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Abstract

While the field of multi-modal learning keeps growing
fast, the deficiency of the standard joint training paradigm
has become clear through recent studies. They attribute the
sub-optimal performance of the jointly trained model to the
modality competition phenomenon. Existing works attempt
to improve the jointly trained model by modulating the
training process. Despite their effectiveness, those meth-
ods can only apply to late fusion models. More importantly,
the mechanism of the modality competition remains unex-
plored. In this paper, we first propose an adaptive gradient
modulation method that can boost the performance of multi-
modal models with various fusion strategies. Extensive ex-
periments show that our method surpasses all existing mod-
ulation methods. Furthermore, to have a quantitative un-
derstanding of the modality competition and the mechanism
behind the effectiveness of our modulation method, we in-
troduce a novel metric to measure the competition strength.
This metric is built on the mono-modal concept, a function
that is designed to represent the competition-less state of
a modality. Through systematic investigation, our results
confirm the intuition that the modulation encourages the
model to rely on the more informative modality. In addi-
tion, we find that the jointly trained model typically has a
preferred modality on which the competition is weaker than
other modalities. However, this preferred modality need not
dominate others. Our code will be available at https:
//github.com/lihong2303/AGM_ICCV2023.

*These authors contributed equally.
†Corresponding author: Yi Zhou.

1. Introduction

Recent years have seen tremendous progress in deep
multi-modal learning. Despite these advances, integrating
information from multiple modalities remains challenging.
Many efforts have been made to design sophisticated fu-
sion methods for better performance. However, adding ad-
ditional modalities only slightly improves accuracy in some
multi-modal tasks. For example, trained on the CMU-
MOSEI [5] dataset, the accuracy of the text-based single-
modal model is only about 1% point lower than that of the
multi-modal model based on both text and audio modalities.
Similar phenomena have also been observed across a wide
variety of multi-modal datasets [25, 4].

Such an inefficiency in exploiting and integrating infor-
mation from multiple modalities presents a great challenge
to the multi-modal learning field. It is commonly believed
that this inefficiency is a consequence of the existence of
the dominant modality, which prevents the model from fully
exploiting the other relatively weak modalities [18, 14]. Re-
cent studies [1, 15, 10] theoretically investigate the training
process of late fusion models and explain the production of
the dominant modality with the concept of modality com-
petition. In addition to the theoretical studies, there is a
group of empirical works that attempts to develop methods
to modulate the training of a multi-modal model and bal-
ance the learning of different modalities and, thus, achieve
better performance. To our best knowledge, existing mod-
ulation methods are confined to late fusion models which
greatly limits their application. More importantly, little ef-
fort has been paid to the study of the mechanism behind the
effectiveness of those modulation methods.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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Figure 1. Schematic diagram of the adaptive gradient modulation (AGM) method. Firstly, based on the full input and corresponding muted
inputs, the Shapley module produces mono-modal outputs ϕm, which disentangle the responses of the multi-modal model to individual
modalities. Next, ϕm are used to compute the mono-modal cross-entropy sm that reflect the amount of information in modality m. At last,
sm and their running average ŝm are fed to the Discrepancy Ratio module to compute the modulation coefficients κm for each modality,
which in turn modulate the strength of corresponding gradient signals during back-propagation.

It is natural to ask Can we design a modulation method
that applies to more complex fusion strategies? and Is it
possible to understand the working mechanism of modu-
lation in terms of modality competition? To this end, we
propose an adaptive gradient modulation method, which
utilizes a Shapley value-based attribution technique, that
can in principle apply to any fusion strategy. Our ap-
proach achieves better performance compared with the cur-
rent modulation methods. Moreover, we introduce the
mono-modal concept to represent the competition-less state
of a modality in a multi-modal model and build a metric
on top of it to directly measure the competition strength of
a modality in this multi-modal model. This novel metric
lay the base for us to quantitatively study the behavior of
modality competition and the working mechanism of our
adaptive gradient modulation method.

Our main contributions are three-fold:

1. We propose an adaptive gradient modulation method
that can boost the performance of multi-modal models
with various fusion strategies and justify its effective-
ness through extensive experiments.

2. We introduce the mono-modal concept to capture the
competition-less state of a modality and build a novel
metric to measure the modality competition strength.

3. We systematically analyze the behavior of modality
competition and study the mechanism of how our mod-
ulation method works.

