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Abstract

Current state-of-the-art semi-supervised semantic seg-
mentation (SSSS) methods typically adopt pseudo labeling
and consistency regularization between multiple learners
with different perturbations. Although the performance is
desirable, many issues remain: (1) supervisions from a sin-
gle learner tend to be noisy which causes unreliable con-
sistency regularization (2) existing pixel-wise confidence-
score-based reliability measurement causes potential er-
ror accumulation as the training proceeds. In this paper,
we propose a novel SSSS framework, called CFCG, which
combines cross-fusion and contour guidance supervision to
tackle these issues. Concretely, we adopt both image-level
and feature-level perturbations to expand feature distribu-
tion thus pushing the potential limits of consistency regular-
ization. Then, two particular modules are proposed to en-
able effective semi-supervised learning under heavy coher-
ent perturbations. Firstly, Cross-Fusion Supervision (CFS)
mechanism leverages multiple learners to enhance the qual-
ity of pseudo labels. Secondly, we introduce an adaptive
contour guidance module (ACGM) to effectively identify un-
reliable spatial regions in pseudo labels. Finally, our pro-
posed CFCG achieves gains of mIoU +1.40%, +0.89% with
a single learner and +1.85%, +1.33% by fusion inference
on PASCAL VOC 2012 and on Cityscapes respectively un-
der 1/8 protocols, clearly surpassing previous methods and
reaching the state-of-the-art.

1. Introduction
Semantic segmentation, an essential task of the pixel-

wise classification task, has been remarkably successful
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with the development of deep learning. However, the
training for such a problem is rather a challenge owing
to costly and laborious pixel-wise manual labeling[18].
To alleviate this problem, semi-supervised semantic seg-
mentation(SSSS) with the precious labeled data and large
amounts of unlabeled data is urgently needed to liberate la-
bor and ensure accuracy. Under such a setting, how to ade-
quately leverage unlabeled data becomes critical.

Recently, approaches based on the combination of con-
sistency regularization and pseudo labeling dominate SSSS
research [27, 23, 6, 11]. Specially, it encourages high sim-
ilarity between the predictions of perturbation for the same
input but expands a confidence prediction map of an un-
labeled image to a one-hot pseudo label’s map. However,
it still exists some problems: (1) supervisions from a sin-
gle learner tend to be noisy which causes unreliable con-
sistency regularization (2) existing pixel-wise confidence-
score-based reliability measurement causes potential error
accumulation as the training proceeds.

In this paper, we propose a novel SSSS framework,
called CFCG, which combines cross-fusion and contour
guidance supervision to tackle the above issues. First, we
conduct a detailed analysis of consistency regularization.
Weak-to-strong consistency regularization(WS)[27], one of
the representative image-level consistency regularization
methods, tries to make weakly and strongly-augmented im-
ages pair. Specifically, weak augmentation includes only
flip-and-shift data augmentation while strong augmenta-
tion is heavily-distorted versions of a given image, includ-
ing the noise, blur, and erasure operations. Its success
comes from weak branch can produce high-quality pseudo
labels while strong branch can make the training process
hard by injecting noise. While in the feature-level, various
types of perturbations for consistency are designed, such
as VAT[25], random dropout, random noise, etc. We find
that image-level strong perturbations reflected in pixel noise
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Figure 1. A comparison between typical SSSS frameworks. (a) A
single learner with weak-to-strong consistency (WS) strategy. [27,
40] (b) Multiple individual learners with WS strategy. [23, 16, 39]
(c) Multiple learners with symmetric WS strategy. [11] (d) Our
proposed Cross-Fusion Supervision (CFS) is applied to multiple
learners.

and feature-level perturbation reflected in feature noise ex-
hibit similar characteristics. We put both image-level strong
augmentation and feature-level perturbations in the same
branch to cause heavy Coherent Perturbation(CP) to push
the potential limits of consistency regularization.

