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Figure 1: For embodied agents, understanding daily objects requires the ability to perceive not only category but also
attribute and affordance. In OCL, we try to reveal object concept learning in both three levels and explore their profound
causal relations.

Abstract

Understanding objects is a central building block of AI,
especially for embodied AI. Even though object recogni-
tion excels with deep learning, current machines struggle to
learn higher-level knowledge, e.g., what attributes an object
has, and what we can do with it. Here, we propose a chal-
lenging Object Concept Learning (OCL) task to push the
envelope of object understanding. It requires machines to
reason out affordances and simultaneously give the reason:
what attributes make an object possess these affordances.
To support OCL, we build a densely annotated knowledge
base including extensive annotations for three levels of ob-
ject concept (category, attribute, affordance), and the clear
causal relations of three levels. By analyzing the causal
structure of OCL, we present a baseline, Object Concept
Reasoning Network (OCRN). It leverages concept instanti-
ation and causal intervention to infer the three levels. In
experiments, OCRN effectively infers the object knowledge
while following the causalities well. Our data and code are
available at https://mvig-rhos.com/ocl.

1. Introduction
Object understanding is essential for intelligent robots.

Recently, benefiting from deep learning and large-scale
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datasets [10, 36], category recognition [30, 55] has made
tremendous progress. But to close the gap between human
and machine perception, machines need to pursue deeper
understanding, e.g., recognizing higher-level attributes [27]
and affordances [16], which may help it establish object
concept [41] when interacting with contexts.

Category apple is a symbol indicating its referent
(real apples). In line with symbol grounding [22], ma-
chines should learn knowledge beyond category to ap-
proach concept understanding. According to cognition
studies [58, 41], attribute depicting objects from the physi-
cal/visual side plays an important role in object understand-
ing. Thus, many works [32, 68, 13] studied to ground ob-
jects with attributes, e.g., a hammer consists of a long
handle and a heavy head. Moreover, attributes can depict
object states [27]. An elegant characteristic of attributes is
cross-category: objects of the same category can have vari-
ous states (big or fresh apple), whilst various objects
can have the same state (sliced orange or apple). If
the category is the first level of object concept, the attribute
can be seen as the second level closer to the physical fact.

However, recognizing attributes is still far away from
concept understanding. Given a hammer, we should know
it can be held to hit nails, i.e., requiring machines to
infer affordance [16] indicating what actions humans can
perform with objects. Thus, we refer to affordance as
the third level, which is closely related to common sense
and causal inference [16]. Though affordance has been
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studied in robotics [12, 24] and vision [8, 73] commu-
nities for decades, it is still challenging. First, previous
works [45, 15] often focus on recognizing affordance solely.
But we usually infer affordance based on attribute observa-
tion. If we need to knock in a nail without a hammer at
hand, we may find other hard or heavy objects instead,
e.g., a thick book. This profoundly reveals the causality
between attribute and affordance. Second, previous works
are designed for scale/scene-limited tasks, e.g., in [73], 40
objects and 14 affordances are included; Hermans et al. [24]
collect 375 indoor images of 6 objects, 21 attributes, and 7
affordances; a recent dataset [45] contains 10 indoor objects
and 9 affordances. Thus, they cannot afford general affor-
dance reasoning for large-scale applications.

To reshape object learning, we believe it is essential
to look at the above three levels in a unified and causal
way based on an extensive knowledge base. Hence, we
move a step forward to propose the object concept learn-
ing (OCL) task: given an object, machines need to infer
its category, attributes, and further answer “what can we do
upon it and why”, as shown in Fig. 1. In a nutshell, ma-
chines need to reason affordance based on object appear-
ance, category, and attributes. To this end, we build a large-
scale and dense dataset consisting of 381 categories, 114
attributes, and 170 affordances. It contains 80,463 images
of diverse scenes and 185,941 instances in different states.
Different from previous works [6, 24, 73], OCL offers a
more subtle angle. It includes: (1) category-level attribute
(A) and affordance (B) labels; (2) instance-level attribute
(α) and affordance (β) labels. Besides, we annotate the
causal relations between three levels to evaluate the reason-
ing ability of models and keep the follow-up methods from
fitting data only. Accordingly, based on the causal struc-
ture of OCL, we propose a neuro-causal method, Object
Concept Reasoning Network (OCRN), as the future base-
line. It leverages concept instantiation (from category-level
to instance-level) and causal intervention [50] to infer at-
tributes and affordances. OCRN outperforms a host of base-
lines and shows impressive performance while following
the causal relations well.

In summary, our contributions are threefold:

(1) Introducing the object concept learning task poses
challenges and opportunities for object understanding
and knowledge-based reasoning.

