In this work we propose a general ensemble framework,
based on partial point cloud sampling. Each ensemble
member is exposed to only partial input data. Three sam-
pling strategies are used jointly, two local ones, based on
patches and curves, and a global one of random sampling.

We demonstrate the robustness of our method to various
local and global degradations. We show that our frame-
work significantly improves the robustness of top classifica-
tion netowrks by a large margin. Our experimental setting
uses the recently introduced ModelNet-C database by Ren
et al.[24], where we reach SOTA both on unaugmented and
on augmented data. Our unaugmented mean Corruption
Error (mCE) is 0.64 (current SOTA is 0.86) and 0.50 for
augmented data (current SOTA is 0.57). We analyze and
explain these remarkable results through diversity analy-
sis. Our code is availabe at: https://github.com/
yossilevii100/EPiC

1. Introduction
A major obstacle in data-driven algorithms is the strong

relation between performance and precise knowledge of in-
put statistics. A way to test network robustness is to create
corrupted test sets, where training is unaware of the spe-
cific corruptions. In recent years this has been investigated
for images, with the creation of corrupted benchmarks e.g.:
ImageNet-C, CIFAR10-C, CIFAR100-C [11] and MNIST-
C [17]. In [24] the idea is extended to point cloud classi-
fication, with the introduction of ModelNet-C. In our work
we present a generic framework, based on sampling, which
is light, flexible and robust to Out-Of-Distribution (OOD)
samples.

Ensemble learning is a long-standing concept in robust
machine learning [8, 10, 6]. We would like to obtain an en-
semble of learners, which are loosely correlated, that gener-

(a) Random (b) Patch (c) Curve

Figure 1: EPiC concept. Three sampling mechanism are
used in our ensemble: Random captures global informa-
tion, Patch holds full local resolution, and Curve is more
exploratory in nature. Blue - anchor point, Red - sam-
pled points. We show and explain why such ensembles are
highly robust to various corruptions.

alize well also to OOD input. There are two main questions:
1) How to form these learners? 2) How to combine their re-
sults?

One classical way to form ensembles in deep learning
(see for instance [2]), is to rely on the partial-randomness of
the training process. In this setting, the ensemble consists
of networks of the same architecture trained on the same
training-set. Variations of networks’ output stem from the
different random parameter initialization and the stochas-
tic gradient descent process. This induces Stochastic diver-
sity. Another major approach to generate ensembles (both
in classical machine learning and in deep learning [8, 2, 39])
is to change the sampling distribution of the training set for
each learner. A mixture-of-experts approach is to train dif-
ferent types of classifiers, in neural networks this is accom-
plished by different network architectures. This induces
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Figure 2: Overcoming corruptions by sampling. Sampled
partial point clouds (red points) have instances in which
they are mostly not exposed to corruptions. The ensemble
becomes highly robust to various unknown degradations.
This is mostly apparent for non-uniform corruptions.

Architecture diversity. These approaches, however, may
not yield sufficient OOD robustness (our experiments show
their diversity is limited). Deep ensembles are being investi-
gated with new ways to calibrate and to estimate uncertainty
through increasing the ensemble diversity [38, 30].

Our approach to form ensembles is by exposing each en-
semble member to limited input data. It is performed by
generating different samples of each point cloud at both
training and testing, see Fig. 1. The ensemble becomes
highly diverse, since each classifier has access to differ-
ent parts of the data. Moreover, each sampling method has
unique characteristics. We observe that many types of cor-
ruption do not corrupt the data uniformly (see examples in
Fig. 2). Some partial point clouds may thus be less cor-
rupted, achieving accuracy closer to the case of clean data.
Highly corrupted partial point clouds yield almost random
network response, and can be modeled as adding noise to
the classification decision. In this case, applying mean over
the outputs of the ensemble significantly diminishes noise
and improves accuracy . Four major advantages are gained
by our proposed scheme: 1) The framework is completely
generic and can essentially work with any point cloud clas-
sification network (we experimented with five, gaining im-
provement in all); 2) Many diverse classifiers can be gen-
erated; 3) Partial data is robust to local corruptions and to
outliers, performing well on OOD samples; 4) The required
networks to be trained is the number of sampling methods
(in our case three), and not the ensemble size.

