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Abstract

The ill-posed nature of monocular 3D geometry (depth
map and surface normals) estimation makes it rely mostly
on data-driven approaches such as Deep Neural Networks
(DNN). However, data acquisition of surface normals, es-
pecially the reliable normals, is acknowledged difficult.
Commonly, reconstruction of surface normals with high
quality is heuristic and time-consuming. Such fact urges
methodologies to minimize dependency on ground-truth
normals when predicting 3D geometry. In this work, we de-
vise CO-planarity REgularized (CORE) loss functions and
Structure-Aware Normal Estimator (SANE). Without involv-
ing any knowledge of ground-truth normals, these two de-
signs enable pixel-wise 3D geometry estimation weakly su-
pervised by only ground-truth depth map. For CORE loss
functions, the key idea is to exploit locally linear depth-
normal orthogonality under spherical coordinates as pixel-
level constraints, and utilize our designed Adaptive Polar
Regularization (APR) to resolve underlying numerical de-
generacies. Meanwhile, SANE easily establishes multi-task
learning with CORE loss functions on both depth and sur-
face normal estimation, leading to the whole performance
leap. Extensive experiments present the effectiveness of
our method on various DNN architectures and data bench-
marks. The experimental results demonstrate that our depth
estimation achieves the state-of-the-art performance across
all metrics on indoor scenes and comparable performance
on outdoor scenes. In addition, our surface normal estima-
tion is overall superior.

1. Introduction

Depth and surface normals are essential elements of 3D
geometry. With the assistance of surface normals, depth
map is able to faithfully describe the characteristics of the
3D scenes [4], which benefits various 3D applications, e.g.,

Figure 1: Our weakly supervised monocular 3D geometry
estimation. CORE loss functions distinguish our method
from others. Instead of proposing surface normal candi-
dates in local or global depth regions, we properly regular-
ize and utilize the pixel-level depth-normal constraints for
pixel-wise loss functions, which enable the efficient end-to-
end training with only ground-truth depth map.

3D reconstruction [33, 4], augmented reality [18] and au-
tonomous driving [16]. To recover 3D geometry, monoc-
ular depth and surface normal estimation provide the most
convenient solutions, and meanwhile define the challenging
ill-posed problems.

Recent approaches mostly tackle these two ill-posed
problems as genuine data-driven tasks by DNN regression
or classification. However, it is widely acknowledged that
data acquisition of surface normals is not a straightforward
task [22, 8, 41, 3]. Particularly, the reliable surface normals
are much more difficult to be obtained [22, 8, 3]. There
are various commercial sensors such as LiDAR and ToF
to acquire depth map directly, but no alternative available
for surface normals. To acquire surface normals, the com-
mon practice is to involve least-square plane fitting from
the depth maps [41]. Unfortunately, these depth maps cap-
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tured by consumer-level sensors are usually contaminated
by noises, resulting in deteriorated quality on generated
surface normals [22, 41, 3]. As a compromise, heuristic
and time-consuming post-processing is commonly involved
during preparation of the ground truth normals [22, 8].

It is certainly a meaningful advantage to be able to pre-
dict surface normals by depending less or none of ground-
truth normals. One idea is to employ pre-trained surface
normal estimation network, followed by refinement that
makes use of depth-normal consistency [38, 32, 34, 4]. On
the condition of pre-training, the later refinement is effec-
tive even without ground-truth normals. However, the pre-
training still involves the ground truth as prerequisites, and
the depth-normal consistency is utilized for building refine-
ment rather than guiding regression from scratch. Another
idea is about the proposal of surface normal candidates from
depth map or point cloud, including differentiable least-
square [32, 30, 31], local differentiation [17, 20] and ran-
dom sampling [41, 29]. Nevertheless, when the proposal
of depth region shrinks to a small local area or finally pixel
level, suboptimal and noisy surface normal candidates could
appear. At this time, more supervision by ground-truth nor-
mals are demanded [17, 20, 29]. As for the global proposal,
it would suffer from computational burden and insufficient
local features [32, 30, 31, 41].