2. Related work
2.1. Multi-modal learning

Multi-modal learning is a fast-growing research area. It
addresses the needs of effectively processing multi-sensory
data in real-world tasks and has applications in various
fields, such as multi-modal sentiment classification [31, 4],
audio-visual localization [23] and visual question answer-
ing [2, 16, 28]. According to the fusion strategy, one dis-
tinguishes three types [3], i.e., the late fusion, the early fu-
sion, and the hybrid fusion, when the fusion happens at the
output stage, at the input stage, and in a complex manner,
respectively. From another perspective, existing models can
be divided into two categories, either jointly training differ-
ent modalities in an end-to-end fashion or exploiting pre-
trained models and building a multi-stage pipeline.

In this paper, we focus on the multi-modal joint training
models for the multi-modal classification task, and we will
compare models with different fusion strategies.

2.2. Modality-specific modulation

Recent studies [26, 15] reveal the deficiency of the multi-
modal joint training paradigm that information on the in-
put modalities is often under-exploited. To address this
deficiency, existing works commonly propose to intervene
in the training process. Geng et al. [8] propose to obtain
noise-free multi-view representations with the help of un-
certainty in Dynamic Uncertainty-Aware Networks. Wang
et al. [27] devise the Gradient-blending technique which ad-
dresses the overfitting in a multi-modal model by optimally
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blending modalities. Wu et al. [29] propose to balance the
speed of learning from different modalities based on their
conditional utilization rates. Fujimori et al. [6] empha-
size the heterogeneity of different network branches in joint
training and propose to avoid overfitting through modality-
specific early stopping. Yao and Mihalcea [30] advocate
using modality-specific learning rates for different branches
in a multi-modal model to fully explore the capacity of the
corresponding network architecture. More recently, Peng et
al. [20] proposes to adjust the gradients of individual modal-
ities based on their output magnitudes. The assumption is
that in an ideal multi-modal model, the outputs of individ-
ual modalities should be balanced, i.e., having similar mag-
nitudes. Consequently, the gradient of the modality with
larger outputs will be modulated on-the-fly towards a lower
magnitude during each training iteration.

Despite the effectiveness of the above-mentioned meth-
ods, they are all confined to late fusion models, limiting
their practical use. More importantly, the mechanism of
why those methods work to improve the multi-modal model
remains unexplored.

2.3. Mono-modal behavior

One way to investigate the mechanism underlying a
multi-modal model is to quantify how much modalities af-
fect each other in the model. In a recent theoretical analysis,
Huang et al. [15] term this interaction among modalities as
the modality competition.

Due to the complexity and non-linearity of neural net-
work models, it is infeasible to isolate a part of the compu-
tations that account for the competition. Existing works in-
stead attempt to measure the mono-modal behavior inside a
multi-modal model, which can partly reflect the interactions
among modalities. Hessel and Lee [13] design the empiri-
cal multimodally-additive function projection (EMAP) that
implicitly reflects the mono-modal behavior by averaging
out all other modalities. Yao et al. [30] employ the layer
conductance [22] to evaluate the importance of individual
modalities in late fusion models. Gat et al. [7] propose the
perceptual scores to measure the mono-modal importance
directly. The key idea of their method is the input permuta-
tion, which removes the influence of modalities other than
the targeting one. What is most related to the goal of mea-
suring the modality competition is the recently proposed
SHAPE scores [14]. The authors devise a way to compute
the mono-modal marginal contribution and the cross-modal
cooperation strength based on the Shapley values.

It is worth noting that all the above-mentioned meth-
ods are self-oriented in the sense that they only utilized the
multi-modal model, where competition already presents.
The lack of information about how each modality behaves
without competition prevents those models from faithfully
reflecting the modality competition strength.

3. Method
3.1. Adaptive gradient modulation

Drawing inspiration from the Shapley value-based attri-
bution method [14] and the On-the-fly gradient modulation
generalization enhancement (OGM-GE) algorithm [20], we
propose an adaptive gradient modulation (AGM) method
that modulates the level of participation of individual
modalities. Figure 1 presents the illustration of the proposed
AGM. Our approach is in line with the OGM-GE algorithm
in the sense that both attempt to balance the mono-modal
responses in a multi-modal model.

Nonetheless, our approach differs from the OGM-GE in
the following three important aspects: 1) We adopt a Shap-
ley value-related method to compute the mono-modal re-
sponses. In this way, our approach applies to complex fu-
sion strategies rather than being limited to the late fusion
case. 2) We extend the method to calculate the discrep-
ancy ratios so that our approach can deal with situations
with more than two modalities. 3) In our approach, the dis-
crepancy ratios are modulated towards their running aver-
age rather than 1, reflecting the distinctions among different
modalities.