We reach robustness to various local and global
degradations, yielding state-of-the-art results on corrupted

ModelNet-C [24] (mCE = 0.646 using PCT[9] and
mCE = 0.501 using augmented with WolfMix[25, 4] ver-
sion of RPC [24]), even with a small ensemble of size 12.

2. Related Work
Point Cloud classification. It is customary to categorize

point cloud classification networks to three mechanisms:
multi-view, voxelizing, and point-wise networks. One of
the challenges in point cloud processing is that, unlike im-
ages, 3D points are irregular in space. Multi-view methods
project the point cloud into different viewpoints, generate
2D images, and apply CNN based networks [22, 1, 27].
The projection forces the data to be regular. These ap-
proaches are slower because of the rendering phase, and
might lose useful geometric information. In the voxeliz-
ing mechanism, the solution for the irregularity problem
is to partition the 3D space into a voxel grid [22, 32, 16].
This approach suffers heavily from sensitivity to the choice
of grid regularity. In the context of point-wise networks,
PointNet [20] presented a pioneering method of applying
MLP on the raw 3D points. DGCNN[31], Dynamic Graph
CNN, dynamically constructs a graph through the network.
The graph is initially based on the raw 3D points, and pro-
gresses to more evolved feature spaces with semantic con-
nectivity. GDANet [13], Geometry-Disentangled Attention
Network, dynamically disentangles point clouds into con-
tour and flat components. Respective features are fused to
provide distinct and complementary geometric information
from each representation. Recently, PCT [9], Point Cloud
Transformer, adopted transformer architecture [29] to cre-
ate per-patch embedding, leveraging self attention mecha-
nisms. CurveNet[26] generates features for each point by
guided-walk over the cloud followed by a curve grouping
operator. Ren et al.[24] studied the impact of several archi-
tectural choices on the robustness of the network and com-
bined the most robust components to create RPC, which is
the SOTA network on ModelNet-C. RPC takes advantage
of 3D representations, using KNN, frequency grouping and
self-attention mechanism that turned out to be the most ro-
bust combination. Another related work is Point-BERT[36]
which splits the point cloud into patches as well. It then to-
kenizes the patches and uses pre-trained transformers with
Mask Point Modeling. Point-MLP[15] is based on residual
MLPs, achieving impressive results on the clean data.

Robustness to shifts from the training set. Tradition-
ally, most of the attention in terms of robustness focused on
basic deformations: jitter, scale and rotation. There are dif-
ferent approaches in the literature focusing on some specific
deformations, degradations or corruptions. For example,
a long standing research topic is rotation invariance, thor-
oughly addressed, e.g. by ClusterNet[3] and LGR-Net[7].
PointCleanNet[23] and PointASNL[35] addressed specifi-
cally robustness to outliers. Studies investigating robust-
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Network (#Ensemble size) OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
DGCNN [31] 92.6% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

EPiC(#12) (Ours) 93.0% 0.669 1.000 0.680 0.331 0.498 0.349 0.807 1.019
GDANet[13] 93.4% 0.892 0.830 0.839 0.794 0.894 0.871 1.036 0.981

EPiC(#12) (Ours) 93.6% 0.704 0.936 0.864 0.315 0.478 0.295 0.862 1.177
CurveNet[26] 93.8% 0.927 0.872 0.725 0.710 1.024 1.346 1.000 0.809

EPiC(#12) (Ours) 92.1% 0.742 1.245 0.617 0.363 0.585 0.495 1.029 0.860
PCT[9] 93.0% 0.925 0.872 0.870 0.528 1.000 0.780 1.385 1.042

EPiC(#12) (Ours) 93.4% 0.646 0.894 0.851 0.306 0.435 0.285 0.735 1.019
RPC[24] 93.0% 0.863 0.840 0.892 0.492 0.797 0.929 1.011 1.079