(2) Building a benchmark consisting of diverse objects,
elaborate attributes, and affordances, together with
their clear causal relations.

(3) An object concept reasoning network is introduced to
reason three levels with concept instantiation perform-
ing well on OCL.

2. Related Work
Object Attribute depicts the physical properties like

color, size, shape, etc. It usually plays the role of intermedia
between pixels and higher-level concepts, e.g., prompting
object recognition [13], affordance learning [24], zero-shot
learning [32], and object detection [31]. Recently, several
large-scale datasets [13, 68, 38, 49, 27, 29, 25] are released.
For attribute recognition, besides direct attribute classifica-
tion [32, 48, 68, 49] and leveraging the correlation between
attribute-attribute and attribute-object [26, 7, 40], intrinsic
properties (compositionality, contextuality [42, 43], sym-
metry [34, 35]) of attribute-object are also proven useful.
[42] uses the model weight space to encode the attributes
to model the compositionality and contextuality. [43] uses
the attributes as linear operators to transform object embed-
dings. [34] leverages the symmetry property to model the
attribute changes within attribute-object coupling and de-
coupling.

Object Affordance. is introduced by [16]. Affordance
learning has two canonical paradigms: direct mapping [15]
or indirect method [73, 71, 67, 59] with intermediates like
object category, attribute, and 3D contents. Some works
learned affordance from human-object interactions (HOI) to
encode the relation between object and action [18, 70, 28].
Visual Genome [29] provides relations between objects, in-
cluding actions instead of affordances. However, these rela-
tions cover limited and sparse affordances. Differently, we
use easily accessible object images as the knowledge source
and densely annotate all attributes/affordances for all ob-
jects. Besides the vision community, the robot community
pays much attention to affordance [53, 64, 52] for grasping
and manipulation. For instance, [53] utilized the robot to
discover the object affordance via self-supervised learning.
Recently, several datasets [45, 6, 8] have been proposed.
IIT-AFF [45] collected ten daily indoor objects and pro-
vided nine common affordances to construct a dataset for
robot applications. Zhu et al. [73] built a dataset containing
attribute, affordance, human pose, and HOI spatial configu-
ration. But labeling pose and HOI are costly. Chao et al. [6]
proposed a semantic category-level affordance dataset in-
cluding 91 objects [36] and 957 affordances.

Causal Inference. There is increasing literature on ex-
ploiting causal inference [50] in machine learning, espe-
cially with causal graphical models [62, 50], including fea-
ture selection [21] and learning [4], video analysis [51, 33],
reinforcement learning [44, 9], etc. Recently, Wang et
al. [66] studied the causal relation between objects in im-
ages and used intervention [50] to alleviate the observation
bias. Atzmon et al. [1] analyze the causal generative model
of compositional zero-shot learning and disentangle the rep-
resentations of attributes and objects. Here, we explore the
causal relations between three object levels and apply back-
door adjustment [50] to alleviate the existing bias.
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Figure 2: OCL construction. a) Data collection. b) Annotating category-level attributes and affordances. c) Annotating
instance-level attributes and affordances. d) Finding direct and clear instance-level causal relations.

3. Constructing OCL Benchmark
We construct a benchmark to characterize abundant ob-

ject knowledge following Fig. 2.

3.1. Fine-Grained Object Knowledge Base

Data Collection. We briefly introduce the collection
of affordances, categories, and attributes classes and image
sources here.

(1) Affordance: We collect 170 affordances out of
1,006 candidates from widely-used action/affordance
datasets [6, 17, 5, 20, 73, 45] given generality and com-
monness.

(2) Category: Considering the taxonomy (WordNet [14])
and diversity, we collect 381 objects out of 1,742 can-
didates from object datasets [13, 68, 36, 49, 10, 38].

(3) Attribute: We manually filter the 500 most frequent
attributes from attribute datasets [13, 68, 36, 49, 10,
38, 29] and choose 114 attributes, covering colors, de-
formations, supercategories, surface, geometrical and
physical properties.

(4) Image: We extract 75,578 images from object
datasets [13, 68, 36, 49, 10, 38, 29], together with
Ground Truth (GT) boxes. To ensure diversity, we also
manually collected 4,885 Internet images of selected
categories. Then, we annotate the missing box and
category labels for all instances. Finally, 185,941 in-
stances of 381 categories from 80,463 images are col-
lected: average of 488 instances per category and 2.31
boxes per image. Details are given in the supplemen-
tary. OCL is long-tail distributed, where the head cat-
egories have over 5,000 instances each, but the rarest

Dataset # Image # Instance # Object # Attribute # Affordance
APY [13] 15,339 15,339 32 64 /
SUN [68] 14,340 14,340 717 102 /
COCO-a [49] 84,044 188,426 29 196 /
ImageNet150k [38] 150,000 150,000 1,000 25 /
Chao et al. [6] / / 91 / 957 (B)
Hermans et.al. [24] 375 - 6 21 7
Zhu et al. [73] 4,000 4,000 40 57 14
OCL 80,463 185,941 381 114 170

Table 1: Dense annotated datasets. OCL provides category-
and instance- level attributes (A, α), affordances (B, β).

categories have only 9 instances, which challenges the
robustness of machines greatly.