Fig.1 provides an extensive comparison between WS-
based SSSS frameworks. Typically, as shown in Fig. 1 (a),
a single learner with WS is first proposed in [40]. Then,
with the advantage of mean-teacher, the SSSS framework
evolves to Fig. 1 (b) in which WS strategy is applied to-
gether with multiple learners [23, 16, 39]. Fig. 1 (c) further
introduces the symmetric dual-student method where both
strongly-augmented images and weakly-augmented images
flow into bipartite learners. It uses the pseudo label obtained
from one network to supervise the other network and vice
versa [11]. Different from the above works, we propose to
add the Cross-Fusion Supervision (CFS) mechanism, which
enables the information transfer between the multiple learn-
ers to enhance the quality of pseudo labels thus benefiting
the process of the semi-supervised training process. While
in the inference stage, only one model without relying on
cross-fusion is able to generate high-quality results.

Next, we delve into the shortcomings of conventional
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Figure 2. The confidence score distributions of presudo label on
the VOC dataset. The horizontal axis represents the different con-
fidence intervals, and the vertical axis represents the number of
correct and error pseudo labels in the current confidence interval.
We illustrate the problems of conventional confidence-score-based
reliability measurement: (a) Input image. (b) Confidence map of
the model prediction. (c) The difference between ground truth and
pseudo label. (d) The predicted pseudo label. (e) The semantic
contour of the pseudo label generated from (d). (f) The weight
map adopted in our proposed ACGM. We can observe that: from
(b) and (c), the confidence map is noisy and unreliable as high-
lighted by the red box; from (f) and (c) our proposed ACGM ef-
fectively identifies unreliable spatial regions.

confidence-score-based reliability measurement in SSSS.
Fig.2 illustrates the confidence score distributions of pseudo
labels on the VOC dataset. We can observe that it is almost
impossible to identify unreliable pixel-wise pseudo labels
via pixel-wise confidence score thresholds, which is widely
adopted in semi-supervised tasks [27, 41, 23, 11, 16]. Fur-
thermore, we can also observe from (b) and (c) of Fig.2,
the confidence map is usually noisy and unreliable as high-
lighted by the red box. This issue leads to error accumu-
lation as the training proceeds, thus seriously affecting the
performance of semi-supervised learning in segmentation
tasks. Previous pixel-wise confidence-score-based methods
struggle with very limited performance gains. To address
this issue, we draw inspiration from the similarity between
(c) and (f) in Fig.2, where most of the unreliable spatial re-
gions can be identified by the contour map. Therefore, we
propose an adaptive contour guidance module (ACGM) that
gradually applies a contour-guided weight map to re-weight
training loss. In this way, whether the pixel-wise pseudo la-
bel is reliable incorporates contextual cues. Intuitively, as
shown in Fig.2, our weight map (f) is acquired by softening
based on the semantic contour of the pseudo label (e), and
its visualization results prove that our ACGM’s weight map
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Figure 3. Illustration of our CFCG method on unlabeled data. CFM denotes the Cross-Fusion Module which is one component of Cross-
Fusion supervision how to implement fusion can be seen in (c). The details of ACGM are shown in (b). CP consists of the input image
augmentation and encoder feature augmentation, which further enhances the learner’s learning ability. ACGM iteratively updates reliable
pseudo labels to guide semi-supervised learning. CFM fuses the weak flow output and strong flow output of the two learners separately
and then leverages the fusion pseudo label of weak flow to supervise the strong flow’s fusion. For the labeled data, images are augmented
by weak flow into the two networks and both the networks and the CFM are supervised by corresponding ground truth respectively.

can cover the error region more exactly.
To summarise, our contributions are:

• We propose a novel SSSS framework CFCG mainly
including cross-fusion supervision(CFS) and the adap-
tive contour guidance module(ACGM). Our CFS
which neatly blends CP can tap into underutilized
knowledge to enhance the quality of pseudo labels
during the training stage and help enhance expressive
power during inference.

• The proposed ACGM introduces the semantic con-
tour for encouraging position relations establishment
as guidance to effectively identify unreliable spatial
regions in pseudo labels and accurately mitigates the
problem of confirmation bias.

• The experiment results present our CFCG achieves
new state-of-the-art results on two commonly used
benchmarks, which yield mIoU 77.10%, 78.49% with
no additional calculations, and 77.55%, 78.93% by fu-
sion inference way on PASCAL VOC 2012 and on
Cityscapes separately under 1/8 protocols.