EPiC(#12) (Ours) 93.6% 0.750 0.915 1.057 0.323 0.440 0.281 0.902 1.330
PointNet[20] 90.7% 1.422 1.266 0.642 0.500 1.072 2.980 1.593 1.902
PointNet++[21] 93.0% 1.072 0.872 1.177 0.641 1.802 0.614 0.993 1.405
RSCNN[34] 92.3% 1.130 1.074 1.171 0.806 1.517 0.712 1.153 1.479
SimpleView[1] 93.9% 1.047 0.872 0.715 1.242 1.357 0.983 0.844 1.316
PAConv[14] 93.6% 1.104 0.904 1.465 1.000 1.005 1.085 1.298 0.967

Table 1: Main Experimental Result. ModelNet-C Unaugmented classification comparison. Bold best, underline second
best. Our framework dramatically improves robustness of all examined networks, as indicated by the mCE measure. Experi-
ments using EPiC were conducted on the five most robust networks (mCE ≤ 1).

ness to occlusions (common in 3D-sensors) use transform-
ers [37] and voting mechanisms [40]. Another aspect of
robustness is related to 3D adversarial attacks, adressed by
[33, 5]. PointGuard[12] is also focused on guarding against
adversarial attacks. K random sampling procedures are per-
formed for each point cloud, where the overall prediction
is obtained by majority voting. The theoretical analysis of
[12] advocates the use of sampling very few points and us-
ing a huge ensemble (K = 10000). Our experiments indi-
cate that such ensembles do not perform as well on the clean
data and are competitive only for certain types of OOD sam-
ples.

A major approach to increase robustness is by augmen-
tation techniques which enrich the training set. RSmix[4]
suggests mixing two samples from the database in a smooth
manner, along with smoothing the labels of both sam-
ples, creating new virtual samples. This method inher-
ently inserts jittering, scaling, translation and rotation.
PointWolf[25] applies non-rigid manipulations on selected
anchor points. These include scaling, 3D rotation and trans-
lation with local jittering. Such complex manipulations are
able, for example, to change a person’s posture or the style
of a chair. We note that augmentation introduces expected
corruptions within the training set, thus violating, to some
degree, the testing principles of OOD robustness. To make
our work complete, we examine the proposed framework
also on augmented data (WolfMix[24], a combination of
PointWolf and RSmix). We achieve SOTA in this case as
well.

2.1. Benchmarks

ModelNet-40 [32] is a widely used dataset consisting of
CAD meshes from 40 classes, such as airplane, chair and
sofa. Each mesh was uniformly sampled to form a 3D point
cloud consisting of 1024 points. The dataset has 12,311
samples, divided to 9843 for training and 2468 for test. The
dataset contains closely semantic classes like vase, plant
and flower pot, or chair and stool, which makes this dataset
highly challenging. Recently, in [24] Ren et al proposed
a corrupted point cloud benchmark to assess OOD robust-
ness. It is based on the well studied ModelNet-40 and is
referred to as ModelNet-C. We evaluate the robustness for
OOD corruptions by applying it on ModelNet-C [24]. This
dataset contains seven types of corruptions: jitter, scale,
rotate, add-global, add-local, drop-global and drop-local.
Each of these corruptions is rendered in five levels of diffi-
culty. In [24] a unified calculation mechanism was defined
to measure robustness. This measure is termed mCE (mean
Corruption Error). It basically evaluates the results in com-
parison to DGCNN, which serves as a reference algorithm
(and hence, by definition, has mCE ≡ 1). Each specific
corruption has a similar score, relative to DGCNN, aver-
aged over all five levels of difficulty. Since the measure is
of error, a lower score is better. Please refer to [24] for more
details.