3.1.1 Isolating the mono-modal responses

The core component of our approach is the algorithm to
isolate the mono-modal responses, which enables us to fur-
ther compute the mono-modal cross entropy and the mono-
modal accuracy.

Let ϕ(x), x = (xm1 , . . . , xmk) be a multi-modal model
on the data with k modalities and M := {mi}i∈[k] be the
set of all modalities. Same as in [14] we use zero-padding
0m to represent the absence of features of modality m.
When S is a subset of M, ϕ(S) denotes that if m ∈ S,
the component xm is substituted with 0m. Then the mono-
modal response for m is defined as

ϕm(x) =
∑

S⊆M/{m};S ̸=∅

|S|!(k − |S| − 1)!

k!
Vm(S;ϕ),

(1)
where Vm(S;ϕ) = ϕ(S ∪ {m}) − ϕ(S). Note that we
exclude the empty subset from the above summation. In
this way, we ensure the relation

ϕ(x) =
∑
m

ϕm(x). (2)

As an example, for the two-modality case eq. (1) is sim-
plified to

ϕm1(x) =
1

2
[ϕ({m1,m2})− ϕ({0m1 ,m2})

+ϕ({m1, 0
m2})] .

(3)
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The mono-modal cross entropy and mono-modal accu-
racy are then defined subsequently,

sm = Ex∼D [− log (Softmax(ϕm(x))y)] , (4)

and
Accm = Ex∼D

[
1y=yp(x)

]
, (5)

where y is the ground-truth class of x and yp the model
prediction, yp(x) = argmaxy′∈[K] ϕ

m
y′(x).

3.1.2 Modulating the training process

We modulate the level of participation of individual modal-
ities through adjusting the intensity of the back-propagation
signal of each modality,

θt+1 = θt − η
∂L
∂ϕ

·
∑
m

κm
t

∂ϕm

∂θ

∣∣∣∣
t

, (6)

where t refers to a specific iteration of training, θ denotes
the trainable network parameters, η is the learning rate and
L is the loss function.

Coefficient κm
t controls the magnitude of the update sig-

nal for modality m at iteration t. Intuitively, if a modality
is too strong (weak) we want to suppress (amplify) its up-
date signal. The strength of a modality is measured by the
averaged differences relative to the other modalities

rmt = exp

 1

K − 1

∑
m′∈[K];m′ ̸=m

(smt − sm
′

t )

. (7)

We choose to compare different modalities based on their
mono-modal cross-entropy, since smt reflects the amount of
information attributed to modality m within the full model
outputs. Then κm

t is defined as follows

κm
t = exp (−α ∗ (rmt − τmt )), (8)

where α > 0 is a hyper-parameter that controls the degree
of modulation and τmt is the reference for modulation. Con-
sequently, when a modality is too strong (rmt > τmt ), we
lower its update signal (κm

t < 1).
In the current implementation, we choose τmt to be

τmt = exp

 1

K − 1

∑
m′∈[K];m′ ̸=m

(
ŝm(t)− ŝm

′
(t)

),

(9)
where ŝm(t) denotes the running average of mono-modal
cross-entropy at iteration t,

ŝm(t) = ŝm(t− 1) · t− 1

t
+

smt
t
. (10)

The above steps are summarized in Algorithm 1 below.

Algorithm 1 Adaptive Gradient Modulation
1: Training dataset D = {(xm1 , xm2 , .., xmk), yi}, itera-

tion number T , logits output of a modality omt , model
logits output ot, softmax output of a modality pmt ,
batch size N , mono-modal information smt , batch in-
formation discrepancy rmt , running average informa-
tion discrepancy τmt , modulation coefficient κm

t , m ∈
{m1,m2, ...,mk}.

2: ŝm = 0.
3: for t=1, 2, . . . , T do
4: om1

t , om2
t , ..., omk

t , ot = net(xm1 , xm2 , ..., xmk)
5: pmt = Softmax(omt )

6: smt = 1
N

∑N
i=1 log

pm
t [i][y[i]]

7: st =
s
m1
t +s

m2
t +,...,+s

mk
t

k , ŝt =
ŝ
m1
t +ŝ

m2
t +,...,+ŝ

mk
t

k

8: rmt = e((s
m
t −st)· k

k−1 ), τmt = e((ŝ
m−ŝt)· k

k−1 )

9: κm
t = e(−α∗(rmt −τm

t ))

10: ŝm = ŝm·t
t+1 +

smt
t+1

11: Update using θt+1 = θt − η ∂L
∂ϕ ·

∑
m κm

t
∂ϕm

∂θ

∣∣∣∣
t

12: end for

3.2. Mono-modal competition strength

The empirical study [26] demonstrates that multi-modal
joint training can lead to suboptimal performance that is
even worse than the mono-modal model. Recently, Huang
et al. [15] theoretically study this phenomenon in a sim-
plified setting and attribute it to the modality competition
mechanism that the representation learning of a modality
is generally affected by the presence of other modalities.
The authors further suggest that modality competition po-
tentially explains the effectiveness of the adaptive learning
methods [26, 20], which are designed to improve the per-
formance of joint training.