2. Related Work
2.1. Semantic Segmentation

Traditional semantic segmentation is a fundamental
topic in the computer vision field. Recent years have
witnessed remarkable progress in semantic segmentation:

from FCN to Transfomer-like networks. Specifically, the
FCN[24] is a milestone, which builds fully convolutional
networks for pixel-wise prediction. Since then, extensions
based on FCN[5, 2, 36] have been validated to be invalu-
able in resolving the capturing long-range context depen-
dency problem. Deeplabv3[5] designs an atrous spatial
pyramid pooling module to enlarge the receptive field. The
SegNet[2] strengthens context cues by its encoder-decoder
structure. PSPNet[36] incorporates a pyramid pooling
module to embed multi-scale context features to improve
FCN-base architecture. Lately. Transformer-based solu-
tions have attracted more and more attention since Visual
Transformer[9] has been designed. These methods continue
to actively expand transformer skills, including extracting
features from input image [31, 37], learning class embed-
ding [28], or formulating segmentation as a simple mask
classification task [7].

2.2. Semi-supervised Learning

Semi-supervised learning(SSL) has been an active re-
search issue and related literature contains a large va-
riety of methods[19, 4, 3, 32, 27, 34, 29]. They can
be mainly categorized as self-training-based approach and
consistency regularization-based approach. The former
typically predicts pseudo labels to unlabeled data and
then the ground truth and pseudo labels will be used to-
gether as the supervisory signal in training. The latter
enforces similar predictions output by the network un-
der different forms of perturbations. Specifically, Dual
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student[19] replaces the teacher of the mean-teacher frame-
work with another student. UDA[32] and FixMatch[27] uti-
lize confidence-based thresholding techniques to ensure the
quality of pseudo labels. FlexMatch improves this strat-
egy by considering different learning difficulties of different
classes[34]. Self-adaptive confidence threshold is proposed
in FreeMatch[29].

2.3. Semi-supervised Semantic Segmentation

SSSS is rather a challenge compared with SSL due to
the need for dense prediction. Inspired by SSL, com-
mon SSSS mostly follows the same track where the self-
training approach and consistency regularization approach
are still validated to be very powerful in this field. Specifi-
cally, CCT[26] has a shared encoder and multi-decoder with
a series of feature perturbations. CPS[6] achieves cross
pseudo supervision for the same input via two networks
with different initialization. Then, the class imbalance prob-
lem has been solved successively with the adaptive equal-
ization learning framework[16], uncertainty guided cross-
head co-training framework[11], and pixel-level contrastive
learning scheme[1]. Based on the mean-teacher model,
PS-MT[23] creately designs a new auxiliary teacher and
a stricter confidence-weighted cross entropy loss. The
U2PL[30] chooses a unique way of using unreliable pseudo
labels. GCT[18] aims for diverse pixel-wise tasks, which
proposed a flaw detector to locate the noise of pseudo la-
bels. Note that GCT[18], ELN[21] and other similar mod-
els try to design extra models to make them have the ability
to predict flaw regions. Currently, self-supervised learning
is employed for this task[38, 1, 22, 35]. For self-training,
ST++[33] improves the self-training pipeline and gets bet-
ter performance in an offline way. Different from them, we
find the potential information and use it effectively to avoid
using extra training models and training time.

3. Method
In this section, we present an overview of the proposed

framework in Section 3.1. Then we describe our CP in Sec-
tion 3.2. Additionally, we describe CFS’s detail in Section
3.3. Finally, the ACGM is further introduced in Section 3.4.

3.1. Overview

As shown in Fig.3, our semi-supervised framework con-
sists of two learners with the same structure, in which each
learner contains a weak and a strong flow. For unlabeled
images, we need to perform three steps to realize our semi-
supervised learning.

Firstly, an unlabeled image is fed into the weak and
strong flow of each learner, where the CP strategy further
enhances the learner’s ability. Secondly, we use CFS to
fuse the weak flow output and strong flow output of the two
learners separately and then leverage the fused pseudo label

of weak flow to supervise the strong flow’s fusion output.
Finally, we use the pseudo label generated by weak flow to
supervise the strong flow output of the other learner. During
the supervision, ACGM is used to iteratively update reliable
pseudo labels to guide semi-supervised learning.

For labeled images, following the previous work, images
are sent to the weak flow of the two learners simultaneously
and are supervised by corresponding ground truth respec-
tively. Note that the CFS and ACGM techniques are also
employed in it.

