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Abstract

Diffusion models are emerging expressive generative
models, in which a large number of time steps (inference
steps) are required for a single image generation. To accel-
erate such tedious process, reducing steps uniformly is con-
sidered as an undisputed principle of diffusion models. We
consider that such a uniform assumption is not the optimal
solution in practice; i.e., we can find different optimal time
steps for different models. Therefore, we propose to search
the optimal time steps sequence and compressed model ar-
chitecture in a unified framework to achieve effective image
generation for diffusion models without any further train-
ing. Specifically, we first design a unified search space that
consists of all possible time steps and various architectures.
Then, a two stage evolutionary algorithm is introduced to
find the optimal solution in the designed search space. To
further accelerate the search process, we employ FID score
between generated and real samples to estimate the perfor-
mance of the sampled examples. As a result, the proposed
method is (i).training-free, obtaining the optimal time steps
and model architecture without any training process; (ii).
orthogonal to most advanced diffusion samplers and can
be integrated to gain better sample quality. (iii). general-
ized, where the searched time steps and architectures can
be directly applied on different diffusion models with the
same guidance scale. Experimental results show that our
method achieves excellent performance by using only a few
time steps, e.g. 17.86 FID score on ImageNet 64× 64 with
only four steps, compared to 138.66 with DDIM.

*Corresponding author: fchao@xmu.edu.cn

1. Introduction

Diffusion models are a class of generative models that
exhibit remarkable performance across a broad range of
tasks, including but not limited to image generation [14, 24,
8, 2, 29, 4, 15, 38], super-resolution [33, 39, 6], inpaint-
ing [22, 31], and text-to-image generation [25, 32, 27, 10].
These models utilize the diffusion process to gradually in-
troduce noise into the input data until it conforms to a Gaus-
sian distribution. They then learn the reversal of this process
to restore the data from sampled noise. Consequently, they
achieve exact likelihood computation and excellent sample
quality. However, one major drawback of diffusion models
is their slow generation process. For instance, on a V100
GPU, generating a 256 × 256 image with StyleGAN [16]
only takes 0.015s, whereas the ADM model requires multi-
ple time steps for denoising during generation, leading to a
significantly longer generation time of 14.75s.

Extensive studies have focused on reducing the number
of time steps to improve the generation process of diffu-
sion models. Some of these studies represent the generation
process as either stochastic differential equations (SDEs) or
ordinary differential equations (ODEs), and then utilize nu-
merical methods to solve these equations [36, 20, 6, 21].
The samplers obtained by these numerical methods can typ-
ically be applied to pre-trained diffusion models in a plug-
and-play manner without re-training. The other studies pro-
posed to utilize knowledge distillation to reduce the num-
ber of time steps [34, 23]. These methods decrease the time
steps required for the generation process and then allow the
noise prediction network to learn from the network of the
original generation process. Although these methods are
effective in improving the sampling speed of diffusion mod-
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Figure 1. Left: We propose to search the optimal time steps sequence and corresponding compressed network architecture in a unified
framework. Right: Samples by ADM-G [8] pre-trained on ImageNet 64× 64 with and without our methods (AutoDiffusion), varying the
number of time steps.

els, we observe that they have paid little attention to the se-
lection of time step sequences. When reducing the number
of time steps, most of these methods sample the new time
steps uniformly or according to a specific procedure [36].
We argue that there exists an optimal time steps sequence
with any given length for the given diffusion model. And
the optimal time steps sequence varies depending on the
specific task and the super-parameters of diffusion models.
We believe that the generation quality of diffusion models
can be improved by replacing the original time steps with
the optimal time steps.