However, the above-mentioned studies are all confined to
late fusion cases. It remains unexplored whether the modal-
ity competition mechanism can generalize to other fusion
strategies and how it alters the representation learning in re-
alistic multi-modal models. This leads to an urgent need for
methods that directly measure competition strength.

To quantify modality competition, one must specify the
competition-less state for each modality. Previous attribu-
tion methods [13, 30, 7, 14] only utilize the responses of
the underlying multi-modal model where the competition
already took place and, hence, is in principle incapable of
reflecting modality competition. To address this challenge,
we introduce the mono-modal concept, which defines how
the corresponding modality in a given multi-modal model
will behave in the absence of modality competition. Then
the competition strength is estimated based on the devia-
tion of the multi-modal model outputs with respect to this
mono-modal concept.
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3.2.1 Mono-modal concept

Let x = (xm1 , xm2) denote a multi-modal input feature,
where xm1 and xm2 refer to the mono-modal components.
We focus on two modalities case below and the extension
to more modalities is straightforward.

The processing of xm1 by a multi-modal model is deter-
mined by the complementary component xm2 , the network
architecture ϕ1 , the training settings T 2 and the dataset D.
We call this quadruple Em1

:= (xm2 , ϕ, T ,D) as the envi-
ronment of mono-modal input xm1 . Roughly speaking, in
the competition-less state we want to remove the effects of
xm2 while retaining the “normal” processing of xm1 . This
can be formally denoted as Em1

/m2.
With the above notations, we abstract the competition-

less state for m1 as a function Cm1(xm1 ; Em1
/m2) that

maps the inputs to vectors in RK , where K is the num-
ber of classes. Intuitively, Cm1 captures the responses,
of a given multi-modal model, to the mono-modal inputs
without modality competition. Following the terminology
in [19], Cm1 is referred as the mono-modal concept of
modality m1. In the following, we elaborate the construc-
tion of Cm,m ∈ {m1,m2} under different situations.

Late fusion case. In late fusion the multi-modal model
can be written as ϕ(x) = ϕm1(xm1) + ϕm2(xm2). It is
natural to set Em1

/m2 = (0m2 , ϕm1 , Tm1
,Dm1

). 0m2 de-
notes the null input of modality m2, which is realized, in
the current case, by simply discarding the branch ϕm2 . Tm1

refers to the same training set for the m1 branch as it was
during the training of the multi-modal model ϕ. At last,
Dm1

denotes the set of mono-model feature components
{xm1

i }i∈[N ], where N is the number of data samples and
[N ] := {1, . . . , N}. In practice, we need to train ϕm1 on
Dm1

with settings Tm1
, and Cm1 is nothing but the resulting

network function.

Early and hybrid fusion cases. In these situations, the
model can only be written as ϕ(xm1 , xm2). There is no ap-
parent way to separate the processing of xm1 and xm2 at
the architecture level. In order to mute the influence from
m2, we substitute xm2 with a zero vector of the same di-
mension. Since the zero vector bears no information about
the task, it won’t introduce modality competition. There-
fore, one can formally write Em1

/m2 = (0m2 , ϕ, T ,Dm1
),

indicating that the architecture and training settings are the
same as for the multi-modal model. This time 0m2 refers to
the zero input of m2 feature components 3. Practically, to

1we abuse the symbol ϕ a little so that it may refer to both the network
architecture and the corresponding network function.

2T includes the initialization, the loss function, hyper-parameters, and
specific techniques, e.g., the learning rate scheduler, used in training.

3We also try to use the random inputs for 0m. Our results suggest that
there is no big difference between these two implementations. Please refer

construct Cm1 , we need to train ϕ on D′ := Dm1 ⊗ {0m2}
with T . Samples in D′ are of form (xm1 ,0m2).