In general, given limited labeled images Dl =
{(xl

i, y
l
i); i ∈ (1, ..., Nl)} and large amount of unlabeled

images Du = {(xu
i ); i ∈ (1, ..., Nu)}, the unsupervised

loss for unlabeled images can be written as:

Lu = λ1(Lu1 + Lu2) + Luf , (1)

where (Lu1+Lu2) represents the cross pseudo supervision
loss from two learners and Luf represents the CFS loss. We
use λ1 to control the balance between cross pseudo super-
vision loss and CFS loss as the trade-off weight.

For the labeled images, following the previous work[11],
images are augmented by weak flow into the two networks
and are supervised by corresponding ground truth respec-
tively. Note that the CFS and ACGM techniques are also
employed in it. The supervised loss from labeled data is:

Ll = Ll gt + Llf , (2)

where Ll gt represents the loss between predictions and
ground truth. Llf represents the CFS loss for labeled im-
ages, which is obtained by supervising the fused logits of
CFS with ground truth. The detail about the losses is de-
scribed in section 3.3. In the end, the total loss Ltotal is as
follows:

Ltotal = Ll + λ2Lu. (3)

Here, we use λ2 to control a balance between the loss on
the labeled data loss and the unlabeled data.

3.2. Weak and Strong Coherent-Perturbation

Classic weak-to-strong consistency regularization[27]
can be formulated as:

fw = E(α(xu)), (4)

fs = E(A(α(xu))), (5)

where xu represents unlabeled images, E represents en-
coder embedding, fw and fs represent the encoder embed-
ding feature generated by weak image augmentation α(·)
and strong image augmentation A(·) respectively. To push
the potential limits of consistence regularization, we pro-
pose CP Strategy, which gets into feature strong perturba-
tion after getting the encoder output of strongly-augmented
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unlabeled images to cause heavily perturbed feature. Thus
the fs is rewritten as fs+ :

fs+ = B(fs), (6)

where the B represents the feature perturbation. Among
them, the strong flow for both image-level and feature-level
includes the noise, blur, and erasure operations.

3.3. Cross-Fusion Supervision

Sub-figures (a) and (c) in Fig.3 illustrate our proposed
Cross-Fusion Supervision (CFS) mechanism. In general,
CFS first realizes channel-wise attention and fusion for both
weakly and strongly perturbed learners, respectively. Then
consistency regularization between the two learners is cal-
culated based on the fused weak logits. Compared with
previous SSSS works, in which consistency regularization
is calculated between outputs of single learners, our pro-
posed CFS leverages both learners to enhance the qual-
ity of pseudo labels thus benefiting the process of semi-
supervised learning.

Specifically, our proposed CFS contains three parts:
cross-learner attention, weighted fusion, and cross-
supervision. In cross-learner attention, we perform an
element-wise sum operation with pw

1 ,p
w
2 ∈ RC×H×W , and

average pooling is used to encode the spatial representation
of different semantic channels to generate a ∈ RC .

a =
1

H ×W

H∑
i=1

W∑
j=1

(pw
1 (i, j) + pw

2 (i, j)). (7)

Next, vi = FCi(a), where i ∈ {0, 1}. The a is fed
into different FC layers to generate two attention vectors
v1, v2 ∈ RC respectively.

In weighted fusion part, generated attention vectors
v1, v2 are used to perform optionally weighted fusion for
pw
1 ,p

w
2 . The final feature map pw

f is obtained as follows:

pw
f = v1 · pw

1 + v2 · pw
2 , (8)

where pw
f ∈ RC×H×W . In the same way, ps

f is acquired by
the same operation above from ps

1,p
s
2.

Finally, argmax function is needed to choose the corre-
sponding class c ∈ {1, ..., C} with the maximal probability
for pw

f . The argmax result is denoted as yw
f . In this case,

the fusion loss can be written as follows:

Luf =
1

|Du|
∑
x∈Du

1

W ×H
ηf · ℓce(ps

f ,y
w
f ) (9)

where the cross entropy loss ℓce is used to minimize the two
probability distribution terms. Du is the batch size of unla-
beled images. ηf , a coefficient for loss, will be explained
in Section 3.4.

