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Abstract

While discriminative correlation filters (DCF)-based
trackers prevail in UAV tracking for their favorable effi-
ciency, lightweight convolutional neural network (CNN)-
based trackers using filter pruning have also demonstrated
remarkable efficiency and precision. However, the use of
pure vision transformer models (ViTs) for UAV tracking
remains unexplored, which is a surprising finding given
that ViTs have been shown to produce better performance
and greater efficiency than CNNs in image classification.
In this paper, we propose an efficient ViT-based track-
ing framework, Aba-ViTrack, for UAV tracking. In our
framework, feature learning and template-search coupling
are integrated into an efficient one-stream ViT to avoid
an extra heavy relation modeling module. The proposed
Aba-ViT exploits an adaptive and background-aware token
computation method to reduce inference time. This ap-
proach adaptively discards tokens based on learned halt-
ing probabilities, which a priori are higher for background
tokens than target ones. Extensive experiments on six
UAV tracking benchmarks demonstrate that the proposed
Aba-ViTrack achieves state-of-the-art performance in UAV
tracking. Code is available at https://github.com/
xyyang317/Aba-ViTrack.

1. Introduction

Unmanned aerial vehicles (UAVs) have been employed
in various applications, and recently, UAV tracking has
gained considerable attention in visual tracking [37, 4, 66,
67]. However, unlike general visual tracking, UAV track-
ing poses unique challenges. Common issues such as ex-
treme view angles, motion blur, and severe occlusion can
degrade tracking precision. Moreover, the limited battery
capacity, computing resources, and low power consumption
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Figure 1. Comparison on UAV123. Compared with DCF-based
and CNN-based trackers, our efficient ViT-based tracker (Aba-
Track) sets a new record with 0.864 precision and still runs ef-
ficiently at around 180 fps.

requirements of UAVs impose stringent demands on effi-
ciency [5, 66, 67, 34]. Therefore, a good UAV tracker must
achieve high precision while remaining high efficiency.

As shown in Fig. 1, UAV tracking methods can be
broadly divided into two categories: discriminative corre-
lation filters (DCF)-based trackers and deep convolutional
neural network (CNN)-based trackers. DCF-based track-
ers are favored because of their high efficiency derived
from operations in the Fourier domain, but they usually
achieve low tracking precision [37, 32, 36, 28]. On the
other hand, CNN-based trackers can easily obtain high pre-
cision, but are not suitable for high-efficiency demands. To
combat low efficiency, some lightweight CNN-based track-
ers are proposed for UAV tracking [5, 66, 67] that em-
ploy filter pruning to reduce the parameters of SiamFC++
[70] based on Fisher information [67] or rank informa-
tion [66, 41], resulting in significant improvements in both
precision and efficiency. Very recently, TCTrack [5] has
been proposed to utilize temporal contexts to enhance UAV
tracking. Different from existing CNN-based tracker, TC-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

13989

https://github.com/xyyang317/Aba-ViTrack
https://github.com/xyyang317/Aba-ViTrack


Track is a hybrid deep learning architecture combining
CNN and transformer, where an online temporally adap-
tive convolution enhances the spatial features with temporal
information, and an adaptive temporal transformer refines
similarity map. Despite the success in achieving high pre-
cision and efficiency, the precision gain is not matched with
consideration cost of speed and heavy temporal information
use. An even more surprising finding is that exploring vi-
sual transformers for UAV tracking remains unexplored.

In this paper, we make the first attempt to utilize effi-
cient Vision Transformers (ViTs) for real-time unmanned
aerial vehicle (UAV) tracking. Specifically, we investi-
gate the use of efficient ViTs to enhance the feature learn-
ing and template-search coupling processes, thereby mak-
ing them suitable for real-time UAV tracking. While many
lightweight ViTs have been proposed recently through low-
rank methods [64], model compression [75, 52, 45], hy-
brid design [8, 38], they are not well-suited for our pur-
pose for the following reasons. For example, low-rank
and quantization-based ViTs often compromise prediction
accuracy. Pruning-based ViTs require a time-consuming
decision-making process for pruning ratios and subsequent
fine-tuning. Hybrid ViTs, which typically employ a CNN-
based stem to downsample input images, are unsuitable
for our unified framework because the template and search
patches have different sizes.