3.2.2 Competition strength

With the mono-modal concepts as a reference, we are ready
to quantify the deviation of the multi-modal model re-
sponses from those competition-less states. A linear prob-
ing method [19] is employed to estimate this deviation.
Specifically, let z be the latent feature before the last clas-
sifier layer in the multi-modal model, we train a linear pre-
dictor from z to the targeting mono-modal concept Cm,

fm(z) = Wz + b, (11)

whose parameters W and b are determined by minimizing
the empirical mean square error of the predictions,

Wm,∗,bm,∗ =argmin
w,b

1

N

∑
i∈[N ]

∥fm(zi)− Cm(xm
i )∥22

+ λ (∥W∥2 + ∥b∥2) ,
(12)

where ∥·∥p denotes the Lp norm, i refers to the index of
data samples and λ is the regularization strength. The L2

regularization term is introduced to avoid overfitting.
The quality of the above linear fitting reflects how much

the multi-modal features deviate from their competition-
less states. Thus we define the competition strength as

dm =

∑
i (Cm(xm

i )− fm(zi))
2∑

i(Cm
(
xm
i )− Cm

)2 , (13)

where Cm is the mean mono-modal concept value over data
samples. dm measures the quality of the linear predictions
with respect to the naive baseline, i.e., simply predicting
the mean value. Its value ranges from 0 to 1, indicating the
weakest and strongest competition levels respectively.

In practice, we reserve two hold-out datasets for comput-
ing the competition strength. One of them is used to train
the linear predictor and the other to calculate dm.

4. Experiments and discussion
4.1. Experimental settings

In this paper, we systematically apply our adaptive gra-
dient modulation approach to situations that cover different
fusion strategies, different modality combinations, and dif-
ferent network architectures. For the late fusion case, our
approach is compared with existing modulation methods.
Moreover, we also include the mono-modal accuracy and
the modality competition strength for all the situations.

to the supplementary material for the detailed sanity check of the definition
of the mono-modal concept.
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We carry out experiments 4 on five popular multi-modal
datasets. The AV-MNIST [25] is collected for a multi-media
classification task that involves disturbed images and audio
features. The CREMA-D [4] is an audio-visual dataset for
speech emotion recognition which consists of six emotional
labels. The UR-Funny [11] is created for humor detec-
tion, involving words (text), gestures (vision), and prosodic
cues (acoustic) modalities. The AVE [23] is devised for an
audio-visual event localization classification task, including
28 event classes. The CMU-MOSEI [31] is collected for
sentence-level emotion recognition and sentiment analysis,
including audio, visual, and text modalities. Here we only
use text and audio modalities.

The experiments can be grouped into two classes. The
first one concerns the performance of our approach and the
behavior of modality competition in the late and early fu-
sion strategies across different multi-modal datasets. We
adopt a unified design of the multi-modal models in this
class. The fusion module in the early fusion case is all
built with the MAXOUT [9] network. In addition, for each
dataset, the network models for both fusion strategies use
the same encoder architecture. Specifically, for the AV-
MNIST, the CREMA-D, and the Kinetics-Sound datasets,
ResNet18 [12] is used as an encoder for both the audio and
visual modalities. For the UR-Funny dataset, we use Trans-
former [24] for the encoder for all three modalities.

In the second class, we carry out experiments with cur-
rent SOTA models and show that our approach can also
enhance more complex models in a realistic application.
For the AVE dataset, the PSP [32] network is used, which
features elaborately designed methods that align the audio
and visual representations during fusion. For the CMU-
MOSEI dataset, we adopt the Transformer-based joint-
encoding (TBJE) [5] as the model. TBJE jointly encodes
input modalities through the modular co-attention and the
glimpse layer.

Our code is implemented in Pytorch 1.2, and experi-
ments are run on a single NVIDIA 3090 GPU. For the de-
tailed experimental settings and hyper-parameters, please
refer to the supplementary material.

4.2. The effectiveness of AGM

In this subsection, we focus on the Acc column in all
the tables and demonstrate the universal effectiveness of our
AGM method in improving the model performance.

Tables 1 to 3 summarize the results on the AV-MNIST,
the CREMA-D, and the UR-Funny dataset, respectively. In
the late fusion cases, our approach is compared with the
Modality-Specific Early Stopping (MSES) and Modality-

4To better demonstrate the universal effectiveness of AGM, we further
carry out experiments on the Kinetics-Sound [17] using both the late fu-
sion and the FiLM [21] fusion strategies. These results are included in the
supplementary material due to the space limit.