Therefore, we introduce AutoDiffusion, a novel frame-
work that simultaneously searches optimal time step se-
quences and the architectures for pre-trained diffusion mod-
els without additional training. Fig. 1 (Left) shows the
schematic of AutoDiffusion. Our approach is inspired
by Neural Architecture Search (NAS) techniques that are
widely used for compressing large-scale neural networks
[28, 42, 26, 18, 1]. In our method, we begin with a pre-
trained diffusion model and a desired number of time steps.
Next, we construct a unified search space comprising all
possible time step sequences and diverse noise prediction
network architectures. To explore the search space effec-
tively, we use the distance between generated and real sam-
ples as the evaluation metric to estimate performance for
candidate time steps and architectures. Our method pro-
vides three main advantages. First, we demonstrate through
experiments that the optimal time steps sequence obtained
through our approach leads to significantly better image
quality than uniform time steps, especially in a few-step
regime, as illustrated in Fig. 1 (Right). Second, we show
that the searched result of the diffusion model can be ap-
plied to another model using the same guidance scale with-
out repeating the search process. Furthermore, our approach
can be combined with existing advanced samplers to further
improve sample quality.

Our main contributions are summarized as follows:

• Our study reveals that uniform sampling or using a
fixed function to sample time steps is suboptimal for

diffusion models. Instead, we propose that there ex-
ist an optimal time steps sequence and corresponding
noise prediction network architecture for each diffu-
sion model. To facilitate this, we propose a search
space that encompasses both time steps and network
architectures. Employing the optimal candidate of this
search space can effectively improve sampling speed
for diffusion models and complement the most ad-
vanced samplers to enhance sample quality.

• We propose a unified training-free framework, AutoD-
iffusion, to search both time steps and architectures in
the search space for any given diffusion model. We
utilize a two-stage evolutionary algorithm as a search
strategy and the FID score as the performance estima-
tion for candidates in the search space, enabling an ef-
ficient and effective search process.

• Extensive experiments show that our method is
training-free, orthogonal to most advanced diffusion
samplers, and generalized, where the searched time
steps and architectures can be directly applied to dif-
ferent diffusion models with the same guidance scale.
Our method achieves excellent performance by us-
ing only a few time steps, e.g., 17.86 FID score on
ImageNet 64 × 64 with only four steps, compared
to 138.66 with DDIM. Furthermore, by implement-
ing our method, the samplers exhibit a noteworthy
enhancement in generation speed, achieving a 2×
speedup compared to the samplers lacking our method.

2. Related Work
2.1. Diffusion Models

Given a variable x0 ∈ RD that sampled from an un-
known distribution pdata(x0), diffusion models define a dif-
fusion process {xt}t∈[0:T ] to convert the data x0 into sample
xT by T diffusion steps. The distribution of the sample xT

denoted as p(xT ) is usually simple and tractable, such as
standard normal distribution. In the diffusion process, the
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Figure 2. Overview on AutoDiffusion. Given a pre-trained diffusion model, we first design a unified search space that consists of both
time steps and architectures. After that, we utilize the FID score as the performance estimation strategy. Finally, we apply the evolutionary
algorithm to search for the optimal time steps sequence and architecture in the unified search space.

distribution of variable xt at time step t satisfies:

q(xt|x0) = N (xt|αtx0, β
2
t I) (1)

where {α1, α2, · · · , αT } and {β1, β2, · · · , βT } are super-
parameters of diffusion models that control the speed of
converting x0 into xT .

After that, diffusion models define a reverse process
pθ(xt−1|xt) parameterized by neural network θ and op-
timize it by maximizing the log evidence lower bound
(ELBO) [24]:

Lelbo = E[log pθ(x0|x1)

− ΣT
t=1DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))

−DKL(q(xT |x0)||p(xT ))]

(2)

where DKL denote the KL-divergence.
In practice, diffusion models use a noise prediction net-

work ϵθ(xt, t) to estimate the noise component of the noisy
sample xt at time step t. Therefore, the loss function in
Eq. 2 can be simplified as follow [14]:

Lsimple = ∥ϵθ(xt, t)− ϵ∥2 (3)

where ϵ represent the noise component of xt and we have
xt = αtx0 + βϵ according to Eq. 1. In most diffusion mod-
els, the noise ϵ is sampled from standard normal distribution
N (0, I) when generating noisy sample xt.