In this work, we propose novel Co-planarity Regularized
(CORE) loss functions derived from regularized spheri-
cal depth-normal constraints at pixel level. These CORE
loss functions establish pixel-wise surface normal regres-
sion weakly supervised by only ground-truth depth map.
It is worth noting that we particularly express pixel-level
depth-normal constraints with spherical coordinates, and
regularize these constraints by the polar view. Similar to the
occurrence of suboptimal surface normal candidates, depth-
normal constraints are progressively weakened towards the
pixel level, resulting in the emergence of degeneracies dur-
ing back-propagation (see Sec. 3.1). By re-formulating
depth-normal constraints under spherical coordinates, we
observe that the degeneracies are mostly attributed to the
polar angle collapse as shown in Fig. 2. To counter this, we
devise a novel Adaptive Polar Regularization (APR) term as
a part of CORE loss functions. This term adaptively penal-
izes polar angle estimation at the sub-optimal state, thus re-
solving the degeneracies. As a result, the regularized spher-
ical depth-normal constraints can be used as stable pixel-
level constraints that serve as loss functions to efficiently
guide surface normal regression from scratch. Moreover,
our surface normal prediction is visualized in Fig. 1 and
Sec. 4, which presents plenty of local geometry details.

Another advantage of our method is that CORE loss
functions are perfect for multi-task learning on both depth
and surface normal estimation. Accordingly, we design a
Structure-Aware Normal Estimator (SANE) that collabo-

Figure 2: The polar angle collapse. When depth supervision
is shrinking towards the pixel level, the depth-normal con-
straints are progressively weaken, which leads to the overall
prediction distribution of polar angle θ̂ excessively concen-
trated near 0 (the green histogram). The polar angle esti-
mates collapse in ranges other than ≈ 0. After regularized
by our APR, these pixel-level constraints become feasible
and stable pixel-wise CORE loss functions that recover po-
lar estimation from the collapse (the blue histogram).

rates with our CORE loss functions. SANE can be easily
applied as a side branch to existing encoder-decoder archi-
tectures of depth estimation as shown in Fig. 3. Driven by
CORE loss functions, both depth estimation from the origi-
nal architecture and surface normal estimation from SANE
mutually achieves performance leap.

Our main contributions are as follows:

• We devise CORE loss functions from the pixel-level
constraints of depth-normal orthogonality. Without
any pre-training or surface normal candidates, CORE
loss functions enable pixel-wise surface normal regres-
sion in a weakly supervised manner by only ground-
truth depth map.

• We propose SANE to collaborate with CORE loss
functions for multi-task learning. SANE can be eas-
ily plugged to existing encoder-decoder approaches
of depth estimation without breaking their integrity,
which meanwhile benefits the whole performance.

• We achieve steady depth enhancement and superior
surface normal prediction. For depth estimation, the
experimental results show new state-of-the-art perfor-
mance across all metrics on NYUv2 and ScanNetv2,
and comparable performance on KITTI. For surface
normal estimation, despite of weak supervision, it is
even comparable with relevant supervised methods.

2. Related Work
Monocular depth estimation. Monocular depth estima-
tion describes a problem that takes a single RGB image as
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Figure 3: The architecture overview. P̂i, Ẑi and Zi are planar prediction, depth prediction and raw depth map per pixel i,
respectively. The planar prediction contains surface normal and distance prediction. The index of multi-scales is donated by
n. Fn are decoder features. Fg

n are decoder features after the global self-attention. Ĥn is the intermediate planar prediction
at spherical polar coordinates. Discrete differentiation is usually achieved by Sobel operator. Ldepth and (RAPR, LCPD,
LCPR) are depth loss and components of CORE losses explained in Sec. 3.2. The details for SANE are described in Sec. 3.3.

input and predicts the corresponding depth map as output.
Recently monocular depth estimation has been extensively
studied by DNN approaches [12, 11, 27, 23, 15, 21, 2].
Most of them thoroughly or partially formulate the solu-
tions as an encoder-decoder architecture similar to [36, 13].
Some approaches [6, 14] treat monocular depth estima-
tion as a classification task rather than a regression task.
Other methods [24, 19] apply the co-planarity constraint
to up-sampling layers or attention layers. As the rising
of Transformer architectures [10, 28], the more recent ap-
proaches [5, 35, 43, 26, 1] further improve the depth esti-
mation performance by better global perception.