Fortunately, we have efficient Vision Transformers
(ViTs) based on conditional computation, such as those pro-
posed in [49] and [73], which can dynamically reduce the
number of tokens based on the input. Building on the recent
work in A-ViT [73], which proposed an adaptive token re-
duction mechanism that discards redundant spatial tokens
according to dynamical halting probabilities, we present
Aba-ViT, an efficient ViT for UAV tracking. Our method
incorporates adaptive and background-aware token compu-
tation, which learns halting probabilities that are higher for
background tokens than target ones through a more infor-
mative loss generalized from A-ViT [73]. By taking into
account prior knowledge, Aba-ViT is more effective than
A-ViT for UAV tracking. This is due to its ability to be
aware of the background, which is typically filled with po-
tential distractors and noise that can pose a significant chal-
lenge to tracking algorithms. As background tokens are
halted with higher probabilities in Aba-ViT without any ad-
ditional computation burden, our method is expected to re-
duce the overall compute requirements. As shown in Figure
1, our method sets a new record with a precision of 0.864
and runs efficiently at around 180 frames per second (fps),
as compared to DCF- and CNN-based trackers. Extensive
experiments on six benchmarks demonstrate that Aba-ViT
achieves state-of-the-art performance.

Our contributions can be summarized as follows:

• We make the first attempt to explore using efficient

ViTs, particularly in a unified framework, for real-time
UAV tracking. The significant improvement in track-
ing precision with favorable speeds indicates that our
effort is very fruitful and worthwhile and may encour-
age more work in this direction.

• We propose an efficient ViT, Aba-ViT, which incor-
porates adaptive and background-aware token compu-
tation. This allows Aba-ViT to learn halting proba-
bilities that are a priori higher for background tokens
than target ones. Using Aba-ViT as the backbone, we
have developed a tracker named Aba-ViTrack, which
has proven to be an efficient and effective tracker for
real-time UAV tracking.

• Our Aba-ViT sets a new state-of-the-art record on
six challenging benchmarks, namely UAV123@10fps
[48], VisDrone2018 [80], UAVDT [17], UAV123 [48],
DTB70 [35], and UAVTrack112 L [20].

2. Related Work

2.1. Visual Tracking

Modern visual trackers can be roughly divided into two
classes: DCF-based trackers and DL-based ones. The for-
mer prevail in UAV tracking for their more favorable ef-
ficiency. Despite their relatively higher efficiency, they
hardly maintain robustness under challenging conditions
because of the poor representation ability of handcrafted
features [34, 37, 28]. To substantially improve tracking pre-
cision and robustness, some DL-based trackers have been
developed for UAV tracking recently. For instance, Cao
et al. [4] proposed a hierarchical feature transformer to
achieve interactive fusion of spatial (shallow layers) and se-
mantics cues (deep layers) for UAV tracking. Huang et al.
[5] presented a comprehensive framework to fully exploit
temporal contexts with a proposed adaptive temporal trans-
former for aerial tracking. However, the efficiency of these
methods is still much lower than most DCF-based trackers.
To further improve efficiency of DL-based trackers for UAV
tracking, model compression techniques have been recently
utilized to reduce model size and thus to improve efficiency
[66, 67]. Unfortunately, the model compression methods
utilized by these works, though simple and efficient, are still
unable to achieve satisfying tracking precision.

Very recently, Cao et al. [5] proposed a framework to
exploit temporal contexts for UAV tracking, which signif-
icantly outperforms many DCF-based trackers and is ap-
parently superior to the lightweight DL-based trackers just
mentioned. However, this method has limitations of in-
efficient template-search coupling by correlation and mul-
tiple modules of relatively independent functions, which
has been recognized and addressed with more succinct
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and unified frameworks recently in generic visual track-
ing [69, 9, 72, 68]. For example, Xie et al. proposed
a Siamese-like dual-branch network in which the features
are learned from matching, and ultimately, for matching
based solely on Transformers [69]. Cui et al. proposed a
Mixed Attention Module (MAM) built upon transformers to
unify the process of feature extraction and target informa-
tion integration [9]. Ye et al. proposed one-stream tracking
framework that unifies feature learning and relation model-
ing and an in-network candidate early elimination module
to further improve the inference efficiency [72]. Xie et al.
proposed a target-dependent feature network based on the
self-/cross-attention scheme, embedding cross-image fea-
ture correlation in multiple layers of the feature network so
that the output features of the search image can be directly
used for predicting target locations without extra correla-
tion step [68]. Although such unified frameworks do bring
in efficiency since their more simplified and compact ar-
chitectures, because of the considerable parameters of the
ViTs used, they are still too cumbersome for UAV tracking
which places great emphasis on efficiency. In this paper, we
explore adapting more efficient ViTs instead for real-time
UAV tracking, which, to our knowledge, has not been stud-
ied before.