Finally, we introduce cross-supervision which calcu-
lates consistency loss between the fused logits of weak and
strong flow, respectively. As shown in Fig.3, the pseudo
labels, generated from one weak CP flow, are used to super-
vise the predictions which are from the other strong weak
CP flow. The loss Lu1,Lu2 of CFS can be formulated as:

Lu1 =
1

|Du|
∑
x∈Du

1

W ×H
η1 · ℓce(ps

2,y
w
1 ), (10)

Lu2 =
1

|Du|
∑
x∈Du

1

W ×H
η2 · ℓce(ps

1,y
w
2 ), (11)

where the cross entropy loss ℓce is used to minimize the
two probability distribution terms. Du is the batch size of
unlabeled images. η1 and η2 represent the loss coefficient
for two learners separately.

Taking the advantage of our proposed CFS, each learner
is able to receive better supervision from the other learner.
During the inference stage, one single learner without fu-
sion inference is able to generate state-of-the-art SSSS re-
sults. And the learner with fusion inference further im-
proves the effect but subsequently with additional calcula-
tions.

3.4. Adaptive Contour Guidance Module

In most previous works, confidence-based thresholding
strategy is proposed to measure the quality of pseudo la-
bels. If the confidence is higher than the given threshold,
the corresponding pseudo label will be considered reliable
and retainable. However, we find that a large number of
wrong pseudo labels located in the high-confidence interval
are considered reliable and vice versa from Fig.2. Based on
this observation, we formulate this idea as a re-weight task
and propose ACGM using contour to guide the network,
aiming to detect the noise of pseudo labels by relying on
spatial information.
Contour-based Weight Map. First of all, the contour-
based weight map M ∈ RH×W is generated by two steps:
Exact and Soften. In the first step, as shown in Fig.1 (c),
semantic contour maps are exacted from the pseudo labels
by the Laplacian group. Specifically, we use this operator
to exact contour maps to catch multi-scale information, and
kernels with different strides are employed. Then upsample
different scale contour maps to the original size and fuse
them with 1 × 1 convolution. Next, convert it into a binary
image as the semantic contour map. In the second step,
image processing operations are injected into this semantic
contour map to produce the final weight map. Specifically,
(1) a Gaussian kernel is employed for blurring the semantic
contour map, transforming it into a dense probability map.
(2) normalizes all pixels of the dense probability map to
range between [0, 1] to generate the final weight map.
Adaptive Loss Re-weight. As mentioned above, we use the
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contour-based weight map M as the coefficient of cross en-
tropy loss to guide the model to leverage spatial information
and distinguish the noise in pseudo labels. Compared with
direct multiplication, we take into account that the learning
ability of network in the early training stage is not enough,
so we adopt a progressive strategy η to gradually introduce
the knowledge of semantic contour:

η = (1− γ) · I + γ ·M, (12)

γ = exp(aet)− 1 , ae =
ln(2)

max epoch
. (13)

Where η ∈ RH×W , and the I ∈ RH×W is the all-ones
matrix. In Eq.12, we make the γ gradually learn to assign
higher weight due to the fact that the network may converge
in the wrong direction in the early stage of training, and in
the later training stage the contour is more reliable which
also means the pseudo label is more instructive. From it,
the function variable t denotes the current training epoch
and the constant parameter ae is calculated to guarantee γ
ranges from 0 to 1 by Eq.13.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our framework on two different
datasets: PASCAL VOC 2012 [10] and Cityscapes [8]. The
PASCAL VOC 2012 dataset contains 1464 and 1449 im-
ages used for training and validation respectively. Later, it
is expanded by extra relatively coarse manual annotations
from the SBD dataset [13], resulting in a total of 10582
training images. We follow the previous work [14] to use
the augmented set as our full training set. We further pro-
vide results for the Cityscapes dataset, which consists of
2975 training and 500 validation images with 19 individual
classes.