Monocular surface normal estimation. Monocular sur-
face normal estimation defines a similar problem as the
above monocular depth estimation. Early attempts mostly
follow the similar DNN regression as monocular depth es-
timation. Recent approaches [18, 9, 39] try to employ extra
priors to enhance previous approaches. Specifically, Huang
et al. [18] took the canonical frames and principal directions
as additional supervised signals. Do et al. [9] designed a
spatial rectifier to learn from the the gravity-aligned training
data. VPLNet [39] and self-supervised StructDepth [25] re-
fer to Manhattan world assumptions, e.g., Manhattan lines.
Besides extra priors, Bae et al. [3] proposed a loss function
under angular vonMF distribution to predict surface normal
and its uncertainty.

Monocular geometry estimation. Monocular geometry
estimation combines the monocular depth and surface nor-
mal estimation together as a whole 3D geometry, and con-
siders the consistency between them for mutual enhance-
ment [38, 32, 33, 34, 41, 29, 31, 4]. Most methods require
both ground truth of depth and surface normals [38, 32, 33,
34, 29, 4]. Qi et al. in their works [32, 33] proposed an
iterative CNN framework to refine depth map and surface

normals from coarse initials. The similar ideas about pre-
training and refining are also proposed by SURGE [38],
SharpNet [34] and IronDepth [4]. Due to the difficulties
on acquisition of the ground truth, there are also works that
depend on less or none of ground-truth normals [41, 31].
Among them, Yin et al. [41] introduced global sampling for
virtual surface normals. Long et al. [29] proposed better 3D
region sampling and area adaption. The latest work by Patil
et al. [31] introduces offset vector field and mean plane loss
that employs least square fitting. These methods are mostly
related to our method, whereas our method is distinguished
by the pixel-wisely end-to-end manner of weak supervision.

3. Method
In this section, we explain the details of our method-

ology. Firstly, we introduce the mathematical model un-
der spherical coordinates, which formulates the pixel-level
depth-normal constraints derived from local co-planarity
assumption and pinhole camera model. From these con-
straints, we analytically demonstrate degeneracies and the
causes from the view of loss functions. Secondly, APR term
is proposed as a countermeasure to the degeneracies, and
CORE loss functions are introduced accordingly. At last,
we explain details of SANE that collaborates with our loss
functions for multi-task learning.

3.1. Spherical Depth-Normal Model

Depth-normal constraint at each individual pixel. We
assume the local linearity for common 3D scenes, and it de-
picts a small tangent plane and its corresponding unit sur-
face normal n = (n1, n2, n3) with ∥n∥2 = 1 at a 3D point
P0 = (X0, Y0, Z0). (u, v) is the pixel coordinate that P0

is projected to by pinhole camera model. Given that a sur-
face normal n is a unit vector, it is a common practice to
describe this vector ∈ R3 in concise spherical coordinates
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(θ, ϕ) ∈ R2. We rewrite the surface normal at spherical po-
lar coordinates n = (sin θ cosϕ, sin θ sinϕ, cos θ), where
θ ∈ [−π/2, π/2] and ϕ ∈ (−π, π] mean the polar and az-
imuthal angle, respectively. Moreover, we treat the world
coordinates as the same as the camera coordinates, and con-
sider the camera model as an ideal pinhole model in the
following sections. The constraint between depth map and
surface normals at each individual pixel is obtained by

sin θ cosϕ

n4(θ, ϕ)

u− cx
fx

+
sin θ sinϕ

n4(θ, ϕ)

v − cy
fy

+
cos θ

n4(θ, ϕ)
= Z−1,

(1)
where Z−1 is the inverse depth map, and n4 =
sin θ cosϕX0 + sin θ sinϕY0 + cos θZ0 is the distance
from world origin to the tangent plane. Conditionally on
Z and (u, v), n4 can be parameterized by θ and ϕ, namely
n4(θ, ϕ). (cx, cy) and (fx, fy) are the camera principal
points and focal lengths, respectively. The fundamental
Eq. (1) associates surface normals and depth map at each
individual pixel. Minimization on pixel-wise difference
between the left-hand side (LHS) and the right-hand side
(RHS) of Eq. (1) suggests a loss objective, e.g., pixel-wise
L1 or L2 distance.

The trivial solution of Eq. (1). However, without consider-
ing neighboring pixels, Eq. (1) indicates a quick trivial solu-
tion (θ ≡ 0, n4 ≡ Z). This trivial solution degenerates the
estimation of surface normals constrained by Eq. (1), since
the back-propagation with gradient-decent strategy stably
converges the prediction to it as a shortcut. We notice that
θ ≡ 0 is the persistent suboptimal state that incurs polar
angle collapse and meanwhile causes the trivial solution.