2.2. Efficient Vision Transformers

Transformers, originally designed for NLP [56], have re-
cently demonstrated their great potentials in computer vi-
sion [16, 42]. DETR [6] makes the first attempt to apply the
transformer model to vision tasks, while ViT [16] first di-
rectly apply transformer on non-overlapping image patches
for image classification. DeiT [54] further improves the
training pipeline with distillation, eliminating the need for
large-scale pertaining. And many follow-up works are pro-
posed to refine the architecture [65, 55], explore the rela-
tionship between CNN and ViT [10, 25], and build variants
of token mixer, e.g., local attention [42], spatial MLP [53],
and pooling-mixer [74].

When the inference speed is a major concern, espe-
cially on resource-constrained edge devices, efficient ViTs
are much desirable. To accelerate ViT, many lightweight
ViTs have been proposed recently through low-rank meth-
ods [64], model compression [75, 52, 45], hybrid design
[8, 38]. However, they do not fit well in with our purpose
here. Low-rank and quantization-based ViTs usually sac-
rifice much accuracy for efficiency. Pruning-based ViTs
usually involve the tedious decision of pruning ratios and
a finetuning process. Hybrid ViTs with CNN-based stems
greatly restrict the input size, namely, images of different
input sizes cannot be input simultaneously. With the in-
creased popularity, efficient ViTs based on conditional com-
putation have very recently explored adaptive inference for
model acceleration. DynamicViT [49] designs extra control

gates to halt tokens, which are trained with the Gumbel-
softmax trick, resembling similarities to [57] and [58].
Given Gumbel-softmax-based relaxation solutions might be
sub-optimal due to the difficulty of regularization and the
heuristic guidance of multi-stage token sparsification, A-
ViT [73] exploits an ACT [23]-like approach to remove the
need for the extra halting sub-networks, showing improve-
ments on efficiency, accuracy, and token-importance allo-
cation simultaneously. However, A-ViT a priori treats each
token equally, i.e., the ponder loss of each token is consid-
ered equally important, which neglects the fact that only
those tokens with useful information to the downstream
tasks rather than noise and distractor are desired. Since
the target and background are known in the tracking phase
in our visual tracking scenarios, in this paper, we impose
larger weights on those tokens containing background, so
that they are halted with larger probabilities. With this prior
imposed, we call it background-aware A-ViT, dubbed Aba-
ViT, and we show that Aba-ViT improves both efficiency
and accuracy for UAV tracking.

3. Method

In this section, we present our end-to-end tracking
framework, termed as Aba-ViTrack, based on the proposed
Aba-ViT backbone. First, we introduce our Aba-ViT for si-
multaneous feature learning and template-search coupling.
This unified scheme enables feature learning and template-
search coupling to interact throughout the process, which
not only simplifies the process but also makes it more ef-
fective, as feature learning becomes more specific while
template-search coupling is performed more extensively to
better capture the correlation. In addition, the scheme of
adaptive and background-aware halting of tokens speeds up
model inference. Then, we present the whole framework for
UAV tracking, which only includes an Aba-ViT-based back-
bone and a localization head. An overview of the model is
shown in Fig. 2.

3.1. Aba-ViT

Adaptive and background-ware ViT (Aba-ViT) is the key
to our seeking of a compact and efficient end-to-end tracker
for real-time UAV tracking. The input to Aba-ViT is the
target template Z and search image X . They are first split
and flattened into sequences of patches, which are then tok-
enized by a trainable linear projection layer. This process is
called patch embedding and results in K tokens, formulated
by

t01:K = E(Z,X) ∈ RK×E , (1)

where E denotes the embedding dimension of each token.
Let Tl denote the transformer block at layer l, which trans-
forms all tokens from layer (l − 1) via tl1:K = Tl(tl−1

1:K).
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Figure 2. Overview of our framework. It is composed of a single Aba-ViT backbone used for feature learning and template-search coupling
and a localization head.

Then the Aba-ViT, denoted by A, can be formulated by

Y = A(Z,X) = TL ◦ TL−1 ◦ ... ◦ T1 ◦ E(Z,X), (2)

where ◦ denotes the composition operation. The core idea
of Aba-ViT is that the tokens can be stopped at earlier lay-
ers according to a background-aware halting mechanism,
which is dependent on the input. Like A-ViT [73], the halt-
ing score hl

k of the token k at layer l is defined by

hl
k = H(tlk) = σ(γ · tlk,e + β), (3)

where H(·) is a halting module implemented by allocating
a single neuron into the MLP layer of the existing vision
transformer block, σ(u) = 1

1+e−u is the logistic sigmoid
function, tlk,e indicates the eth dimension of tlk, β and γ
are shifting and scaling parameters shared across all layers
for all tokens. Empirically, the simple choice of e = 0
(the first dimension) performs well. As in A-ViT, we stop
the token tk at layer n when its cumulative halting score
qnk =

∑n
l=1 h

l
k exceeds 1 − ϵ, i.e., qnk ⩾ 1 − ε, where ε is

a small positive constant that allows halting after one layer.
Once a token is halted, it is masked out by zeroing out its
token value and blocking its attention to other tokens, and
no update (by transformer block) is applied to it henceforth.
Let Nk be the total number of updates applied to tk, then

Nk = argmin
n⩽L

{
n∑

l=1

hl
k ⩾ 1− ε

}
. (4)

The remainder [23] of tk is defined as follows

Rk = 1−
Nk−1∑
l=1

hl
k. (5)

Finally, the halting probability is defined by

plk =

{
Rk if l = Nk,

hl
k if l < Nk.