Annotating Attribute in two levels of granularity: (1)
Category-level attribute (A) contains common sense. For
each category, we annotate its most common attributes. In
concept learning, the usage of the category-level labels as
common knowledge can date back to [46]. Following [46],
to avoid bias, annotators are given category-attribute pairs
(category names instead of images) and multiple annotators
vote to build the binary A matrix MA in size of [381, 114].
(2) Instance-level attribute (α) is the individual attributes of
each instance. The annotation unit is an attribute-instance
pair and each pair is labeled by multiple annotators.

Annotating Affordance in two levels of granularity: (1)
Category-level affordance B, similar to A, is annotated
in category-affordance pairs, indicating the common affor-
dances of each category. Following [6], the annotators la-
bel B matrix MB in size of [381, 170]. (2) Instance-level
affordance β is annotated for each instance with the help
of object state. As B is defined by common states, ob-
jects in specific states may have different affordances from
B: if a service robot finds a broken cup, it may infer
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Figure 3: OCL samples including category, α (red), β (blue), and their causal relations in various contexts.

that the cup can still hold water as it is trained with B la-
bels. Thus, we need detailed β beyond B. β exhibits evi-
dent similarities for objects in similar status forming “state”
aligning with commonsense, thus we use them to stream-
line annotation and reduce the annotator discrepancy. A
state is defined as an [category, description (e.g.,
a set of attributes)] pair, and instances in a state usually pos-
sess similar affordances, e.g., fresh, juicy, clean
oranges are eatable. First, six experts conclude the
states by scanning all instances of a category and listing
all states according to affordance. Then these states were
merged manually. In total, 1,376 states are defined, and
each category has 3.6 states on average. Next, β is an-
notated for each state, and the instances are first assigned
with the state-level β. Bext, the instance-level β is detailed
based on the state-level β according to the visual content
of each instance. Note that the state is category-dependent
and can not be transferred among object categories, which
is different from attribute and affordance. Besides, the com-
position of attributes makes the state space huge and there
can be many unseen states. Thus, we only use them in an-
notation but not in our method.

Fig. 3 shows some examples of OCL. We compare OCL
with previous dense datasets in Tab. 1. More details, figures,
and tables are given in the supplementary.

3.2. Causal Graph Definition

We use a causal graph to shed light on the subtle causal-
ities of our knowledge base in Fig. 4. Causal graph [50]
indicates the underlying causalities based on components:

• O: object category

• I: object instance in an image

• A: category-level attribute

• α: instance-level attribute

• B: category-level affordance

• β: instance-level affordance

According to the prior knowledge about the causalities
between three levels, a hierarchical structure is depicted: (a)
the inner triangle with dotted lines is the category-level:
object category O, category-level attributes A, and affor-
dances B; (b) the outer triangle is the instance-level: in-
stance visual appearance I , instance-level attributes α, and
affordances β. Each directed possible arc in the graph indi-
cates the possible causality between two nodes.

Here, besides the red arcs indicating the common causal
relations (e.g., I → α, I → β as attribute/affordance recog-
nition from images), we define some special arcs given our
category-level attribute and affordance settings: (1) O →
A, O → B (dotted arcs): Given O, A,B are strictly deter-
mined within labels. (2) O → I , A → α, B → β (blue
arcs): The category-level O, A, and B are direct causes of
instance-level I , α, and β during the concept instantiation.
Note that, according to the previous analysis, we focus on
the A → B and α → β but sometimes the opposite can
also happen: A ← B and α ← β (“or” in Fig. 4). In anno-
tation and experiments, we observe that α → β is stronger
and more common and natural to human perception, so we
focus more on α→ β in our causal benchmark (Sec. 3.4).

In this work, we focus on α, β perception (I → α,
I → β) and visual reasoning (with I , inferring β given α)
for embodied AI. Thus, Fig. 4 is simplified. Our knowledge
base can support more tasks such as attribute/affordance
conditioned image generation (α → I , β → I) [57]. How-
ever, they are beyond the scope of this paper (Suppl. Sec. 3).
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Figure 4: Causal graph of our OCL task. “or” indicates that
either A← B or A→ B (α→ β or α← β) exists.