We rigorously follow the partition protocols of Guided
Collaborative Training (GCT) [18], and it divides the whole
training set into two groups via randomly sub-sampling 1/2,
1/4, 1/8, and 1/16 of the whole set as the labeled set and
regards the remaining images as the unlabeled set.
Evaluation. Following previous methods [12, 16, 26, 38,
6], the images are center cropped into a fixed resolution for
PASCAL VOC 2012. For Cityscapes, previous methods ap-
ply slide window evaluation, and so do we. Then we adopt
the mean of Intersection over Union (mIoU) as the metric to
evaluate these cropped images. All results are measured on
the val set on both PASCAL VOC 2012 [10] and Cityscapes
[8]. Ablation studies are conducted on the blender PAS-
CAL VOC 2012 [10] val set under 1/8 partition protocol.
During the test, one network(w/o fusion inference) and two
networks(w/ fusion inference) are all analyzed in our ap-
proach.

Network. We use DeepLabv3+ [5] with ResNet [15] pre-
trained on ImageNet [20] as our segmentation network. The
decoder head is composed of separable convolution same as
standard DeepLabv3+.
Implementation Details. We initialize the weights of two
backbones in the two segmentation networks with the same
weights pre-trained on ImageNet and initialize the weights
of two segmentation heads randomly. We adopt mini-batch
SGD with momentum to train our model with Sync-BN
[17]. The momentum is fixed as 0.9 and the weight decay is
set to 0.0005. We employ a poly learning rate policy where
the initial learning rate is multiplied by (1 − iter

max iter )
0.9.

We train PASCAL VOC 2012 for 80 epochs with a base
learning rate set to 0.0025 and crop size of 512 x 512, and
Cityscapes for 240 epochs with a base learning rate set to
0.02 and crop size of 800 x 800.

4.2. Comparison to State-of-the-Art Methods

We compare our method with some recent semi-
supervised segmentation methods including CPS[6],
U2PL[30], UCC [11], PS-MT[23],[21] and ST++[33] un-
der different partition protocols, using the same architecture
and partition protocols for fairness.
PASCAL VOC 2012. Table 1 shows the comparison re-
sults on PASCAL VOC 2012. We can see that over all
the partitions from 1/16 to 1/2, with both ResNet-50 and
ResNet-101, our method w/o fusion inference and w/ fu-
sion inference consistently outperforms the other methods.
For example, compared to CPS[6], which can be considered
as our baseline, CFCG w/o fusion inference improves by
2.00%-3.43% under all partition protocols with ResNet-50.
While w/ fusion inference improves by 2.50%-3.88% under
all partition protocols with ResNet-50. Additionally, our
method is superior to the other state-of-art methods in vari-
ous settings. To be specific, based on ResNet101, it outper-
forms previous state-of-art UCC [11] by 2.29% and 2.04%
under the 1/8 partitions with ResNet-50 and ResNet-101 re-
spectively. The result demonstrates our CFCG’s robustness
for this SSSS task.

Based on the w/o fusion inference, we find the test with
w/ fusion inference brings a significant improvement in per-
formance. Our approach with fusion inference outperforms
the approach without fusion inference by 0.50% and 0.59%
under 1/2 partition protocol with ResNet-50 and ResNet-
101 separately.
Cityscapes. Table 2 illustrates the comparison results on
the Cityscapes val set. In comparison to other state-of-
the-art(SOTA) methods, our model achieves higher per-
formance among all partition protocols with both ResNet-
50 and ResNet-101 backbones. For example, our method
w/o fusion inference outperforms previous state-of-art PS-
MT[23] by 2.73% and 2.06% under the 1/8 and 1/4 parti-
tions with ResNet-50 separately.
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Method ResNet-50 ResNet-101
1/16(662) 1/8(1323) 1/4(2646) 1/2(5291) 1/16(662) 1/8(1323) 1/4(2646) 1/2(5291)

CPS(w/CutMix)[6] 71.98 73.67 74.90 76.15 74.48 76.44 77.68 78.64
U2PL(w/CutMix)[30] † - - - - 74.43 77.60 78.70 79.94
UCC[11] 74.05 74.81 76.38 76.53 76.49 77.06 79.07 79.54
PS-MT[23] 72.83 75.70 76.43 77.88 75.50 78.20 78.72 79.76
ELN[21] - 73.20 74.63 - - 75.10 76.58 -
ST++[33] 72.60 74.40 75.40 - 74.50 76.30 76.60 -
Ours(w/o fusion inference) 75.00 77.10 77.72 78.15 76.82 79.10 79.96 80.18
Ours(w/ fusion inference) 75.58 77.55 78.34 78.65 77.39 79.40 80.42 80.77

Table 1. Comparison with state-of-the-art methods on the PASCAL VOC 2012 dataset. Labeled images are sampled from the blended
training set, which is augmented by the SBD dataset. ”w/o fusion inference” denotes directly using output which is predicted by one model
without any CF operation test; ”w/ fusion inference” denotes using output which is predicted by two models with CF operation. Results of
U2PL with † are acquired through the open-source code repository whose partition is the same with [18].