3. Our Proposed Method

3.1. Notations

We denote by N the number of cloud points at the in-
put of a network (which, due to sampling, may vary). The
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Figure 3: Pointwise Importance. Left column - corruptions (grey - added points, black - removed points). The rest of the
columns show color-coded pointwise importance. Although Random is more influenced by Add-local, and Patches+Random
by Drop-local (dashed orange circles), the aggregated result is robust to both (dashed grey circles).

number of features for each point in the cloud is F . We refer
to K̃ as the ensemble size of each sub-sample mechanism
and to K as the combined ensemble size. In our case we
suggest three sampling mechanisms of the same size, there-
fore K = 3K̃. Np, Nc and Nr are the number of points in
patches, curves and random sub-samples, respectively. In
curve sampling there may be occasional repeating points,
N ≤ Nc. For curve extraction we have a hyper-parameter
M controlling the number of neighbors to choose from in a
random-walk iteration. C is the number of classes (C = 40
in ModelNet-40), and p ∈ RC is a single prediction vector.
P ∈ RK×C is an ensemble of predictions.

3.2. Motivation of our approach

The ability to classify in a robust manner is closely cou-
pled with the ability to classify based on partial information.
We would like a classification network to perform reason-
ably well also when some information is missing, noise is
added or when outliers are introduced. Thus, it is desired to
obtain a diverse set of features which are based on different
locations in the shape. This could be demonstrated well in
the experiment illustrated in Fig. 3.

We visualize the internal classification importance of
points for networks specializing in curves, patches and ran-
dom. For the demonstration we focused on two degrada-
tions of adding and removing points locally. Commonly, a
network gets a point cloud X ∈ RN×3 and encodes it into
features Xf ∈ RN×F by a variety of sophisticated layers.
The standard method to aggregate the points axis is by ap-
plying a symmetric function which is permutation invariant,
such as max or mean. In this example, in order to obtain
features Xf , we use DGCNN[31]. We calculate the impor-

tance of each point j, denoted by Imp(j), in the following
manner,

Imp(j) =

F∑
k=1

I(j == argmax
n

(Xf (n, k))), (1)

where I is an indicator function (1 when true and 0 other-
wise). The importance attempts to quantify the number of
features of a specific point which are part of the global fea-
ture vector. This usually means that the feature’s magnitude
at that point is maximal, dominating the respective feature
vector entries among all other points. In this example, to
cover the entire point cloud, we calculate the importance
for all partial point clouds and present the average result in
Fig. 3.

When parts of the cloud are missing, or outliers are intro-
duced, potentially corrupting features, we want the classifi-
cation to be based on a variety of features, even though they
may be less prominent in the clean set. Therefore, our aim
is to “spread” the importance as evenly as possible. This
insight motivates our approach for using partial point cloud
ensembles to impose feature diversity. Additional analysis
and insights appear hereafter.

3.3. Proposed approach

We use three types of sub-samples: two local ones,
Curves and Patches and a global one consisting of Random-
sampling. For the local methods, we first use farthest point
sampling (FPS) algorithm [21] to choose K̃ anchors. From
each anchor we extract a patch and a curve.

Patch extraction is done by finding Np nearest neigh-
bors. This sub-sample mechanism is more conservative,
hence it preserves well the local information.
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Curve extraction is done by a random-walk process, be-
ginning from the anchor point. Nc random-walk iterations
are performed, at each iteration one of M nearest neigh-
bors is chosen randomly. The choice is with replacement
(hence the sampled partial point cloud may be smaller than
Nc). This mechanism is more exploratory in nature and less
structured.

Random extraction is done by simply sub-sampling Nr

random points from the entire point cloud (without replace-
ment, N = Nr).

The values of these parameters were determined once
and were used in the same manner in all our experiments
for all classification networks (see details in Supp).

Generic framework. Our approach is generic and can
be applied in conjunction with any point cloud classification
network. The experiments (detailed in the experimental sec-
tion) are conducted with five different architectures. These
architectures are the most OOD-robust. Our method consid-
erably improves the robustness of every one of them, as in-
dicated by the mCE measure. We use three instances of the
same architecture. Each instance is trained to classify point
clouds obtained by a certain sub-sampling mechanism. A
recap of our approach (inference) is given in Algorithm 1,
where the training procedure is detailed in the Supp.