3.3. Causal Inference Benchmark on α→ β

We annotate instance-level (considering the context of
each instance) causality of α → β to answer “which at-
tribute(s) are the critical and direct causes of a certain af-
fordance?” in two phrases:

Filtering: Initially, we need to make binary decisions
on all instance-α-β triplets, which is far beyond handleable.
Fortunately, we find that most α-β classes (e.g., shiny and
kick) are meaningless and always of no causality. Thus,
we exclude the most impossible pairs and only annotate ex-
isting rules without ambiguity, meanwhile, guaranteeing the
completeness of causality. For each of the 114×170 α-β
pairs, we attach 10 samples for reference and 3 experts vote
yes/no/not-sure. We take the majority vote and the not-sure
and controversial pairs are rechecked. The not-sure and no
pairs are removed, and so do the ambiguous pairs. Finally,
we obtain about 10% α-β classes as candidates. The left
90% pairs may hold value, we plan to use LLMs to mine
new rules in future work, especially from ambiguous pairs.

Instance-level Causality: we adopt object states as a
reference. Multiple annotators have been involved for each
state-α-β triplet and are asked whether the specific attribute
is the clear and direct cause of this affordance in this state.
The answers are combined and checked for all instances of
a state. Finally, we obtain about 2 M instance-α-β triplets
of causal relations. As we have labeled all α and β for all
instances, the causal relations would be in four situations:
[0,0], [1,1]; [0,1], [1,0]. The former two are “positive”, e.g.,
fresh(1/0)→eat(1/0) for an apple. While the last two
are “negative”, e.g., broken(1/0)→drive(0/1) for a car.

Fig. 3 shows some causal examples. These causalities
are not thoroughly studied in previous datasets [73, 45, 15,
24]. For more details, please refer to the supplementary.

3.4. Task Overview

Here, we formulate the OCL task formally. Given an in-
stance I (content in box bo representing an object instance),
OCL aims to infer attribute α and affordance β while fol-

lowing the causalities. Formally, OCL can be described as:

< Pα, Pβ >= F(I, P (O|I)), (1)

where Pα, Pβ are the probabilities of α, β, P (O|I) is the
predicted category probability from an object detector [55].

We aim at benchmarking the reasoning ability of ma-
chines, causal relations in Fig. 4 can all be candidates.
However, annotating causal relations is usually ambiguous
and it is impractical to cover all relations. In a user study,
experts met significant divergence when annotating differ-
ent arcs. For embodied AI, affordance β is more important
in robot-world interactions. Moreover, both the causal re-
lation annotation and the ablations support that the causal
effect of α → β is more significant than the other alter-
natives. Thus, we only annotate the unambiguous α → β
(Sec. 3.3) and mainly measure the learning of α → β here.
Formally, the evaluation of α→ β learning follows

∆Pβ = ITE[F(I, P (O|I))], (2)

where ∆Pβ is the Individual Treatment Effect [60] of af-
fordance prediction change after we operate ITE[·] on a
model F(·). ∆Pβ is expected to follow the GT causal re-
lation between α, β from humans. For example, when the
attributes of an object change, then the causal-related affor-
dances should also change accordingly. We will detail the
ITE evaluation in Sec. 5. Note that A,B are decided by O.
Given O, we can get A,B via querying the prior MA,MB

(Sec. 3). Thus, we do not evaluate A→ B here.
We split images into the train, validation, and test sets

with 56K:14K:9K images. The validation and test sets
cover 221 of the 381 categories, and the train set covers
all categories. OCL is a long-tailed recognition task [19,
69] and requires generalization to cover the whole object
category-attribute-affordance space with imbalanced infor-
mation. Thus, it is challenging for current machines without
the reasoning ability to understand the causalities.

4. Object Concept Reasoning Network
Before proposing the OCRN, we first simplify the causal

graph in Fig. 4 to facilitate the implementation. We focus on
α → β and omit β → α. Similarly, we omit B → A. Be-
sides, I, α, β are the instantiations of O,A,B respectively
and we use a O′ node to represent O,A,B. The adapted
causal graph is shown in Fig. 5. OCRN implements the
instantiation of attribute and affordance, corresponding to
A → α, B → β. Thus the model can propose a coarse es-
timation of attribute and affordance at category-level, then
tune the results with the image patterns as a condition for a
more accurate prediction. Besides, we exploit intervention
to remove the causal relation between I and O to construct a
category-agnostic model. It suffers less from category bias
and is more capable of learning uncommon cases.
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Object Category Bias. OCL can be depicted as P (α|I)
and P (β|I, α). As the samples of different categories are
usually imbalanced, conventional methods may suffer from
severe category bias [66], e.g., animal accounts for 22%
instances in OCL, and home appliance only accounts for
3%. In P (α|I), category bias is imported following

P (α|I) =
m∑
i

P (α|I,Oi)P (Oi|I), (3)

where P (Oi|I) is the predicted category probability. That
is, O is a confounder [50] and pollutes attribute inference,
especially for the rare categories.