Method ResNet-50 ResNet-101
1/16(186) 1/8(372) 1/4(744) 1/2(1488) 1/16(186) 1/8(372) 1/4(744) 1/2(1488)

CPS(w/CutMix)[6] 74.47 76.61 77.83 78.77 74.72 77.62 79.21 80.21
U2PL(w/CutMix) [30]† - - - - 70.30 74.37 76.47 79.05
U2PL(w/AEL) [30]† - - - - 74.90 76.48 78.51 79.12
UCC[11] 76.02 77.60 78.28 79.54 77.17 78.71 79.59 80.57
PS-MT[23] - 75.76 76.92 77.64 - 76.89 77.60 79.09
ELN[21] - - - - - 70.33 73.52 75.33
ST++[33] - 72.70 73.80 - - - - -
Ours(w/o fusion inference) 76.13 78.49 78.98 79.76 77.28 79.09 80.07 80.59
Ours(w/ fusion inference) 76.14 78.93 79.28 80.13 77.76 79.60 80.36 80.92

Table 2. Comparison with state-of-the-art methods on the Cityscapes dataset. ”w/o fusion inference” denotes directly using output which
is predicted by one model without any CF operation test; ”w/ fusion inference” denotes using output which is predicted by two models
with CF operation. Results of U2PL with † follow the paper which is different with [18]. Considering that the partition’s impact is not
significant on the Cityscapes dataset, we also put it in this table for reference.

CP ACGM CFS mIoUw/o fusion
inference

w/ fusion
inference

73.08√
73.44√ √
75.23√ √
75.22√ √ √
77.10√ √ √
77.55

Table 3. Ablation study using the 1/8 labelled ratio on PASCAL
VOC 2012 under DeepLabv3+ architecture.

Overall, our architecture can adapt to various setting
both on the PASCAL VOC 2012 and Cityscapes dataset and
achieves stable and impressive results.

4.3. Ablation Studies

In order to deeply explore the effects of different mod-
ules, in this section, we conduct all the ablation experiments
by running on PASCAL VOC 2012 under a 1/8 ratio with

ResNet-50, and we use DeepLabv3+ to evaluate our results.
The effect of CP, CFS, and ACGM in our method is ver-

ified in Table 3, where we use cross pseudo supervised [6]
trained with the input image augmentation as the baseline.
We note that CP strategy provides a 0.36% improvement
slightly, it shows that there still exists a certain amount of
noise in pseudo labels. To deal with the problem, we in-
troduced ACGM and CFS. We can see that ACGM and
CFS(w/o fusion inference) increase by 1.79% and 1.78% re-
spectively, which verify ACGM can generate better pseudo
labels for SSSS task, and CFS enable to fully fuse differ-
ent learners’ knowledge to make the model possess strong
learning ability. Further, We achieved a significant im-
provement of 3.66% by integrating ACGM and CFS(w/o
fusion inference). Finally, compared with the baseline, we
achieved a performance improvement of 4.47%, which in-
dicate that our CFCG framework is efficient and friendly for
SSSS.
Cross-fusion Supervision. To verify the effectiveness of
the fusion operation, we also make inferences without CFS
and simply test the model using average logits fusion of the
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Fusion Strategy mIoU
w/o CFS 75.23
Average fusion 76.01
CFS (w/o fusion inference) 77.10
CFS (w/ fusion inference) 77.55

Table 4. Comparison of different fusion modes in the reference
stage. The first row represents the result of our method without
CFS strategy. The second row represents the result of average
model fusion. The third row represents the result of our single
model with CFS for the training stage but without fusion infer-
ence. The last row represents the result of fusion inference.