Depth-normal constraint between local pixels. The
first-order partial derivatives at pixel level connect an indi-
vidual pixel with local neighbors, which prevents the emer-
gence of the trivial solution of Eq. (1). Naturally, we take
the first-order partial derivatives of u and v on both sides of
Eq. (1). The depth-normal constraint between local pixels
is formulated by

(
sin θ cosϕ

n4(θ, ϕ)fx
,
sin θ sinϕ

n4(θ, ϕ)fy
) = ∇(Z−1), (2)

where ∇(Z−1) is the 2D image gradient of inverse depth
map. Even though Eq. (2) does not suffer from the trivial
solution anymore, common objectives, e.g., L1 or L2, are
still not applicable for Eq. (2). The reason lies in the imbal-
anced distribution of un-normalized ∇(Z−1). Intuitively,
for the loss objective, cosine similarity would be effective
with only angular differences taken into consideration.

The degeneracy of Eq. (2). However, cosine similarity in-
troduces another degeneracy on Eq. (2). Given that fx and

fy are approximate constants and independent term of sin θ,
we simplify Eq. (2) to the following new relation:

sin θ(
cosϕ

n4(θ, ϕ)
,

sinϕ

n4(θ, ϕ)
) ∼ ∇(Z−1)

From the above relation, it is not difficult to realize that
sin θ, as a proportion, hardly contributes to minimize co-
sine similarity. The consequence is that optimization of
θ quickly becomes inactive around the suboptimal state
θ ≈ 0. The pixel-level constraint from Eq. (2) loses the
degree of freedom of θ, which also causes collapse on polar
angle estimates. Therefore, the objective of cosine similar-
ity degenerates the optimization of (θ, ϕ, n4) as well.

3.2. Co-planarity Regularized (CORE) Losses.

Hereafter we specify the arbitrary pixel (u, v) as i for
the brief and consistent notation. Planar estimation P̂i is
(n̂1, n̂2, n̂3, n̂4)

1 parameterized by spherical polar predic-
tions: (θ̂, ϕ̂). We use the notation of planar estimation in our
CORE losses for brevity.

Adaptive polar regularization (APR). According to the
above analysis on the degeneracies, the fundamental cause
is the polar angle collapse during back-propagation. The
intuitive but crucial countermeasure becomes how to regu-
larize the predicted θ̂ to be away from its suboptimal state
θ̂ ≈ 0. To this end, we propose APR that consists of a po-
lar regularizer gi and an adaptive weight map ωi. The polar
regularizer gi exploits penalties to prevent the polar angle
collapse. It is simply parameterized by only θ̂, which is de-
fined as:

gi = − ln(4n̂
1
4
3 (1− n̂

1
4
3 )), (3)

where scalar 4 aims to arrange penalties ∈ [0,∞), and
the power 1/4 on n̂3

1 is to set regularization minimums
to close to ±π/2 (see more discussion on the choice of
power in our supplementary material). As a result, regu-
larized depth-normal constraints tend to guide polar angle
estimation along the decaying direction of regularization in
range of (0−,−π/2) and (0+, π/2) which are also consis-
tent to the real value domain of θ̂. Polar regularizer gi forces
θ̂ away from 0, but θ̂ ≈ 0 shall reasonably exist in the 3D
scenes as planes parallel to the image XY-plane. Accord-
ingly, as the other component of APR, we introduce adap-
tive weight map ωi to control the application of polar regu-
larization per pixel:

ωi = 1− exp(−∥∇(Z−1)i∥2
2

γσ2
), (4)

where σ is std(∥∇(Z−1)∥2) for all the pixels from a
mini-batch, and γ is a scalar hyper-parameter for different

1n̂1 = sin θ̂ cos ϕ̂, n̂2 = sin θ̂ sin ϕ̂, n̂3 = cos θ̂
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dataets. The purpose of ωi is to utilize the statistical knowl-
edge of ∥∇(Z−1)i∥2 ∈ R by a Gaussian RBF kernel, which
adaptively loosens the polar regularizer and maintains the
local correlation. Finally, we formulate APR as:

RAPR =
1

T

∑
i

(ωi ⊙ gi), (5)

where ⊙ is the element-wise multiplication, and T is here-
after the total number of pixels having valid raw depth val-
ues (Zi ̸= 0). ∇(Z−1)i can be approximated by a 3 × 3
Sobel operator on the inverse raw depth. We find that γ = 4
and γ = 16 are empirically working well for indoor and
outdoor datasets that we use in Sec. 4, respectively.