When the noise prediction network ϵθ(xt, t) is trained,
diffusion models define a generation process to obtain
samples. This process begins with noisy data sam-
pled from p(xT ), yielding progressively cleaner sam-
ples xT−1, xT−2, · · · , x0 via the learned distribution
pθ(xt−1|xt). This process needs T forward of the noise
prediction network ϵθ to obtain final sample x0. To hasten
this, many studies tried to reduce the number of time steps
to K < T . They proposed many advanced samplers to
compensate for the loss of sample quality caused by reduc-
ing time steps. But most of them overlooked optimal time
step selection and usually sampled new time steps based on
simple functions. For example, DDIM [36] select time steps

in the linear or quadratic procedure. The linear procedure
generate new time steps sequence with length K such that
[0, T

K , · · · , KT
K ]. Our key contribution is searching the K-

length optimal time steps sequence for diffusion models.

2.2. Neural Architecture Search

The aim of NAS algorithms is to automatically search
for an appropriate neural network architecture within an
extensive search space. NAS is composed of three essen-
tial components: the search space, the search strategy, and
the performance estimation strategy [9]. The search space
specifies the set of architectures to be explored and deter-
mines the representation of candidate neural networks. The
search strategy outlines the approach employed to explore
the search space. Typically, the strategy involves selecting
a new candidate from the search space based on the perfor-
mance estimation of the currently selected candidate. The
performance estimation strategy defines the approach for
evaluating the performance of a candidate neural network
in the search space. An effective performance estimation
strategy ensures accurate and swift evaluations, underpin-
ning both the efficacy and speed of the NAS [44].

NAS algorithms have been applied to design suitable net-
work architecture in various fields. Therefore, in this work,
we aim to optimize the time steps and architecture of diffu-
sion models using this technique.

2.3. Fast Sampling For Diffusion Models

Numerous studies aim to improve the generation speed
of diffusion models. Some approaches model the genera-
tion process with SDEs or ODEs, leading to training-free
samplers [36, 20, 21]. However, when the number of steps
drops below 10, these methods often degrade image quality
[3]. Other methods accelerate diffusion models via knowl-
edge distillation [34, 23, 3] or by learning a fast sampler
[40]. For example, progressive distillation (PD) uses knowl-
edge distillation to halve the number of time steps [34]. This
distillation is iteratively conducted until the number of steps
is less than 10, often demanding substantial computational
resources. DDSS treats sampler design as a differentiable
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optimization problem, utilizing the reparametrization trick
and gradient rematerialization to learn a fast sampler [40].
Although DDSS offers notable speedups, it lacks flexibility,
as samplers tailored for one model may not fit another, re-
quiring distinct learning stages. Compared with these meth-
ods, AutoDiffusion is much more efficient and flexible, as
substantiated by our experiments. Its searched result can be
transferred to another diffusion model using the same guid-
ance scale without re-searching. Furthermore, AutoDiffu-
sion utilizes a unified search space for time steps and model
layers, while existing methods only focus on step reduction.

3. Method
In this section, we introduce our AutoDiffusion, which

aims to search for the optimal time steps sequence and ar-
chitecture for given diffusion models. The overview of our
method is shown in Fig. 2. In the following contents, we
first discuss the motivation of our method in Sec. 3.1. Then,
we introduce the search space in Sec. 3.2. After that, we
elaborate the performance evaluation in Sec. 3.3. Finally,
we introduce the evolutionary search in Sec. 3.4.

3.1. Motivation

Many well-recognized theories pointed out that the gen-
eration process of diffusion models is divided into several
stages, in which the behavior of diffusion models is differ-
ent at each stage [5, 7]. For example, Ref [5] illustrated
that the behavior of diffusion models at each time step can
be classified into creating coarse features, generating per-
ceptually rich contents, and removing remaining noise. In-
tuitively, the difficulty of these tasks is different. In other
words, the denoise difficulty of diffusion models varies with
the time steps. Inspired by these studies, we hypothesize
that the importance of each time step in the generation pro-
cess is different. In this case, we argue that there exists an
optimal time steps sequence for diffusion models among all
possible time steps sequences.