two learners. As shown in Table 4, the performance of aver-
age fusion is 0.78% higher obviously, which shows that the
fusion is indeed working. Moreover, comparing CFS(w/o
fusion inference) testing on one learner with average fusion,
the performance of the former is significantly boosted by
1.11%. It undoubtedly proves that the fusion ability of CFS
is so powerful that it can learn the knowledge distribution of
different learners well and test without extra computation.
Finally, testing with CFS(w/ fusion inference), the fusion
performance further improves by 0.45%, which tells us that
the fusion strategy makes valuable improvement with addi-
tional calculations. That is, our CFS strategy is very neces-
sary to improve the performance, which greatly integrates
the learning ability of the two branch models.
Adaptive Contour Guidance Module. In section 3.4, we
add parameter γ which is set to be initialized as 0 and gradu-
ally learns to assign a higher weight to 1. Several tendencies
are examined in the experiment. As shown in Table 5, com-
pared with not using the weight map by setting γ as 0, the
ACGM strategy can clearly improve the performance from
75.22% to 77.10%. Conversely, constant 1 means the loss
totally depends on the contour weight map. Others like log,
linear, and exp tendencies keep up while the training itera-
tion process also has been shown. In the above manner, we
find the exp can improve the baseline by 1.15% to not using
the weight map as the baseline. At the same time, we in-
vestigate the influence of different kernel sizes of Gaussian
blur k that is used to soft binary contour maps as shown in
section 3.4. From Table 5, we can see that k = 64 performs
best on PASCAL VOC 2012. As a result for Cityscapes,
we also use k = img size/8 which is 100 to generate the
weight map. It is worth mentioning that the parameter k
adjustment is based on the γ used in the exp manner.

Generally, there is a contour-weakened strategy that dy-
namically gives higher weight to the reliable pseudo labels
while suppressing the unreliable pseudo labels. Instead of
using it, we adopt the contour-strengthened strategy, which
means the unreliable region acquires a higher weight, mak-
ing the learner pay more attention to these regions and let
the region less and less until the model is explicit. To prove
this, we conduct contrast experiments as shown in Table

Param Value Detail mIoU

γ

constant 0 γ = 0 75.22
constant 1 γ = 1 75.95

linear γ = akx, 0 ≤ γ < 1 76.31
exp γ = exp(aex)− 1, 0 ≤ γ < 1 77.10
log γ = log(alx+ 1), 0 ≤ γ < 1 75.56

k
k=32 k = img size

16 75.86
k=64 k = img size

8 77.10
k=128 k = img size

4 75.88

Table 5. Illustration on the performance of different trends of γ.
and the performance of different kernel size k. All results are eval-
uated under the 1/8 partition protocol with ResNet-50 on PASCAL
VOC 2012. Note that ae is calculated by Eq.13, and ak, al is in a
similar way, and the results are generated by w/o fusion inference.

Contour Strategy mIoU
w/o ACGM 75.22
Weakened 75.01
Strengthened 77.10

Table 6. Comparation on how to handle unreliable regions in the
contour strategy. Note that the results are generated by w/o fusion
inference.

6, from it we can see that the contour-weakened strategy
is lower than the contour-strengthened strategy by 2.09%.
Further, weakening contour strategy brings no benefits even
if compared with w/o ACGM. Actually, due to the unreli-
able pseudo labels being the difference region between the
predictions of two learners, the unreliable pseudo label in-
deed should be emphasized. Emphasizing the different re-
gions can promote the consistency regularization’s perfor-
mance on the other hand.

5. Conclusion
In this paper, we propose a novel SSSS framework called

CFCG combining the CFS and ACGM. Specifically, our
CFS creatively fuses the information between weak flows
and strong flows respectively, through the channel-wise
attention mechanism to tap into underutilized knowledge.
During the test, both with and without fusion inference
can achieve consistent performance gains. On the other
hand, our ACGM guides the learners to adaptively and
effectively identify unreliable spatial regions by relying on
spatial contour information. The experiment results present
our CFCG achieved new state-of-the-art results on two
commonly used benchmarks, which yield mIoU 77.10%,
78.49% with no additional calculations, and 77.55%,
78.93% by fusion inference way on PASCAL VOC 2012
and on Cityscapes separately under 1/8 protocols. These
comparisons have shown that our CFCG method performs
favorably against state-of-the-art approaches for the semi-
supervised semantic segmentation task.
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