(6)

This is a valid probability distribution, since it follows di-
rectly from the definition that 0 ⩽ plk ⩽ 1 and

∑Nk

l=1 p
l
k =

1. If no constraints are imposed on the number of updates
of each token, it will tend to ’ponder’ as long as possible
to avoid making mistakes. To limit the amount of computa-
tion the network performs, ACT [23] and A-ViT [73] used
the following ponder loss to encourage early stopping:

Lponder =
1

K

K∑
k=1

ρk =
1

K

K∑
k=1

(Nk +Rk), (7)

where ρk denotes the ponder loss of the token tk. However,
this loss treats each token equally with weight 1/K, which
seems blind and ignorant when prior knowledge about the
tokens is given or learned. In our scenario, it is known in
the training phase that a certain token is related to the target
or the background. To make use of this information, we
generalize the ponder loss Lponder as follows,

L∗
ponder =

1

K

K∑
k=1

ρk(I{t}(tk) + ωbI{b}(tk)), (8)

where I{t}(·) and I{b}(·) are indicator functions defined by

I{t(b)}(tk) =

{
1 if tk is a target (background) token,
0 otherwise ,

(9)
ωb ⩾ 1 is a predefined constant used to scale the ponder
loss of background tokens. Note that L∗

ponder reduces to
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Lponder when ωb = 1. Similar to previous work on adap-
tive computation [23, 19], training can be sensitive to the
scale factor of the ponder loss Lponder, A-ViT [73] intro-
duced a distributional prior to construct a Kullback-Leibler
(KL) divergence for regularization, so that on average all
tokens exit at a target depth. Specifically, the halting score
distribution that estimates the halting likelihoods distribute
across layers, defined by

Ĥ :=
1

K

[
K∑

k=1

h1
k,

K∑
k=1

h2
k, ...,

K∑
k=1

hL
k

]
, (10)

is pushed toward a predefined Gaussian prior H =
N (µ, σ2) via KL divergence DKL(·), where µ and σ are
the expected stopping depth and its standard deviation. The
distributional prior regularization term is formulated by

Ldistr = DKL(Ĥ||H). (11)

3.2. Aba-ViTrack for UAV Tracking

Overall Architecture. Based on Aba-ViT, we build the
Aba-ViTrack, a compact end-to-end tracking framework for
UAV tracking. Compared with other prevailing trackers
with separate processes of feature extraction and template-
search coupling in UAV tracking, it leads to a more com-
pact and neat tracking pipeline only with a single back-
bone and tracking head. The overall architecture is illus-
trated in Fig. 2. The input of Aba-ViTrack is a pair of im-
ages, i.e., the template Z ∈ R3×Hz×Wz and the search im-
age X ∈ R3×Hx×Wx . Suppose they are split into patches
of size P × P , then the number of patches of Z and X
are Kz = HzWz/P

2 and Kx = HxWx/P
2, respectively.

These patches are concatenated and then fed into the back-
bone A, resulting in totally K = Kz + Kx output to-
kens, denoted by tL1:K = [tL1Kz

; tLKz+1:K ], where token se-
quences tL1:Kz

and tLKz+1:K correspond to the template and
the search image respectively. Note that the masked-out to-
kens due to early stopping are replaced with zero tensors
without changing the original order of the tokens.

Prediction Head and Loss. Inspired by the corner de-
tection head in [9, 72], we employ a fully convolutional
network-based prediction head C that consists of several
Conv-BN-ReLU layers, to directly estimate the bounding
box of the target. The output tokens tLKz+1:K correspond-
ing to the search image are first reinterpreted to a 2D spatial
feature map and then fed into the prediction head, resulting
in a target classification score p ∈ [0, 1]Hx/P×Wx/P , a local
offset o ∈ [0, 1]2×Hx/P×Wx/P , and a normalized bounding
box size s ∈ [0, 1]2×Hx/P×Wx/P . The crude target po-
sition is estimated by the highest classification score, i.e.,
(xc, yc) = argmax(x,y)p(x, y), and the final target bound-
ing box is estimated by

[(xt, yt); (w, h)] = [(xc, yc) + o(xc, yc); s(xc, yc)]. (12)

For the tracking task, we adopt the weighted focal loss
[30] for classification, a combination of L1 loss and GIoU
loss [50] for bounding box regression. Finally, the overall
loss function is:

Loverall = Lcls + λiouLiou + λL1
LL1

+αpL∗
ponder + αdLdistr,

(13)

where the constants λiou = 2 and λL1
= 5 are set as in

[9, 72], αd as in [73], αp is set to 0.0001.