Algorithm 1 Classification using EPiC (inference)

Require: X, paramsPatches, paramsCurves, paramsRandom

modelPatches ← paramsPatches

modelCurves ← paramsCurves

modelRandom ← paramsRandom

anchors← FarthestPointSampling(X, K̃)
for k ∈ K̃ do

Patch← FetchPatch(X, anchors(k)) ▷ Local
Curve← FetchCurve(X, anchors(k)) ▷ Local
Random← FetchRandom(X) ▷ Global
P k
Patch ← modelPatches(Patch)

P k
Curve ← modelCurves(Curve)

P k
Random ← modelRandom(Random)

end for
Pensemble ← Concatenate(P 1:K̃

Patch, P
1:K̃
Curve, P

1:K̃
Random)

P ←Mean(Pensemble); Class = argmax(P ).

4. Diversity Analysis

In order to leverage the advantage afforded by ensem-
bles, a high level of diversity of ensemble members is re-
quired. This motivates us to quantitatively study the diver-
sity of several types of ensembles. We investigate the fol-
lowing sources of diversity:

1. Stochastic. Diversity stemming from the stochasticity
of the training process (initialization and SGD).

(a) NS-1A, c = 0.948 (b) NS-3A, c = 0.940

(c) S-1A, c = 0.825 (d) S-3A, c = 0.847

Figure 4: Correlation between ensemble members. Cor-
relation output of ensemble members on full non-sampled
clean test-set (NS), top, with a single and three architec-
tures, compared to sampling (S) by our approach, bottom,
see setting details in Section 4. c is defined in Eq. (2) (lower
means higher diversity). Sampling affords higher diversity,
compared to stochastic and architecture sources of diversity.

2. Architecture. Diversity caused by using different net-
work architectures.

3. Sampling. Diversity due to different sampling meth-
ods and randomness of the sampling process.

Four types of ensembles were examined (each consisting of
12 members, correlation results are shown in Fig. 4):

1. No sampling, single architecture (NS-1A). Stochas-
tic diversity. The ensemble consists of 12 instances of
DGCNN[31]. The entire point-cloud is used as input.

2. No sampling, three architectures (NS-3A). Architec-
ture + stochastic diversity. The ensemble consists of
three architectures (each of 4 instances, in this order):
PCT[9], GDANet[13] and DGCNN[31]. The entire
point-cloud is used as input.

3. Sampling (ours), single architecture (S-1A). Sam-
pling diversity. An ensemble consisting of three in-
stances of DGCNN[31]. Each instance is trained to
specialize in a different sampling mechanism. The
sampling methods (in this order) are: Patches, Curves
and Random. Each instance uses 4 different sub-
sample inputs.

4. Sampling (ours), three architecture (S-3A). Sam-
pling + architecture diversity. Similar setting to the
sampling diversity experiment. Here the following ar-
chitectures, GDANet[13], PCT[9] and DGCNN[31],
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Networks (#Ensemble size) OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
DGCNN[31]+W.M 93.2% 0.590 0.989 0.715 0.698 0.575 0.285 0.415 0.451

EPiC(#12)+W.M (Ours) 92.1% 0.529 1.021 0.541 0.355 0.488 0.288 0.407 0.600
GDANet[13]+W.M 93.4% 0.571 0.904 0.883 0.532 0.551 0.305 0.415 0.409

EPiC(#12)+W.M (Ours) 92.5% 0.530 0.968 0.639 0.343 0.473 0.275 0.433 0.577
PCT[9]+W.M 93.4% 0.574 1.000 0.854 0.379 0.493 0.298 0.505 0.488

EPiC(#12)+W.M (Ours) 92.7% 0.510 0.915 0.699 0.323 0.425 0.268 0.404 0.535
RPC[24]+W.M 93.3% 0.601 1.011 0.968 0.423 0.512 0.332 0.480 0.479

EPiC(#12)+W.M (Ours) 92.7% 0.501 0.915 0.680 0.315 0.420 0.251 0.382 0.544

Table 2: ModelNet-C Augmented (WolfMix) classification Comparison. Bold best, underline second best. 1) dramat-
ically robustification gained by using EPiC on conventional methods. 2) Our method improves mCE and almost all OOD
corruptions.