AV-MNIST Acc Acca Accv da dv

L
at

e
fu

si
on

Ca - 39.61 - - -
Cv - - 65.14 - -
Joint-Train 69.77 16.05 55.83 0.7838 0.1408
G-Blending [27] 70.32 14.36 56.59 0.7963 0.1359
Greedy [29] 70.65 18.80 63.46 0.7358 0.1340
MSES [6] 70.68 27.50 63.34 0.7538 0.1372
MSLR [30] 70.62 22.72 62.92 0.7300 0.1437
OGM-GE [20] 71.08 24.53 55.85 0.7445 0.1617
AGM 72.14 38.90 63.65 0.6787 0.1197

E
ar

ly
fu

si
on Ca - 41.60 - - -

Cv - - 65.46 - -
Joint-Train 71.15 24.28 60.14 0.7668 0.1825
AGM 72.26 47.79 68.48 0.7146 0.1796

Table 1. The accuracy (Acc, Acca, Accv) and the competi-
tion strength (da, dv) on the AV-MNIST dataset for multi-
modal models using different fusion strategies. In late fusion,
comparison with several modality-specific intervention methods:
Modality-Specific Early Stop (MSES), Modality-Specific Learn-
ing Rate(MSLR), and On-the-fly Gradient Modulation General-
ization Enhancement (OGM-GE). The results of Joint-Train are
included as baselines. Ca and Cv indicate the performance of au-
dio and visual modality concepts, respectively. The best results are
shown in bold.

Specific Learning Rate (MSLR) methods. For situations
with only two modalities, we also include the results of the
Gradient Blending (G-Blending), Characterizing and Over-
coming the Greedy Nature of Learning (Greedy), and On-
the-fly Gradient Modulation Generalization Enhancement
(OGM-GE) method.

It is evident that our approach constantly improves the
performance w.r.t. the Joint-Train case and achieves the best
accuracy in all situations. In the late fusion case, while all
modulation methods generally boost the performance com-
pared to the Joint-Train baseline, our approach exceeds the
second-best one for a gap of at least 1.06%. It is notable that
the improvement in the early fusion case by our approach
is comparable with the ones in late fusion cases. We note
the significant increase in accuracy on CREMA-D, where,
after modulating, the results of our approach are 17.34%
and 19.58% higher than the ones of Joint-Train in late and
early fusion, respectively. There is also a gap of 10.34%
between our approach and OGM-GE. Such supersizing ef-
fectiveness may be attributed to the fact that the most in-
formative modality in CREMA-D, i.e., the visual modality,
is considerably under-exploited in the Joint-Train. In fact,
the mono-modal accuracy of the visual modality is only
22.72%, which is much lower than its potential performance
of the mono-modal concept, i.e., 75.93%. We observe that
the improvement from MSES and MSLR is often very lim-
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UR-Funny Acc Acca Accv Acct da dv dt

L
at

e
fu

si
on

Ca - 59.23 - - - - -
Cv - - 53.16 - - - -
Ct - - - 63.46 - - -
Joint-Train 64.50 50.31 51.53 49.78 0.5558 0.1058 0.4513
MSES [6] 64.23 50.31 49.69 57.87 0.5605 0.1028 0.4592
MSLR [30] 64.74 50.31 48.62 49.69 0.5257 0.0975 0.4316
AGM 65.97 54.87 49.36 62.22 0.5234 0.0725 0.5147

E
ar

ly
fu

si
on

Ca - 58.25 - - - - -
Cv - - 53.29 - - - -
Ct - - - 61.07 - - -
Joint-Train 65.15 54.87 50.86 54.14 0.7217 0.2672 0.2906
AGM 66.07 64.87 55.20 63.36 0.6962 0.2697 0.3200

Table 2. The same as Table 1, but for UR-Funny dataset. The involved modalities are audio, visual, and text.

CREMA-D Acc Acca Accv da dv

L
at

e
fu

si
on

Ca - 62.63 - - -
Cv - - 75.93 - -
Joint-Train 61.14 57.10 22.72 0.4593 0.7555
G-Blending [27] 62.03 19.58 16.89 0.4706 0.8005
Greedy [29] 63.08 43.05 16.89 0.4598 0.7661
MSES [6] 60.99 54.86 22.57 0.4607 0.7546
MSLR [30] 64.42 54.86 26.31 0.4614 0.7150
OGM-GE [20] 68.16 55.16 36.32 0.5448 0.6929
AGM 78.48 48.58 57.85 0.6624 0.5067

E
ar

ly
fu

si
on Ca - 61.29 - - -

Cv - - 75.78 - -
Joint-Train 61.88 42.60 16.89 0.5345 0.9905
AGM 81.46 76.53 80.42 0.8753 0.6496

Table 3. The same as Table 1, but for CREMA-D dataset.

ited. Actually, on CREMA-D the accuracy of MSES in the
late fusion case is worse than the one of Joint-Train. This
could be the consequence that MSES only controls the time
to stop training and, thus, can only provide limited guidance
to the weights update.