4. Experiments

In this section, our method is comprehensively evalu-
ated on six well-known aerial tracking benchmarks, i.e.,
UAV123 [48], UAVTrack112 L [20], UAV123@10fps [48]
, VisDrone2018 [80], UAVDT [17], and DTB70 [35]. All
evaluation experiments are conducted on a PC equipped
with i9-10850K processor (3.6GHz), 16GB RAM and an
NVIDIA TitanX GPU. 40 existing top trackers are included
for a thorough comparison, where their results are ob-
tained by running the official codes with their correspond-
ing hyper-parameters. For a clearer comparison, we divide
them into two groups, (i) light-weight trackers [66, 67, 4, 5,
3, 1, 31, 22, 14, 11, 28, 37, 33, 26, 44, 13, 39, 60, 59, 15, 62]
and (ii) deep trackers [12, 2, 63, 29, 76, 78, 79, 7, 71, 24,
46, 61].

4.1. Implementation Details

Model. We use the proposed efficient vision transformer
Aba-ViT as the backbone. The head is a lightweight FCN,
consisting of 4 stacked Conv-BN-ReLU layers for each of
three outputs. The sizes of the template and search region
are set to 128 × 128 and 256 × 256 respectively.

Training. The training splits of GOT-10k [27], LaSOT
[18], COCO [40], and TrackingNet [47] are used for train-
ing. Batch size is 32. We train the model with AdamW op-
timizer [43], set the weight decay to 10−4, the initial learn-
ing rate for the backbone to 4 × 10−5, respectively. The
total training epochs are set to 300 with 60k image pairs per
epoch and we decrease the learning rate by a factor of 10
after 240 epochs.

Inference. During inference, Hanning window penalty
is adopted to utilize positional prior in tracking, following
the common practice [77]. Specifically, we simply multiply
the classification map P by the Hanning window with the
same size, and the box with the highest score after multipli-
cation will be selected as the tracking result.

4.2. Comparison with Light-Weight Trackers

In this subsection, our Aba-ViTrack is compared with
25 existing efficient trackers on the standard aerial tracking
benchmarks.
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Figure 3. Overall performance of hand-crafted based trackers on UAV123@10fps [48], DTB70 [35], UAVDT [17], UAV123 [48], Vis-
Drone2018 [80], and UAVTrack112 L [20]. Precision and success rate for one-pass evaluation (OPE) are used for evaluation. The
precision at 20 pixels and area under curve (AUC) are used for ranking and marked in the precision plots and success plots respectively.

UAV123@10fps: UAV123@10fps [48] is constructed
by sampling the UAV123 benchmark from original 30FPS
to 10FPS, and is used to study the impact of camera cap-
ture speed on tracking performance. DTB70: DTB70
[35] consists of 70 UAV sequences, which primarily ad-
dresses the problem of severe UAV motion, but also in-
cludes various cluttered scenes and objects with different
sizes. UAVDT: UAVDT [17] is mainly used for vehicle
tracking with various weather conditions, flying altitudes
and camera views. UAV123: UAV123 [48] is a large-
scale aerial tracking benchmark involving 123 challenging
sequences with more than 112K frames. VisDrone2018:
VisDrone2018 [80] is from a single object tracking chal-
lenge held in conjunction with the European conference
on computer vision (ECCV2018), which focuses on eval-

uating tracking algorithms on drones. UAVTrack112 L:
UAVTrack112 L [20] is the current biggest long-term aerial
tracking benchmark including over 60k frames.

Overall performance evaluation: The overall perfor-
mance of our Aba-ViTrack with the competing trackers
on the six benchmarks is shown in Fig. 3. It can be
seen that our Aba-ViTrack outperforms all other track-
ers on all benchmarks. Specifically, on UAV123@10fps
[48] and UAV123 [48], our method significantly outper-
forms the second-place trackers, respectively, with gains of
7.0% and 6.4% on precision and gains of 5.6%and 5.9%
on AUC (i.e., area under curve), respectively. In terms of
AUC, our method also surpasses the second-place trackers
on DTB70 [35], VisDrone2018 [80], and UAVTrack112 L
[20] by 4.2%, 5.3%, and 5.6%, respectively. The least
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Table 1. Precision and speed (FPS) comparison between Aba-
ViTrack and deep-based trackers on DTB70 [35] . Red, blue and
green indicate the first, second and third place.