Ensembles OA↑ mCE↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
NS-1A [31] 93.5% 1.006 0.862 0.709 0.762 0.889 2.064 1.025 0.730
NS-3A [31, 9, 13] 93.4% 0.856 0.862 0.642 0.657 0.797 1.275 0.982 0.777
S-1A [31], Ours 93.0% 0.669 1.000 0.680 0.331 0.498 0.349 0.807 1.019
S-3A [31, 9, 13], Ours 93.8% 0.671 0.915 0.813 0.315 0.469 0.302 0.811 1.074
Point-Guard (#1,000) [12] 89.6% 0.949 1.947 0.617 0.427 0.599 0.376 0.702 1.977

Table 3: ModelNet-C Ensemble methods classification Comparison. Bold best, underline second best. Robustness im-
proved by our suggested method.

were used on sampled inputs of Patches, Curves and
Random, respectively.

In addition, PointGuard [12] was examined, as a differ-
ent ensemble reference, with an ensemble of size 1000.

Measuring diversity through correlation. We intro-
duce a measure which quantifies (inverse) diversification by

c =
1

S

S∑
i=1

||Ci − I||2

K2 −K
, (2)

where S is the dataset size, K is the ensemble size, IK×K

is a unit matrix, || · || is the Frobenius norm and C is the
Pearson correlation matrix of the ensemble predictions. The
final measure c ∈ [0, 1] is a scalar quantifying the diversity
of the ensemble (in an inverse manner) for a given dataset.
For c = 0 the members’ response is completely uncorre-
lated (most diverse). For c = 1 the members are fully
correlated (zero diversity) and an ensemble is not neces-
sary (would produce identical results as a single member).
Note that since each member is quite accurate (a “strong
learner”), with an accuracy of around 90%, on binary prob-
lems we expect a diverse ensemble to be with c ≈ 0.92

(in the multiclass case analysis requires additional assump-
tions, but should be in similar ranges). As can be seen in
Fig. 4, ensembles based on sampling are considerably more
diverse than those based on stochastic or architecture di-
versity. Moreover, curves and patches are lowly correlated,
although the same anchor points are used. Diversity stems

mostly from the sampling scheme, in addition to locality. In
Table 3 the improved robustness gained by the four ensem-
ble methods is shown. Our partial-point-cloud strategy im-
proves robustness in most criteria, excelling in mCE, with
the three architecture configuration (S-3A) having superior
results also in overall accuracy (clean set).

5. Experiments

We present our results for point cloud classification on
ModelNet-C dataset, training on the clean dataset only and
measuring performance on both clean and corrupted sets.
Implementation details. We train the basic models inde-
pendently on partial point clouds. The predictions are ag-
gregated using mean. For the unaugmented version we use
only basic, standard augmentation procedures (detailed be-
low) in order not to violate the OOD principle. For WolfMix
augmented version we first augment the entire sample, then
we generate the different sub-samples. We eliminate the
randomness with a fixed seed. All three models are trained
simultaneously 300 epochs with learning rate of 5e−4, with
cosine annealing scheduler [18] to zero. We use a batch size
of 256. For the unaugmented version we followed DGCNN
[31] protocol for augmentation: 1) random anisotropic scal-
ing in the range [2/3, 3/2]; 2) random translation in the
range [−0.2,+0.2]. The implementation uses Pytorch li-
brary [19]. Cross-Entropy loss is minimized. In the training
phase we split each sample to 4 farthest point samples, and
independently predict each partial point cloud class. The
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inference procedure is detailed in Algorithm 1.

5.1. Main evaluation results

The EPiC framework is implemented using several
widely used point cloud classification networks. Table 1
shows the Unaugmented results and Table 2 shows results
following augmentation by WolfMix [25, 4].

Unaugmented. A major advantage is achieved in terms
of mCE for all networks. Using PCT[9] with EPiC reaches
mCE=0.646, which outperform current SOTA of RPC[24]
(mCE=0.863) by a large margin. With respect to accuracy
on the clean data set (OA), we see improvement in four
out of five cases, with only CurveNet[26] degrading, where
RPC[24] and GDANet[13] reach 93.6%.