Causal Intervention. To tackle this, we propose OCRN
using intervention [50] to deconfound the confounder O for
α (Fig. 5). In α estimation, we use do(·) operation [50] to
eliminate the arc from O to I: P (α|do(I)) is

m∑
i

P (α|I,Oi)P (Oi)

=

m∑
i

P (Oi)

m∑
j

P (α|I, Aj)P (Aj |Oi)

=

m∑
i

P (α|I, Ai)P (Oi),

(4)

where m = 381. Aj is the category-attribute vector of jth

category. As A is decided by O, P (Aj |Oi) = 1 if i = j
and P (Aj |Oi) = 0 if i ̸= j, where Oi is the ith category
and Aj is the category-attribute of jth category. P (Oi) is

the prior probability of the i-th category (frequency in our
train set). We apply the intervention to reduce the bias from
O recognition for an category-agnostic model.

Similar to α, in β estimation, category bias also exists:

P (β|I, α) =
m∑
i

P (β|I, α,Oi)P (Oi|I, α). (5)

With Eq. 4, α is beforehand estimated and thus can be seen
as “enforced” and deconfounded. For I , we again use the
intervention [50]:

P (β|do(I, α)) =
m∑
i

P (β|I, α,Bi)P (Oi). (6)

Similar to Eq. 4, P (Bj |Oi) = 1 if i = j, P (Bj |Oi) = 0 if
i ̸= j, we omit the process for clarity.

4.1. Model Implementation

We represent nodes {I, A,B, α, β} as {fI , fA, fB , fα,
fβ} respectively in latent space. fI is the RoI pooling
feature of an instance extracted by a COCO pre-trained
ResNet-50 [23]. Following Eq. 4, we represent category-
level attribute A based on the mean object category feature
f̄Oi

, which is the mean of fI of all training samples in cat-
egory Oi. We map f̄Oi

to the attribute latent space fAi

with fully-connected layers (FC) (Fig. 5). fAi
stands for

the category-attribute representation for ith category.
Attribute Instantiation. Next, we obtain α representa-

tion following Eq. 4:

fαi = Fα(fI , fAi), fα =

m∑
i

fαi · POi , (7)
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where POi is the prior category probability (P (Oi) in
Eq. 4). Eq. 7 indicates the attribute instantiation from A
to α with I as the condition. Hence, we can equally trans-
late the α estimation problem into a conditioned instantia-
tion problem. Fα(·) is implemented with multi-head atten-
tion [65] with two entries (Fig. 5). The attention output is
compressed by a linear layer to the instantiated representa-
tion fαi

. The debiased representation fα is the expectation
of fαi

w.r.t POi
according to back-door adjustment in Eq. 4.

We also get the feature for specific attributes for ITE op-
eration (Sec. 5). fα is first separated to fαp

for each attribute
p (p ∈ [1, 114]) by multiple independent FCs, then we
can manipulate specific attributes by masking some certain
fαp . Next, the features are aggregated via concatenating-
compressing by an FC to f ′

α as shown in Fig. 5.
Affordance Instantiation. Similarly, FCs are used to

obtain fB from f̄Oi
and fAi

and Eq. 6 is implemented as:

fβi
= Fβ(fI , f

′
α, fBi

), fβ =

m∑
i

fβi
· POi

. (8)

Fβ(·) operates instantiation with conditions {fI , f ′
α, fBi

}.

4.2. Learning Objectives.

To drive the learning, we devise several objectives:
Category-level loss LC . We input category-level fA, fB

to two linear-Sigmoid classifiers to classify A,B. The
binary cross-entropy losses are LA and LB . The total
category-level loss is LC = LA + LB .

Instance-level loss LI . We input instance-level fα, fβ ,
together with fαi

, fβi
to linear-Sigmoid classifiers. The

separated fαp
are also sent to independent binary classifiers.

The binary cross-entropy losses are represented as Lα, Lβ .
The total instance-level loss is LI = Lα + Lβ .

The total loss is L = λCLC +LI . We adopt a two-stage
policy: first inferring attributes, then reasoning affordances.

5. Experiment
5.1. Metrics

α, β Recognition: we measure the correctness of model
prediction α̂ and β̂. For multi-label classification tasks, we
use the mean Average Precision (mAP) metric.