Tracker PRC FPS Tracker PRC FPS

Aba-ViTrack 85.9 185.4 DiMP18 [2] 79.8 73.0
PrDiMP18 [12] 84.0 55.7 DiMP50 [2] 79.2 52.4
PrDiMP50 [12] 76.4 42.1 SiamMask [63] 76.9 109.6

SiamRPN++ [29] 79.9 58.2 AutoMatch [76] 82.5 65.2
SiamDW [78] 73.5 65.0 SAOT [79] 83.1 34.0

TransT [7] 83.6 53.7 TrSiam [61] 82.7 36.3
SiamGAT [24] 75.1 92.3 KeepTrack [46] 83.6 19.5
CSWinTT [51] 82.4 9.6 SparseTT [21] 82.3 31.5

precision gain of our method is on UAVTrack112 L [20]
over SiamAPN [3] by 1.7%, and the least AUC gain is on
UAVDT [17] over P-SiamFC++ [66] by 3.3%. Despite their
close performance to ours, these two methods do not al-
ways perform well on the other benchmarks. For example,
the precision of SiamAPN [3] and P-SiamFC++ [66] on
UAV123@10fps [48] is 9.8% and 11.9% lower than ours,
respectively. The results show that our method significantly
improves the precision and AUC over state-of-the-art meth-
ods, and provides a very strong baseline for UAV tracking.

4.3. Comparison with Deep Trackers

The proposed Aba-ViTrack is also compared with
fifteen state-of-the-art deep trackers, i.e., DiMP18 [2],
PrDiMP18 [12], DiMP50 [2], PrDiMP50 [12], SiamMask
[63], SiamRPN++ [29], AutoMatch [76], SiamDW [78],
SAOT [79], TransT [7], TrSiam [61], SiamGAT [24], Keep-
Track [46], CSWinTT [51], SparseTT [21]. The precision
(PRC) and GPU speed of our Aba-ViTrack and the com-
peting deep trackers are shown in Table 1. As can be seen,
our Aba-ViTrack achieves the best precision and the fastest
GPU speed, suggesting that our method can even beat some
deep trackers in both precision and speed. Although several
deep trackers’ precision is close to ours, such as PrDiMP18,
TransT, and KeepTrack, their GPU speeds are much lower.
For example, our method is 3 times and 9 times faster than
PrDiMP18 and KeepTrack, respectively.

4.4. Evaluation of efficient ViT-based Trackers.

As the study on the effectiveness of leveraging efficient
ViTs for UAV tracking is a prime objective in this work,
we integrate four different lightweight ViTs, including ViT-
tiny [16], DeiT-tiny [54], A-ViT [73], and Aba-ViT, into
our ViT-based tracking framework to evaluate their perfor-
mance for UAV tracking. Their precision (PRC), AUC, and
average speed on the six benchmarks are shown in Table 4.
We also show eight state-of-the-art trackers’ performances
in the same table for a thorough comparison, including four
DCF-based, i.e., ECO-HC [11], ARCF [28], AutoTrack
[37], and RACF [33], and four CNN-based UAV track-

Table 2. Ablation study of weighting the ponder loss L∗
ponder on

DTB70 [35] with αp ranging from 0.5×10−4 to 1.5×10−4. Note
that ×10−4 is omitted for simplicity. PRC stands for precision.

αp 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
PRC 82.9 85.4 84.2 83.6 83.4 85.9 83.9 85.1 82.9 85.1 83.8
AUC 64.6 65.8 65.1 65.1 64.6 66.4 65.2 65.7 64.4 65.7 65.5

ers, i.e., HiFT [4], P-SiamFC++ [66] , F-SiamFC++ [67],
and TCTrack [5]. As can be seen, the best precision and
AUC are basically in the efficient ViT-based class, which
can be attributed to the more effective manner of the uni-
fied template-search coupling framework and supports the
effectiveness of leveraging efficient ViTs for UAV track-
ing. Among the efficient ViT-based class, Aba-ViTrack
achieves the best performance in all six benchmarks except
the AUCs on UAV123@10fps [48] and UAVTrack112 L
[20] are slightly inferior to DeiT-tiny* by less than 0.5%,
and it outperforms the baseline A-ViT* in all benchmarks,
justifying the effectiveness of guiding the model to halt
background tokens earlier. Note that the speed of Aba-
ViTrack is only slightly above A-ViT*, which may be at-
tributed to that they use the same distributional prior on the
average token exit length. Better such distributional prior
is left to our future work. We also observe that all efficient
ViT-based methods achieve real-time GPU and CPU speed.
Although their GPU speeds are slower than P-SiamFC++
[66] and F-SiamFC++ [67], their CPU speeds are faster than
P-SiamFC++ and close to F-SiamFC++, which may explain
the fact that ViT can avoid layer-wise split operation that
subjects to convolution (correlation) in CNN, which is short
of hardware acceleration in CPU.