Augmented (WolfMix). We further examined wheather
our method can improve augmentation procedures (which
to some extent violate some OOD assumptions). EPiC on
augmented data consistently improves robustness. Using
RPC [24] EPiC achieves mCE=0.501 surpassing current
augmented SOTA (mCE=0.571). OOD robustness comes
at a cost of minor accuracy drops, consistently for all net-
works. The trade-off between accuracy and robustness is
well demonstrated in [24] for point-cloud classification, and
in [28] for general classification settings.

5.2. When our method performs best?

Let X ∈ RN×3 be the set of coordinates of a clean point
cloud. Following a corruption transformation Tc acting on
X we get a corrupted point cloud Xc ∈ RM×3, where Xc =
Tc(X). Let the intersection of these sets be define by X∩ :=
X ∩Xc of size |X∩| points. We define the uniformity of the
corruption transformation by

u(X,Tc) := 1− |X∩|
max(N,M)

. (3)

For a fully uniform corruption Tc, all points of the original
point cloud change, hence X∩ = ∅ and |X∩| = 0, yielding
u = 1. When the transformation is highly selective, affect-
ing only a few points, X∩ ≈ X and u→ 0. We refer to the
latter as a highly nonuniform corruption. This measure is
very general and can quantify various diverse corruptions.

We can roughly divide the corruptions of ModelNet-C to

1. Uniform: Scale, Rotation.

2. Nonuniform: Drop-Global, Drop-Local, Add-Global,
Add-Local.

In the case of Jitter one can slightly extend the definition
of uniformity by a ball of size ϵ around each point, when
calculating X∩. Then uniformity grows with the standard
deviation of the Jitter.

Our method performs best on nonuniform corruptions.
In these cases some partial point clouds in the ensemble are

mostly not exposed to the corruption, as shown in Fig. 2.
In these cases the classification is with high accuracy. Par-
tial point clouds which are highly exposed to the corruption
have high chances of yielding missclassification. However,
our experiments indicate these missclassifications are quite
random and can be approximately modeled as noise. As we
perform a mean operation over the ensemble outputs, this
noise is mostly averaged out, where the correct (mostly un-
exposed) members of the ensemble dominate the decision.
This phenomenon can be seen in the experiment shown and
explained in Fig. 6. A plot of mCE as a function of u is
shown in Fig. 5, illustrating the above rationale.

The case of Jitter. Let us assume the points in the cloud
are sampled approximately evenly, with a mean distance be-
tween each point of ℓ. Let the Jitter corruption be of stan-
dard deviation σ. If σ ≪ ℓ essentially the point cloud is
similar to the original clean one and most classifiers would
perform well. In terms of the relaxed definition of unifor-
mity, we can set ϵ = ℓ and for σ ≪ ϵ we get u → 0 (the
corruption is ”invisible” to the classification network). Ran-
dom sampling copes very well with Jitter. We can view ran-
dom sampling as reducing the point cloud resolution. Ba-
sically, we now have a larger distance L > ℓ between the
points. Since the classifier is trained on the low resolution
input, as long as σ ≪ L we get u→ 0. Hence, we are more
robust to Jitter with a larger standard deviation. See [12] for
additional perspectives and insights on this topic.

Figure 5: mCE versus uniformity. mCE is monotonically
increasing with u (average result on test set of ModelNet-C,
Add-Global corruption, 5 degrees of severity).