To investigate our hypothesis, we conduct an experiment
in which we obtain samples, denoted as xt, and calculate the
Mean Squared Error (MSE) ∥xt − xt+100∥2 for each time
step t. The results are presented in Fig. 3, which shows that
the samples obtained for t ∈ [600, 1000] are dominated by
noise and thus illegible. Conversely, when t ∈ [300, 600],
the diffusion model generated the main contents of the im-
age, and the objects in the generated image become rec-
ognizable. It is observed that the diffusion model primar-
ily removes noise at t ∈ [0, 300], resulting in similar sam-
ples for t ∈ [0, 300]. Furthermore, Fig. 3 indicates that the
MSE is low at t ∈ [0, 100] and t ∈ [700, 900], while it
becomes high at t ∈ [200, 600]. Based on the findings in
Fig. 3, it is apparent that different time steps play varying
roles in the generation process of diffusion models. Specif-
ically, when t is small or large, the content of the generated

!"

Figure 3. Sample xt and MSE ∥xt − xt+100∥2 over time steps t.

samples changes slowly. In contrast, when t is in the mid-
dle, the content changes rapidly. Therefore, we contend that
uniform time steps are suboptimal and that an optimal time
step sequence exists for the generation process of diffusion
models. Further, since the denoise difficulty varies depend-
ing on time steps, we believe that the model size of the noise
prediction network is not necessarily the same at each time
step. Thus, we search the time steps and architectures in a
unified framework.

3.2. Search Space

In this section, we discuss how the search space is de-
signed in AutoDiffusion. Given a diffusion model with
timesteps [t1, t2, · · · , tT ] (ti < ti+1), it needs T calls of
the noise prediction network ϵθ to yield a batch of images.
To accelerate the generation process, two approaches are
usually employed: reducing the number of time steps or the
number of layers in the ϵθ. To this end, we propose a search
space comprising two orthogonal components: 1) the tem-
poral search space that takes time steps as the searched ob-
ject; 2) the spatial search space that takes the architectures
of the noise prediction network ϵθ as the searched object. In
our search space, the candidate cand is defined as follows:

cand = {T = [t′1, t
′
2, · · · , t′K ];

L = [L1,L2, · · · ,LK ]},
0 < t′i+1 − t′i < tT − t1,

t′i ∈ [t1, t2, · · · , tT ] (i = 1, 2, · · · ,K)

(4)

where T denotes the sampled time steps sequence, and
[t′1, t

′
2, · · · , t′K ] is a sub-sequence of the original time steps

sequence [t1, t2, · · · , tT ]. L denotes the sampled architec-
tures, where Li = [l1i , l

2
i , · · · , l

ni
i ] is the architecture of the

noise prediction model at time step t′i. ni is the number of
architecture layers at time step t′i , which must be no more
than the layers number of ϵθ. Each lji ∈ Li represents one
layer of the noise prediction network ϵθ at time step t′i, thus
Li can be viewed as a sub-network of ϵθ. In practice, we
constrain the sum of model layers at each time step to be
no more than Nmax, i.e.

∑K
i=1 ni ≤ Nmax, where Nmax is

determined according to the expected generation speed of
diffusion models.

In the temporal aspect, we search for the optimal time
steps sequence among all possible time steps. In the spatial
aspect, we search for the model layers of the noise predic-
tion network at each time step. Therefore, we can search
for the best time steps sequence and the compressed noise
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prediction model in a unified framework. Notably, the sub-
network Li may not be the same across all time steps during
the search, as the difficulty of denoising varies at different
time steps. We believe that the number of layers ni at each
time step t′i reflects the level of denoising difficulty at t′i.

Since the noise prediction networks ϵθ are usually U-
Net, we don’t add up-sample or down-sample layers into
the search space. In practice, if a model layer is not se-
lected in a candidate, the model layer will be replaced by a
skip connection. Besides, the searched sub-networks of ϵθ
are not retrained or fine-tuned in the search process.