Reasoning: we use Individual Treatment Effect
(ITE) [60]. ITEi = Yi,T=1 − Yi,T=0 measures the causal
effect T → Y of ith individual with the difference between
outcomes (Y ) with or without receiving the treatment (T ).
In OCL, we discuss the causal relation between pth attribute
and qth affordance: αp → βq . So we interpret the treat-
ment T as the existence of αq and the outcome Y as the
βq output. We measure the difference of βq output when
the whole αq feature is wiped out or not, which should be
non-zero when the causal relation αp → βq exists.

black = 1
eat = 0

fresh = 1
eat = 1

Q1: Is it eatable?
A1: Model X: eat = 0.8

Model Y: eat = 0.9
Q2: what if it is not fresh?
A2: Model X: eat = 0.2

Model Y: eat = 0.8

Q1: Is it eatable?
A1: Model X: eat = 0.1

Model Y: eat = 0.1
Q2: what if it is not black?
A2: Model X: eat = 0.6

Model Y: eat = 0.0

ITE = 𝛽𝛽|do(𝛼𝛼) − 𝛽𝛽|do(𝛼𝛼)
= [A1] – [A2]

ITE ≠ 0 if causal relation exists 

X is better than Y for reasoning

𝒮𝒮ITE(𝑋𝑋) max[ 0.8−0.2, 0]=0.6
max[−(0.1−0.6), 0]=0.5
max[ 0.9−0.8, 0]=0.1
max[−(0.1−0.0), 0]=0.0

1.1

0.1𝒮𝒮ITE(𝑌𝑌)

Figure 6: Example of ITE reasoning benchmark.

In detail, given a model, for an instance with causal rela-
tion αp → βq (p ∈ [1, 114], q ∈ [1, 170]), we first formulate
ITE as the affordance probability change following Eq. 2:

ITE = ∆β̂q = β̂q|do(αp) − β̂q|do(ZZαp). (9)

β̂q|do(αp) is the factual output of the affordance probability.
β̂q|do(ZZαp) is the counterfactual output when the αp is wiped
out, which can be got by assign zero-mask [63] to the fea-
ture of αp (e.g., fαp

in OCRN) and keep the other features.
Then, based on ITE, we benchmark instances following:
ITE: If the causality αp → βq exists on the instance, ITE

should be non-zero when eliminating the effect of αp. And
the direction of ITE depends on the affordance ground-truth
βq: if βq = 0, the predicted β̂q tend to be 1 after wiping out
αp so ITE should be a negative value; contrarily, ITE should
be positive if βq = 1. Hence we compute the ITE score as:

SITE =

{
max(∆β̂q, 0), βq = 1,

max(−∆β̂q, 0), βq = 0,
(10)

so that larger SITE indicates the model infers more accurate
ITE directions and has better reasoning performance. An
example is given in Fig. 6.

α-β-ITE: we combine recognition and reasoning perfor-
mances. We multiply SITE with P (α̂p = αp) and P (β̂q =
βq) as a unified metric Sα-β-ITE.

For all metrics, we compute AP for each [αp, βq] and av-
erage them to mAP. Non-existing pairs are not considered.

5.2. Baselines

Different methods exploit different causal paths includ-
ing the sub-graphs with α → β or α ← β based on Fig. 4.
We implement a series of baselines following different sub-
graphs to fully exert the potential of OCL and divide them
into 3 folds w.r.t. α − β causal structure. We briefly list
them here and detail them in the supplementary:

Fold I. No arc connecting α and β:
(1) Direct Mapping from fI to Pα, Pβ via an MLP (DM-

V): feeding fI into MLP-Sigmoids to predict Pα, Pβ .
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(2) DM Linguistic feature (DM-L): replacing the fI of
DM-V with linguistic feature fL, which is the expectation
of Bert [11] embeddings of category names w.r.t P (Oi|I).

(3) Visual-Linguistic alignment, i.e., Multi-Modality
(MM): mapping fI to a latent space and minimizing the dis-
tance to fL, feeding it to an MLP-Sigmoids to get α, β.

(4) Linguistic Correlation of O-α, O-β (LingCorr): mea-
suring the correlation between object and α or β classes via
their Bert [11] embedding cosine similarities. Pα, Pβ are
given by multiplying P (O|I) to correlation matrices.

(5) Kernelized Probabilistic Matrix Factorization
(KPMF) [72]: calculating feature similarity to all training
samples as weights. Taking the weighted sum of GT α or β
of training samples as predictions.

(6) A&B Lookup: getting PA, PB from MA,MB .
(7) Hierarchical Mapping (HMa): mapping fI to

category-level attribute or affordance space by an MLP, then
feeding it to an MLP-Sigmoids to predict Pα or Pβ .