4.5. Real-World Test

To validate the tracking performance of our method un-
der real-world conditions, we install an embedded onboard
processor, the NVIDIA Jetson TX2 4GB, on a typical UAV
platform. In real-world UAV testing, the utilization rates
of GPU and CPU are 27.7% and 18.9%, respectively, and
our tracker remains at an average speed of 35.6 FPS dur-
ing the tests without the acceleration of TensorRT. We also
tested our tracker on a mini PC, specifically an Intel NUC
equipped with an i5-1135G7 processor and 16GB RAM,
achieving a CPU speed of 43.7 FPS.

4.6. Ablation Study

To verify the effectiveness of our framework, compre-
hensive ablation studies are presented in this subsection.

Table 3. Ablation study of weighting the background tokens on
DTB70 [35] with ωb ranging from 1.0 to 3.0.

ωb 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.5 3.0

PRC 84.1 85.6 83.1 83.9 83.2 85.9 84.1 84.4 85.5 82.6 82.5 84.6 84.4

AUC 64.7 65.9 64.6 64.7 64.4 66.4 64.9 65.3 65.5 64.0 64.1 65.3 64.9
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Table 4. Evaluation of efficient ViT-based Trackers. Four lightweight ViTs, i.e. ViT-tiny [16], DeiT-tiny [54], A-ViT [73], and Aba-ViT,
are integrated into the proposed tracking framework, denoted by ViT-tiny*, DeiT-tiny*, A-ViT*, and Aba-ViT*, respectively. Note that the
precision and AUC are shown in form of (PRC, AUC), and the average GPU and CPU speed are shown in form of [GPU fps, CPU fps].

Method UAV123@10fps [48] DTB70 [35] UAVDT [17] VisDrone2018 [80] UAV123 [48] UAVTrack112 L [20] Avg. FPS [GPU, CPU ]

DCF-based

ECO-HC[11] ( 64.0, 46.8 ) ( 63.5, 44.8 ) ( 69.4, 41.6 ) ( 80.8, 58.1 ) ( 71.0, 49.6 ) ( 64.8, 41.7 ) [ — , 83.5 ]

ARCF [28] ( 66.6, 47.3 ) ( 69.4, 47.2 ) ( 72.0, 45.8 ) ( 79.7, 58.4 ) ( 67.1, 46.8 ) ( 64.0, 39.9 ) [ — , 34.2 ]

AutoTrack [37] ( 67.1, 47.7 ) ( 71.6, 47.8 ) ( 71.8, 45.0 ) ( 78.8, 57.3 ) ( 68.9, 47.2 ) ( 67.5, 40.2 ) [ — , 57.8 ]

RACF [33] ( 69.4, 48.6 ) ( 72.5, 50.5 ) ( 77.3, 49.4 ) ( 83.4, 60.0 ) ( 70.2, 47.7 ) ( 62.6, 40.0 ) [ — , 35.6 ]

CNN-based

HiFT [4] ( 74.9, 57.0 ) ( 80.2, 59.4 ) ( 65.2, 47.5 ) ( 71.9, 52.6 ) ( 78.7, 59.0 ) ( 73.4, 55.1 ) [ 160.3, — ]

P-SiamFC++[66] ( 73.1, 54.9 ) ( 80.3, 60.4 ) ( 80.7 ,55.6 ) ( 80.1, 58.5 ) ( 74.5, 48.9 ) ( 70.4, 53.1 ) [ 240.5, 46.1 ]

F-SiamFC++ [67] ( 72.1, 54.5 ) ( 81.4, 60.5 ) ( 79.4, 55.5 ) ( 80.7, 59.6 ) ( 78.9, 59.2 ) ( 74.2, 54.5) [ 255.4, 51.6 ]

TCTrack[5] ( 78.0, 59.9 ) ( 81.2, 62.2 ) ( 72.5, 53.0 ) ( 79.9, 59.4 ) ( 80.0, 60.5 ) ( 78.6, 58.3 ) [139.6, — ]

Efficient
ViT-based

ViT-tiny* ( 82.1 , 64.8 ) ( 79.3, 62.4 ) ( 77.0, 55.6 ) ( 83.0, 62.7 ) ( 83.2, 65.5 ) ( 78.9, 63.6 ) [ 166.2, 47.1 ]