5.3. Sampling, aggregation and network size

In Table 4 we show experimental results for each sub-
sampling method with DGCNN[31] as the basic model (ad-
ditional models are shown in the Supp.). Ensembles of size
four are tested, aggregated using mean. In addition, the re-
sults of all three methods (forming an ensemble of 12 mem-
bers) are aggregated using either mean or majority-voting.
Each sampling method has its strengths and weaknesses:
Patches are much better in terms of accuracy on clean point
clouds. In this case features are well preserved and patches
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Sub-samples OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
DGCNN-Curves (#4) 90.7% 1.069 1.628 1.297 0.431 0.729 0.363 1.618 1.414
DGCNN-Patches (#4) 92.8% 0.793 0.989 1.165 0.577 0.536 0.505 0.851 0.930
DGCNN-Random (#4) 91.5% 0.766 1.234 0.399 0.351 0.812 0.580 0.793 1.195
DGCNN-Mean (#12) 93.0% 0.669 1.000 0.680 0.331 0.498 0.349 0.807 1.019
DGCNN-Maj. Voting (#12) 92.6% 0.706 1.043 0.794 0.359 0.517 0.380 0.800 1.051

Table 4: Sub-Samples vs. Aggregated. Bold best among aggregations, underline best among sub-samples. Aggregations
are almost always superior for any corruption. Thus, it can be inferred that the partial classifiers are low-correlated.

have access to the full resolution within a region. Since
patches have compact support, they perform better also on
Drop-L and are somewhat immune to global corruptions
(but less so, compared to the two other sampling methods).
Curves perform best on Add-G. Intuitively, curves are most
likely to sample regions with high conductance, thus global
outliers are less likely to be selected. Random is excellent
in the case of Jitter and generally has the best mCE among
sampling methods. The aggregated ensemble results, either
using mean or majority-voting, are both better than any spe-
cific sampling method. Mean yields the best mCE, while
majority voting, a popular ensemble aggregation method,
turns out to be slightly worse (this trend is consistent when
using other networks as well).

Unexposed Exposed

Table TableAirplane Plant

Figure 6: Exposure to corruption modeled as noise. This
illustration is based on the following experiment: All in-
stances of class Table were corrupted by Add-Local. Curve
is used for sampling. The sampled instances were divided
into two groups: Unexposed (left) are curves containing
less than 10 corrupted points. Exposed (right) are curves
containing more than 50 corrupted points. Soft-Max predic-
tions of each group were averaged (bottom row). The pre-
diction of exposed curves is almost random (highly noisy)
and can be well handled by averaging over the ensemble
outputs. Unexposed instances are classified well.

Affect of network size. Since each ensemble member
has access only to partial data , we check weather a full size

Network OA ↑ mCE ↓ #parameters
Classic DGCNN 92.6% 1.000 1.8M
EPiC based on

DGCNN-v1 88.7% 1.041 159K
DGCNN-v2 92.2% 0.773 636K
DGCNN-v3 92.3% 0.720 2.47M
DGCNN-v4 93.0% 0.669 5.4M
DGCNN-v5 92.7% 0.684 39M

Table 5: Network size vs Performance. EPiC with
DGCNN-v2 is an excellent compromise of a lean architec-
ture, with a small number of parameters, which is much
more robust (and almost as accurate), compared to the orig-
inal full DGCNN network.

model is required. Five versions of DGCNN are examined,
the most shallow is v1 and the deepest is v5, where v4 is the
original network (architectures details appear in the Supp.).
The results are shown in Table 5. The number of parameters
required for the entire ensemble (3 instances) is shown on
the right column. Note that v2 yields a robust version with
about third of the parameters of the classical network (top
row), with just a slight degradation in overall accuracy.

6. Conclusion

In this work, we demonstrated the OOD robustness of
ensembles based on partial information input for the task of
point cloud classification. The approach relies on obtain-
ing lowly-correlated input samples for each member of the
ensemble. We integrate three types of sampling schemes:
Curves, Patches and Random. In terms of training - only a
single network for each sampling scheme is trained, which
saves training time. The ensemble is created in real time.
This naturally increases inference time, but is reasonable
for small ensembles (we show a size of K = 12). For
highly demanding real time applications, the networks can
be duplicated and processed in parallel. For highly demand-
ing memory consumption applications, significantly smaller
networks can be used, which are still highly robust. Note
that ensembles can be distilled back to a single network,
for better hardware and time efficiency, as suggested for in-
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stance in [41]. Since our proposed approach is purely ab-
stract it can be extended to additional problems. We plan to
further investigate how such mechanisms can improve ro-
bustness in other fields as well.
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