Fold II. β → α:
(8) DM from β to α (DM-β → α): same as DM-V but

using fβ to infer α.
(9) DM from β and I to α (DM-βI → α): same as DM-

V but using both fI and fβ to infer α.
Fold III. α→ β:
(10) DM from α to β (DM-α → β): same as DM-V but

using both fI and fα to infer β.
(11) DM from α and I to β (DM-αI → β): same as

DM-V but using both fI and fα to infer β.
(12) Retrieving α-β relation by Ngram [37] (Ngram):

adopting Ngram to retrieve the relevance of α & β. Then
we use DM predicted α and the relevance to estimate β.

(13) Markov Logic Network [56] (MLN-GT): using GT
α to infer β with MLN.

(14) Instantiation with attention (Attention): feeding
[fα, fI ] to an MLP-Sigmoid to generate attentions and pre-
dicting Pβ by multiplying the attentions with PB .

(15) DM with multi-head attention (DM-att): the α and
β features are sent to multi-head attention to learn their in-
teraction, then use MLP-Sigmoids to get predictions.

(16) Vanilla CLIP: CLIP [54] trained from scratch.

5.3. ITE loss

Though machines are expected to learn the causalities
given α, β labels only. We wonder how it would perform
given causal supervision. We adopt an extra Hinge loss to
maximize the ITE score of all [αp, βq]. In detail, we intend
the ITE of causal relations larger than a margin τ (= 0.1 in
experiments), so the loss term is:{

max{0, τ −∆β̂q}, βq = 1,

max{0, τ +∆β̂q}, βq = 0.
(11)

We enumerate all annotated [αp, βq] of an instance to ob-
tain LITE . Different from the default, the total loss here is

L = λCLC + LI + λITELITE .

5.4. Implementation Details

For a fair comparison, all methods adopt a shared
COCO [36] pre-trained ResNet-50 [23] (frozen) to extract
fI and use the same object boxes in training and inference.
In OCRN, the dimension of fI and all fAi , fBi , fα, fβ is
1024. The individual features of each attribute category are
512d and aggregated to 1024d by an FC. We train the at-
tribute module with a learning rate of 0.3 and batch size of
1024 for 470 epochs. Then the attribute module is frozen,
and the affordance module is trained with a learning rate
of 3.0e-3 and batch size of 768 for 20 epochs. In training,
λC = 0.03, λITE = 3.

5.5. Results

Tab. 2 presents the results. We can find that the causal
structure of the models matters in OCL. Comparing DM
methods implementing different causal graphs (including
α→ β, α← β), α as intermediate knowledge (DM-α→ β
and DM-αI → β) could advance β perception (DM-V).
But when β serves as intermediate (DM-β → α and DM-
βI → α), β perception is comparable or even worse than
DM-V. So the causal relation α → β is more evident than
β → α in the realistic dataset, which supports our choice in
Sec. 3.4 that we focus more on the α → β arc and imple-
ment our model with only α→ β.

OCRN outperforms the baselines and achieves decent
improvements on all tracks. In terms of α recognition,
with or without LITE , OCRN outperforms the second-best
method with 1.7 and 2.5 mAP respectively. As for β recog-
nition, the improvements are 0.7 and 1.1 mAP with or with-
out LITE . Comparatively, HMa utilizes the supervision of
A,B, but it performs much worse. A&B Lookup directly
uses GT A,B to infer α, β, but its poor performance verifies
the significant difference between A,B and α, β. Moreover,
we find that all methods perform better on β than α, and the
improvement of OCRN on α is larger too. This may be be-
cause α are more diverse than β, e.g., we can eat lots of
foods, but foods usually have various attributes (fruit
vs. pizza). And OCL also has fewer attribute classes than
affordance classes (114 vs. 170). Another reason is that the
positive samples in β labels (23.2%) are much more than
the positives in α labels (9.4%). The different pos-neg ratio
affects learning a lot and results in the above gap.

In ITE evaluation, without the guidance of LITE , all
methods achieve unsatisfactory performances. However,
OCRN still has an advantage. Only MLN-GT adopting the
first-order logic and GT α labels is comparable with OCRN.
If trained with LITE and direct causality labels, all methods
perform much better to learn the causalities, e.g. on OCRN,
the ITE loss brings 10.8 and 7.7 mAP improvements on
the two ITE tracks. Particularly, the typical deep learning
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Fold Method α β SITE Sα-β-ITE

i N/A

DM-V 29.9 51.8 - -
DM-L 21.2 47.5 - -
MM 23.8 48.9 - -
LingCorr 7.9 25.9 - -
KPMF 25.4 49.1 - -
A&B-Lookup 18.9 30.9 - -
HMa 28.6 51.7 - -
DM-att 21.9 49.2 - -
Vanilla CLIP 23.6 49.6 - -

ii: β → α
DM-β → α 30.0 52.0 - -
DM-βI → α 29.5 51.8 - -

iii: α→ β

DM-α→ β 28.7 52.6 7.6 6.7
DM-αI → β 29.0 52.6 8.1 7.0
Ngram 22.6 50.8 8.3 7.6
MLN-GT - 33.4 9.5 9.1
Attention 24.1 48.9 8.1 7.1
OCRN 31.6 53.3 9.5 9.2