3.3. Performance Estimation

After the search space is determined, we need to select
evaluation metrics to provide fast and proper performance
estimation for the search process. There are two classes of
evaluation metrics that may meet the requirements, one is
the distance between learned distribution pθ(xti−1

|xti) and
posteriors q(xti−1

|xti , x0), the other is the distance between
the statistics of generated samples and real samples.

The distance between distribution pθ(xti−1 |xti) and
posteriors q(xti−1

|xti , x0) is usually estimated using KL-
divergence. Therefore, the performance estimation of a
sorted candidate time steps [t′1, t

′
2, · · · , t′K ] can be obtained

by using KL-divergence [24] as follows:

L = Lt′1
+ Lt′2

+ · · ·+ Lt′K

Lt′i
=


DKL(q(xt′i

|x0)||p(xt′i
)), t′i = tT

− log pθ(xt′i
|xt′i+1

), t′i = 0

DKL(q(xt′i
|xt′i+1

, x0)||pθ(xt′i
|xt′i+1

), others

(5)

Given a trained diffusion model, the image x0 sam-
pled from the training dataset, and the candidate time steps
[t′1, t

′
2, · · · , t′K ], we use Eq. 5 to calculate the KL diver-

gence, which allows a fast performance estimation. How-
ever, prior work has pointed out that optimizing the KL-
divergence can not improve sample quality [41, 37]. To
verify this conclusion, we use the time steps sequence
[t1, t2, · · · , tT ] of a diffusion model trained on ImageNet
64×64 as the search space. Then, we sample subsequences
[t′1, t

′
2, · · · , t′K ] from this search space randomly and calcu-

late the FID score, sFID score, IS score, precision, recall,
and the KL-divergence of these subsequences. After that,
we analyze the relevancy between FID, sFID, IS, precision,
recall, and KL-divergence of these subsequences by calcu-
lating the Kendall-tau [17] between them. Tab. 1 shows that
the Kendall-tau values between all these metrics and KL-
divergence are low, which means that the KL-divergence
can not represent the sampled quality.

The distance between the statistics of generated samples
and real samples can be estimated using the KID score or
FID score. Daniel et al. proposed to optimize the sampler of

FID sFID IS Precision Recall
0.126 0.200 -0.126 -0.190 -0.165

Table 1. Kendall-tau [17] between matrices and KL-divergence.

diffusion models by minimizing KID loss [40]. Inspired by
this work, we use FID score as the performance estimation
metric. The FID score is formulated as follows [13]:

Score = ∥mr −mg∥22 + Tr
(
Cr + Cg − 2(CrCg)

1
2

)
(6)

where mr and mg are the mean of the feature of real sam-
ples and generated samples; while Cr and Cg are covari-
ances of the feature of real samples and generated samples.
Usually, the feature of generated samples and real samples
can be obtained by pretrained VGG [35] models.

However, we must generate at least 10k samples when
calculating precise FID scores, which will slow down
the search speed. To address this, we reduce the num-
ber of samples for calculating FID scores. We apply
Kendall-tau [17] to determine the reduced number of sam-
ples. Specifically, we still use the full time steps sequence
[t1, t2, · · · , tT ] as search space and sample Nseq subse-
quences [t′1, t

′
2, · · · , t′K ] randomly from it. Then, we gener-

ate 50k samples using each of these subsequences and ob-
tain corresponding FID scores {F1, F2, · · · , FNseq}. After
that, we obtain a subset of Nsam samples from 50k sam-
ples and calculate their FID score {F ′

1, F
′
2, · · · , F ′

Nseq
}. We

calculate the Kendall-tau between {F1, F2, · · · , FNseq
} and

{F ′
1, F

′
2, · · · , F ′

Nseq
}. The optimal number of samples is the

minimum Nsam that makes Kendall-tau greater than 0.5.