We next show that our approach can also boost the per-
formance of existing SOTA models. Those models nor-
mally equip with elaborately designed fusion modules to
ensure higher prediction accuracy. Table 4 shows the results
on the AVE dataset and CMU-MOSEI dataset, on which
the improvements are 1.09% and 0.85%, respectively. It
is worth noting that all other modulation methods can not
apply to such complex situations, as there are no separable
branches in the network models for different modalities.

AGM adjusts the modulation coefficients based on the
running average of the mono-modal cross entropy which
serves as a reference of idea relative strengths of individual

AVE Acc Acca Accv da dv

Ca - 65.00 - - -
Cv - - 64.69 - -
PSP [32] 76.02 52.58 50.18 0.6223 0.6232
AGM 77.11 72.34 70.68 0.6198 0.6337

CMU-MOSEI Acc Acct Acca dt da

Ct - 80.92 - - -
Ca - - 74.46 - -
TBJE [5] 80.91 73.59 73.08 0.5794 0.9450
AGM 81.76 79.41 73.08 0.5774 0.9540

Table 4. The accuracy and competition strength on the AVE and
the MOSEI dataset for the general joint-training network with
elaborating fusion structures network. Audio and visual are in-
volved in the AVE dataset and audio and text in MOSEI. PSP
stands for general joint training network for the AVE dataset and
TBJE for the CMU-MOSEI dataset. Ca, Cv and Ca indicate the
performance of audio, visual, and text modality, respectively. The
best results are shown in bold.

modalities. Additional experiments demonstrate that this
reference is better than the brutal force requirement of equal
contribution from all modalities. Further, we consider an in-
depth comparison between AGM and the OGM-GE as their
performance outstands in our experiments. Specifically, we
investigate whether the Generalization Enhancement (GE)
technique can hence AGM and, in turn, whether a running
average reference can boost the performance of OGM-GE.
We find that neither provides an improvement. The details
of the above-mentioned results can be found in the supple-
mentary material.

Combining all the above results, we conclude that our
modulation approach can help boost the model performance
regardless of the fusion strategy, the number and types of
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involved modalities, and the network architecture.

4.3. Modality competition

The competition strength metric provides us a base to
analyze the states of individual modalities in a joint-trained
model and understand the mechanism of how the modula-
tion methods work.

In the following, we first compare the changes in com-
petition strength before and after modulating and investi-
gate what is brought to the multi-modal model by our adap-
tive gradient modulation. This follows a discussion of the
modality competition behavior.

4.3.1 Gradient modulation & modality competition

Our primary concern is how the modulation affects the
model performance in terms of changing the competition
state. The modality competition directly measures the de-
viation from the competition-less state and provides more
accurate information about the competition state compared
to the mono-modal accuracy, which mainly reflects the in-
formation in a single modality. Generally, we distinguish
two different types of change in competition strength.

In the first type, modality competition is mitigated by
modulation. The results on AV-MNIST ( Table 1) exemplify
this situation. For both fusion strategies, the competition
strengths of audio (da) and visual (dv) modalities decrease,
and their mono-modal accuracy (Acca and Accv) increases
as well as the multi-modal performance. This suggests that
suppressing the competition, allows the model to better uti-
lize inputs from different modalities. Figure 2 illustrates the
change in performance and competition strength along with
training. For the joint training baseline (left panel in Fig-
ure 2), da increases while dv decreases in the initial training
stage up to the 9-th epoch. Hence, the model initially learns
information from the visual modality. Indeed, Acca is al-
most the random guess while Accv is close to the full multi-
modal accuracy. In later epochs, da starts to decrease and its
mono-modal accuracy increases accordingly. On the other
hand, the increase of dv is accompanied by the decrease of
Accv . When adaptive gradient modulation is applied (right
panel in Figure 2), the competition strength of both modali-
ties decreases along training and converges to lower values
than their counterpart in the joint training case. At the same
time, their mono-modal accuracy keeps increasing. We find
that the model starts to learn the audio modality at a rela-
tively earlier epoch and Acca is boosted considerably.