DeiT-tiny* ( 83.5, 65.8 ) ( 83.6, 64.9 ) ( 81.2, 58.2 ) ( 83.6, 63.8 ) ( 82.8, 65.2 ) ( 80.3, 64.6 ) [ 164.6, 46.3 ]

A-ViT* ( 82.1, 65.3 ) ( 84.1, 64.7 ) ( 78.2, 56.7 ) ( 84.4, 63.9 ) ( 82.9, 66.4 ) ( 76.8, 62.1 ) [ 176.4, 49.6 ]

Aba-ViTrack ( 85.0, 65.5 ) ( 85.9, 66.4 ) ( 83.4, 59.9 ) ( 86.1, 65.3 ) ( 86.4, 66.4 ) ( 81.1, 64.2 ) [ 181.5, 50.3 ]

Study on weighting the proposed ponder loss. To see
how the weight αp of the proposed ponder loss L∗

ponder im-
pacts the performance, we train Aba-ViTrack with differ-
ent αp that goes from 0.5 × 10−4 to 1.5 × 10−4 in step of
0.1 × 10−4 and evaluate them on DTB70. The precision
and AUC are shown in Table 2. As can be seen, the best
precision and AUC is at αp = 1.0× 10−4. We observe that
the maximal difference of precision and AUC is 3.0% and
2.0%, respectively, which suggests that the weight αp does
significantly impact the tracking performance. Appropri-
ately weighted, the proposed ponder loss will lead to better
tracking performance, otherwise, it may bring bad effects
on the tracking task training.

Study on weighting the background tokens. To under-
stand how the weight ωb of the ponder loss of background
tokens impacts the tracking performance, we train Aba-
ViTrack with different ωb which goes from 1.0 to 3.0 and
evaluate them on DTB70 [35]. Note that ωb = 1.0 reduces
to the A-ViT* model. The precision and AUC are shown
in Table 3. As can be seen, the best precision and AUC
are achieved at ωb = 1.5. This suggests weighting of the
ponder loss of background tokens should be set appropri-
ately, which may be explained by that too large weight may
stop too many background tokens so that the discriminative
learning lacks sufficient negative samples, thus resulting in
degraded performance, whereas, small weight reduces the
model to the baseline A-ViT*. If ωb is appropriately set
with fixed αp, our proposed background-aware ponder loss
can improve PRC and AUC of the baseline A-ViT* by 1.8%
and 1.7% on DTB70 [35], respectively.

4.7. Qualitative results

Fig. 4 visualizes the token’s depth that is adaptively
controlled during inference with A-ViT* and our Aba-
ViTrack, respectively. The samples are from DTB70 [35],
UAV123[48], and UAVTrack112 L [20]. We can observe
that our background-aware token halting tends to stop back-

Figure 4. Original image (left), the dynamic token depth of A-ViT
(middle), and that of Aba-ViT (right) on samples from the DTB70
[35], UAV123 [48], and UAVTrack112 L [20].

Figure 5. Qualitative evaluation on 4 video sequences from, re-
spectively, UAV123@10fps [48], DTB70 [35], UAVDT [17],
and VisDrone2018 [80] (i.e. bike1, Animal1, S1701, and
uav000088 0000 s).

ground tokens earlier than A-ViT does, which is, there-
fore, effective in halting distractors and irrelevant tokens
and their associated computations for UAV tracking. For
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example, our approach on animal and person classes basi-
cally retains only the target textures, even crude target labels
(bounding boxes of targets) are given in the training. The
examples of cars and buildings also show similar effects.

Some qualitative tracking results of Aba-ViTrack and
eight top trackers are shown in Fig. 5. As can be seen, only
our tracker successfully tracks the targets in all challeng-
ing examples, where pose variations (i.e., in all sequences),
background clusters (i.e., Animal1 and uav000088 0000 s),
and scale variations (i.e., bike1 and S1701) are presented.
Our method performs much better and is more visually
pleasing in these cases, further supporting the effectiveness
of the proposed method for UAV tracking.

5. Conclusion
In this work, we make the first attempt to explore using

efficient ViTs in a unified template-search coupling frame-
work for real-time UAV tracking. And we proposed a gen-
eralized ponder loss to leverage prior information about
background and target for background-ware and more ef-
fective adaptive halting for UAV tracking. Extensive exper-
iments were conducted to evaluate the effectiveness of the
proposed method. Experimental results show that our Aba-
ViTrack sets a new state-of-the-art performance on six chal-
lenging benchmarks. In the future, we consider extending
Aba-ViT to object detection tasks where background and
object information is available in the training and study bet-
ter distributional prior on average token exit length, which
may greatly impact the efficiency of our method.
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