α→ β

DM-α→ β w/ LITE 28.8 52.4 15.5 14.0
DM-αI → β w/ LITE 29.0 52.5 15.4 13.6
Ngram w/ LITE 22.2 49.9 14.1 12.9
MLN-GT w/ LITE - 33.7 12.3 11.8
Attention w/ LITE 23.9 49.0 17.8 15.5
OCRN w/ LITE 31.5 53.6 20.3 16.9

Table 2: OCL results. w/ LITE means that training with
ITE loss. The baselines in the upper block cannot operate
ITE due to the model structure. Different α-β relations are
exploited for causal graph comparison.

model Attention performs best in baselines, but MLN-GT
no longer holds the advantage. Relatively, OCRN shows
more improvements and outperforms Attention with 2.5 and
1.4 mAP on the two ITE tracks.

We provide more visualizations and discussions in the
supplementary. In particular, we also apply OCRN to
Human-Object Interaction Detection [5], where OCRN
boosts the performances of multiple HOI models and veri-
fies the generalization and application potential of OCL.

5.6. Ablation Study

We verify the components of OCRN on the validation set
in Tab. 3.

(1) Deconfounding. OCRN w/o deconfounding is im-
plemented following Eq. 3 and 5, where P (O|I) and
P (O|I, α) are the category predictions of pre-trained de-
tectors [39]. All the α, β and ITE performances drop due to
the object bias. For more bias analyses please refer to the
supplementary.

(2) Losses. The performances slightly drop after remov-
ing category-level LAi

, LBi
, but significantly drop without

instance-level Lα, Lβ by over 20 mAP.
(3) Feature dimension. We compare different dimen-

tionality for feature fAi , fBi , fα, fβ . Smaller and larger
feature sizes than 1024 all have degrading effects.

(4) ITE-related implementations. We probe some dif-

Method α β SITE Sα-β-ITE

OCRN 32.4 52.2 20.5 17.0
w/o deconfounding 32.1 51.8 18.2 16.1
w/o LAi , LBi 32.1 51.8 19.8 16.7
w/o Lα, Lβ 10.0 27.0 16.6 16.4
128 Dims 31.7 51.5 18.0 16.0
512 Dims 32.3 52.1 19.9 16.7
2048 Dims 32.2 51.5 19.1 16.3
Mean aggregation 32.2 51.3 18.9 16.7
Max-pooling aggregation 32.1 49.1 19.0 16.8
Random counterfactual 32.4 51.8 5.1 5.1

Table 3: Ablation study results (validation set).

ferent methods: (a) Mean aggregation: f ′
α =

∑
i fαp

; (b)
Max-pooling aggregation: f ′

α is the max value of fαp
as

each component; (c) Random counterfactual feature: as-
signed random vector as the counterfactual attribute feature
(instead of zero vector) during ITE. These methods perform
worse than the chosen setting on ITE performance but are
comparable on α and β performance.

5.7. Discussion

Overall, OCL poses extreme challenges to current AI
systems. It expects representative learning to accurately
recognize attributes and affordances from raw data mean-
while causal inference to capture the causalities within di-
verse instances and contexts, i.e., both the intuitive System 1
and logical System 2 [2]. From the experiments, we find that
models struggle to achieve satisfying results on all tracks si-
multaneously. Notably, it is difficult to achieve a satisfying
ITE score via data fitting. There is much room for improve-
ment. For future studies, a harmonious performance on
α, β, and causality learning are encouraged to better capture
object knowledge. Potential directions may include causal
representation learning [61], neural-symbolic reasoning [3],
and Foundation Models [47]. etc.

6. Conclusion

In this work, we introduce object concept learning
(OCL) expecting machines to infer affordances and explain
what attributes enable an object to possess them. Accord-
ingly, we build an extensive dataset and present OCRN
based on casual intervention and instantiation. OCRN
achieves decent performance and follows the causalities
well. However, OCL remains challenging and would inspire
a line of studies on reasoning-based object understanding.
Acknowledgment: Supported by the National Key
R&D Program of China (No.2021ZD0110704), Shang-
hai Municipal Science and Technology Major Project
(2021SHZDZX0102), Shanghai Qi Zhi Institute, Shanghai
Science and Technology Commission (21511101200).
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