3.4. Evolutionary Search

We utilize the evolution algorithm to search for the best
candidate from the search space since evolutionary search
is widely adopted in previous NAS works[28, 11, 12, 19].
In the evolutionary search process, given a trained diffusion
model, we sample candidates from the search space ran-
domly using Eq. 4 to form an initial population. For each
candidate, we generate samples by utilizing the candidate’s
time steps and corresponding architecture. After that, we
calculate the FID score based on the generated samples. At
each iteration, we select the Top k candidates with the low-
est FID score as parents and apply cross and mutation to
generate a new population. To perform cross, we randomly
exchange the time steps and model layers between two par-
ent candidates. To perform mutation, we choose a parent
candidate and modify its time steps and model layers with
probability p.

When searching for time steps and architectures, we uti-
lize a two-stage evolutionary search. Specifically, we use
the full noise prediction network and search time steps only
in the first several iterations of the evolutionary search.
Then, we search the time steps and model architectures to-
gether in the remaining search process.
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4. Experimentation

4.1. Experiment Setting

In order to demonstrate that our method is compatible
with any pre-trained diffusion models, we apply our method
to prior proposed diffusion models. Specifically, we experi-
ment with the ADM and ADM-G models proposed by Pra-
fulla et al.[8] that trained on ImageNet 64 × 64 [30] and
LSUN dataset [43]. In addition, we applied our method
on Stable Diffusion [29] to verify the effectiveness of our
method on the text-to-image generation task. Besides, we
also combine our method with DDIM [36], PLMS [20],
and DPM-solver [21] and apply them to the Stable Diffu-
sion to demonstrate that our proposed method can be com-
bined with most of the existing advanced samplers and im-
prove their performance. In all experiments, we use the pre-
trained checkpoint of these prior works since our method
does not need to retrain or fine-tune the diffusion models.

Our method optimizes the generation process of diffu-
sion models from the perspective of both time steps and ar-
chitecture. Sec. 4.2 illustrates that we can accelerate the
generation process by only searching for the optimal time
steps. And on this basis, Sec. 4.4 demonstrates that we can
improve the sample quality and generation speed further by
searching time steps and architecture together. In all exper-
iments, the hyperparameters of evolution algorithm search
are set as follows: we set the population size P = 50; top
number k = 10, mutation probability p = 0.25, max iter-
ations MaxIter = 10 when searching for time steps only,
and MaxIter = 15 when searching for time steps and ar-
chitectures. For the experiments without our methods, the
diffusion models generate samples with uniform time steps
and the full noise prediction network. Besides, all experi-
ments with ADM or ADM-G use DDIM [36] sampler. We
evaluate the quality of generated images with FID and IS
scores as most previous work.

4.2. Quantitative and Qualitative Results

We apply our method with the pre-trained ADM-G and
ADM on various datasets, and the results are shown in
Tabs. 2 to 3. Note that we only search time steps with-
out searching model layers of the noise prediction network
in these experiments. Our method can improve the sam-
ple quality significantly of diffusion models in the few-step
regime. In particular, our method exhibits impressive per-
formance when the number of time steps is extremely low.
For example, the FID score of ADM-G on ImageNet 64×64
is 138.66, and our method can reduce it to 17.86, which
shows that our method can generate good samples in the
extremely low-step regime.

We combine our method with DPM-Solver [21], DDIM
[36], and PLMS [20] to demonstrate that our method can
be integrated with advanced samplers. Fig. 4 shows that our

Ours Steps FID ↓ IS ↑
× 4 138.66 7.09
✓ 4 17.86 (-120.8) 34.88 (+27.79)
× 6 23.71 31.53
✓ 6 11.17 (-12.54) 43.47 (+11.94)
× 10 8.86 46.50
✓ 10 6.24 (-2.62) 57.85 (+11.35)
× 15 5.38 54.82
✓ 15 4.92 (-0.46) 64.03 (+9.21)
× 20 4.35 58.41
✓ 20 3.93 (-0.42) 68.05 (+9.64)

Table 2. FID (↓) and IS (↑) scores for ADM-G[8] with and without
our method on ImageNet 64 × 64, varying the number of time
steps. The (+number) denotes the improve compare to the resulte
without our method.