In the second type, the competition of some modalities
could be strengthened. Results in Tables 2 to 4 belong to
this type. For CREMA-D, dv decreases while da increases.
This allows the model to better exploit the visual modality 5,

5We remark that, in this case, the modality collapse in joint training on
CREMA-D can be attributed to the modality competition.

which is more informative 6. Similar behaviors are observed
on the AVE and CMU-MOSEI datasets. In both cases, the
modulation leads to a decrease in competition strength of
the more informative modality, i.e., the audio modality of
AVE and the text modality of CMU-MOSEI. The results
for UR-Funny differ from previous cases. It mainly reflects
a balance in information usage between the audio and text
modalities. Interestingly, we note that even though the text
modality possesses better information, its dt increases after
modulation. We suspect this could be due to a high-order
effect when multiple modalities are present. In other words,
combining the text and the visual modalities could be more
informative than combining the audio and visual modalities.

In summary, the results quantitatively demonstrate
the behavior behind the effectiveness of our modulation
method. In most cases, the picture is clear that while the
raw model possesses a certain bias towards some modali-
ties, the modulation pushes the model to rely on the more
informative modalities 7.

4.3.2 Behavior of modality competition

In the following, we proceed to investigate the modality
competition in the joint training situation. We systemat-
ically study the competition’s behavior from various per-
spectives that cover the model’s preference towards indi-
vidual modalities, the relation to the fusion strategy, and the
relation to the input data.

Existence of preferred modality. Our results reveal that
modality competition is commonly present in multi-modal
models. In fact, there is at least one modality with non-
trivial competition strength in all situations. However, we
emphasize that it is not necessary for a multi-modal model
to have a dominant modality. The results on AVE ( Table 4)
provide such an example. The balance of the two modali-
ties, in this case, could be attributed to the elaborately de-
signed fusion method in the PSP model. In addition, we rec-
ognize a trend in all the experiments that the modality with
the lowest competition strength always has a higher mono-
modal accuracy. This suggests that there exists the model-
preferred modality, which the raw multi-modal model tends
to explore. This preference will be broken by the modu-
lation which encourages more efficient usage of modality
information.

Relation to fusion strategy. The modality competition
strengths are similar in the late and early fusion cases. For

6The accuracy of the visual mono-modal concept is higher than the one
of the audio modality.

7Note that better use of informative modalities does not necessarily lead
to low competition strengths of these modalities.

22221



Figure 2. Accuracy (Acc, Acca, Accv) and competition strength (da, dv) of joint-training multimodal model and multimodal model with
AGM using addition fusion method on the validation set of the AV-MNIST dataset. The left is the joint-training multimodal model and the
right is the multimodal model with our proposed AGM.

example, in Table 2 for the UR-Funny dataset, audio modal-
ity is always with the strongest competition, the text modal-
ity the second, and the visual modality the weakest. Other
results show similar behavior. As this tendency is inde-
pendent of the fusion strategy, our results suggest that the
strength of competition may depend more on the task and
the input data.

Relation to modality information. It is intuitive to ex-
pect that the modality with higher information for the task
will have lower competition strength, i.e., being better ex-
ploited by the model. However, it is not always the case.
While the above intuition applies to the results on AV-
MNIST and CREMA-D datasets, the visual modality in
CREMA-D is under-explored in the joint training case even
though it is more informative. Moreover, for the UR-Funny
dataset, the visual modality, which contains less informa-
tion, has a very low competition strength in the joint train-
ing case. In conclusion, current results do not support any
correlation between the modality information and the com-
petition strength.

Relation to modality type. To study whether the modal-
ity type affects the competition states, we compare the re-
sults of CREMA-D and AV-MNIST. Both datasets are com-
posed of visual and audio modalities, and the visual modal-
ity is more informative. In addition, our experiments on
these two datasets share the same network architecture.
Nonetheless, the competition state of the visual modality in
CREMA-D is opposite to the one in AV-MNIST. Therefore,
the strength of modality competition tends to be unrelated
to the modality type.

5. Conclusion
In this paper, we propose an adaptive gradient modu-

lation method to boost the performance of jointly trained
multi-modal models. With the Shapley value-based ap-
proach to estimate the mono-modal responses, our mod-
ulation method can apply to models of all possible fu-
sion strategies. The experiments show that our method
beats the existing modulation methods and can improve the
model performance across different fusion strategies, dif-
ferent modality combinations and different network archi-
tectures. In addition, we devise a novel metric based on the
mono-modal concept to directly measure the competition
strength in a multi-modal model. With this metric, we sys-
tematically analyze the behavior of modality competition in
joint training and investigate the mechanism underlying the
effectiveness of our modulation method. Our results reveal
more complex patterns of modality competition than those
proposed by previous studies.

We hope this work can promote the community’s under-
standing of the modality competition and the modulation
methods and inspire better designs of multi-modal models.
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[5] Jean-Benoit Delbrouck, Noé Tits, Mathilde Brousmiche, and
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