Ours Steps LSUN Bedroom LSUN Cat
× 5 33.42 48.41
✓ 5 23.19 (-10.23) 34.61 (-13.8)
× 10 10.01 20.05
✓ 10 8.66 (-1.35) 17.29 (-2.76)
× 15 6.36 14.86
✓ 15 5.83 (-0.53) 13.17 (-1.69)

Table 3. FID score (↓) for ADM[8] with and without our method
on LSUN dataset, varying the number of time steps.

4 6 8 10 12 14 16 18 20
Steps

15

20

25

30

35

40

FI
D

DPM_Solver
DDIM
PLMS
DPM_Solver + ours
DDIM + ours
PLMS + ours

Figure 4. FID score for Stable Diffusion [29] using different sam-
plers with and without our methods. Our method can improve the
FID score of DDIM, PLMS, and DPM-solver.

method can improve the sample quality based on these sam-
plers, especially in the low-step case where steps = 4. These
results illustrate that our method can be combined with most
advanced samplers to further improve their performance. In
addition, Fig. 4 illustrates that the samplers with our method
can achieve admirable performance within 10 steps, which
is 2× faster than the samplers without our method.

Fig. 5 shows the generated samples for Stable diffusion
using DPM-Solver with and without our method in a few-
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Input prompts are “An astronaut riding a horse” and “An oil painting of a corgi wearing a party hat”.
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Figure 6. The proposed method is also compatible with the widely-used sampler DPM-Solver. The samples generated by our method with
10 steps are comparable to those generated by 20 steps, and better than those generated by 10 steps using DPM-Solver.

step regime. We find that the samples generated with our
method have more clear details than other samples. Fig. 6
demonstrates that the images generated by our method with
DPM-Solver at step = 10 are comparable to those generated
solely by DPM-Solver at step = 20, and superior to those
generated solely by DPM-Solver at step = 10.

4.3. Migrate Search Results

We observe that the guidance scale in the generation pro-
cess influences the search results significantly, and an opti-
mal time steps sequence derived from one diffusion model
can be transferred to another using the same guidance scale.
Specifically, we search the optimal time steps sequence of
length 4 for ADM-G on the ImageNet 64 × 64 at guidance
scales 1.0 and 7.5. The distribution of searched time steps
for ADM-G with these guidance scales differ significantly,
as shown in Fig. 7(a) and Fig. 7(b). Further, using a 7.5
guidance scale, we apply the optimal time steps of ADM-G
on ImageNet 64×64 to Stable Diffusion on COCO dataset,
achieving an FID score of 24.11. In comparison, uniform
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Figure 7. The occurrence number of time steps of top-10 candi-
dates in Evolutionary search. (a). Time steps occurrence number
of ADM-G on ImageNet64 × 64 with guidance scale 1.0. (b).
Time steps occurrence number of ADM-G on ImageNet64 × 64
with guidance scale 7.5. We observe that the distribution of oc-
currence number is changed depending on the guidance scale in
generation process.

time steps and the optimal time steps specifically searched
for Stable Diffusion lead to FID scores of 38.25 and 20.93.
This result suggests that we can obtain a desirable time steps
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searched time steps searched model layers Steps FID ↓ IS ↑ sampling time (s) Nmax

✓ ✓ 4 14.53 38.24 4455 232
✓ × 4 18.07 35.26 4476 232
✓ ✓ 6 10.26 45.35 6535 350
✓ × 6 10.91 44.93 6712 350
✓ ✓ 10 6.08 54.62 10655 580
✓ × 10 7.51 55.32 10719 580

Table 4. FID score and IS scores for ADM-G[8] with our proposed method on ImageNet 64× 64 dataset. “Sampling time (s)” means the
time to generate 50k samples.

sequence without repeating the search process when given
a new diffusion model with the same guidance scale. How-
ever, we also find that applying the searched results from
Stable Diffusion with guidance scale of 7.5 to ADM-G with
guidance scale of 1.0 results in poor sample quality. This
implies that the searched results from diffusion models with
different guidance scales might not be transferable.

4.4. Search for Time Steps and Architecture

We find that our method can achieve satisfactory per-
formance when searching time steps only, but the perfor-
mance can be further improved by searching model layers
together with time steps. In this case, we constrain the sum
of model layers at each time step to be less than Nmax. We
repeat the experiment under Nmax = 232, Nmax = 350, and
Nmax = 580, while the number of layers in noise prediction
model is fixed to 58. After searching, we evaluate the FID
score and IS score of diffusion models using the searched
time steps and model layers. Besides, we also evaluate
the performance of the diffusion model that only uses the
searched time steps without using the searched model lay-
ers (e.g. these diffusion models use a full noise prediction
network to generate samples). In all these experiments, we
don’t retrain or fine-tune the searched subnet of the noise
prediction network.

Tab. 4 illustrates that the diffusion model with the
searched model layers outperforms the model that employs
a full noise prediction network in terms of both FID scores
and generation speed. This result suggests that certain lay-
ers in the noise prediction network are superfluous.

We conduct an analysis on the searched architecture of
Tab. 4. We prune entire residual block and attention block
from the noise prediction network in these experiments and
observe that the importance of residual and attention blocks
varies with the time-step length. Both residual and atten-
tion blocks are equally essential for the small time-step
length, but attention blocks became increasingly important
with more steps.

4.5. Comparison to the Prior Work

We experiment with the DDPM provided by Alexander
et al. [24] on ImageNet 64 × 64 against DDSS [40] which

Method \Steps 5 10 15
DDSS 55.14 / 12.9 37.32 /14.8 24.69 /17.2
Ours 46.83 / 11.4 26.12 / 15.1 23.29 / 14.8

Table 5. FID score / IS score for our method against DDSS for the
DDPM trained on ImageNet 64× 64 with Lsimple [24]

Approach Steps Method Type Total Cost
(GPU days)

AutoDiffusion 5 Training-free Search 1.125
DDSS 5 Reparameterization 3.55

Progressive Distil.(PD) 4 Distillation 359
Progressive Distil.(PD) 8 Distillation 314

Table 6. Efficiency comparison. We assessed the computational
resource demand of AutoDiffusion, PD, and DDSS using our re-
constructed Improved-Diffusion codebase and ImageNet 64 × 64
on a single V100 GPU. For DDSS, we approximated the com-
putational resource consumption by running 50k training steps of
U-Net and multiplying the training time by the time steps, as it
executes the entire generation process in each training step.

proposed to optimize the noise and time step schedule with
differentiable diffusion sampler search. Tab. 5 demonstrates
that our method can achieve a better FID score and IS score
than DDSS.

4.6. The efficiency of AutoDiffusion

AutoDiffusion is highly efficient and surpasses existing
methods that demand additional computational resources
such as PD [34] and DDSS [40] in computational resource
requirements. AutoDiffusion uses a training-free search
to determine time steps and diffusion models architecture,
with search time depending on image resolution, time step
length, and model size. Tab. 6 demonstrates the superior ef-
ficiency of AutoDiffusion compared to DDSS and PD. The
computational resource required by DDSS and PD is ap-
proximately 3.15× and 279× that of AutoDiffusion.
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5. Conclusion
In this paper, we propose AutoDiffusion to search the op-

timal time steps and architectures for any pre-trained diffu-
sion models. We design a unified search space for both time
steps and architectures, and then utilize the FID score as
the evaluation metric for candidate models. We implement
the evolutionary algorithm as the search strategy for the
AutoDiffusion framework. Extensive experiments demon-
strate that AutoDiffusion can search for the optimal time
steps sequence and architecture with any given number of
time steps efficiently. Designing more sophisticated meth-
ods that can evaluate the performance of diffusion models
faster than FID score can improve the search speed and per-
formance of AutoDiffusion, which we leave as future work.
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