Co-planar differentiation loss (CPD loss). With the
above APR that resolves the optimization degeneracies, we
firstly introduce our designed CPD loss function according
to Eq. (2), which minimizes the angular difference between
q̂i = (n̂1/(n̂4fx), n̂2/(n̂4fy))

1 and qi = ∇(Z−1)i. To be
sensitive to small angular errors, we tailor the cosine sim-
ilarity to the angular loss. Additionally, inspired by Do et
al. [9] who suggest that a normalized L2 loss at large angu-
lar error (> π/2) is more robust to outliers, we segment our
CPD loss function into two parts as follows:

LCPD =


1

N

∑
i

(s−1
i ) si ∈ [0, 1],

1

M

∑
i

(π/2− si) si ∈ [−1, 0),

(6)

where si is the cosine similarity between q̂i and qi, and s−1
i

is the inverse cosine. q̂i is related to network predictions
and focal lengths. N and M are the total number of valid
pixels that satisfy si ∈ [0, 1] and si ∈ [−1, 0), respectively,
where N +M = T .

Co-planar refinement loss (CPR loss). Next, we pro-
pose our CPR loss which aims to compensate normal es-
timation bias and meanwhile refine depth map and surface
normals together. Although CPD and APR can guide sur-
face normals regression by the first-order depth-normal con-
straint, they discard the constant term per pixel between ab-
solute and relative estimates. To compensate these, we con-
sider the absolute depth-normal constraint from Eq. (1) for
refinement. As a result, according to Eq. (1), we design
CPR loss in terms of the smooth L1 that is effective in re-
finement tasks.

LCPR =
1

T

∑
i

|ci · p̂i − Ẑ−1
i |smooth, (7)

where ci = ((u − cx)/fx, (v − cy)/fy, 1) is calculated
from image coordinates and camera intrinsics. p̂i =
(n̂1/n̂4, n̂2/n̂4, n̂3/n̂4)

1 and Ẑ−1
i are both from network

predictions.

Overall loss. Finally, our overall loss function is given as:

Ltotal = (LCPD +RAPR + LCPR)︸ ︷︷ ︸
LCORE

+Ldepth, (8)

where Ldepth is a loss to supervise the depth estimation.
Here we use Scale-Invariant Logarithmic (SILog) loss [12].

3.3. Structure-Aware Normal Estimator (SANE)

The overall architecture shown in Fig. 3 contains two
major components, namely an encoder-decoder architecture
for depth estimation and our designed SANE for surface
normal estimation. The design for SANE as shown in upper
part of Fig. 3 contains three cascade blocks to perform
global perception, pixel-wise regression and multi-scale
fusion successively.

Global perception. We propose to utilize Global Context
Networks (GCNet) [7] to enhance global perception, since
the multi-scale features Fn could have insufficient global
information. GCNet introduces a light-weighted way to
pixel-wisely apply global self-attention at feature level. It
can be conveniently inserted after feature maps that are
extracted from the encoder-decoder architecture.

Pixel-wise regression. We design simple pixel-wise
Multi-Layer Perceptions (MLP) for the regression task.
The Pixel MLP is easily achieved by pixel-wise Conv1x1 +
BN + GELU for channels. The regression contains 2 Pixel
MLPs that squeeze the channels of Fg

n: Cn × Hn × Wn

by the ratio of λ = 0.5, and then outputs the intermediate
prediction Hn: 3 × Hn × Wn that contains θ̂, ϕ̂, n̂4 as
channel components. We apply Sigmoid on Ĥn and rectify
it to the actual value domains by scalar θ̂ ∈ [−π/2, π/2],
ϕ̂ ∈ (−π, π] and n̂4 ∈ [Zmin, Zmax].

Multi-scale fusion. We fuse the planar prediction P̂n,i that
contains (n̂1, n̂2, n̂3)

1 and n̂4 at the pixel i per scale n. For
the fusion strategy, we bi-linearly interpolate P̂n,i to the
original size, and pixel-wisely assemble them over scales.
Specifically, for (n̂1, n̂2, n̂3)

1 ∈ R3, we pixel-wisely ap-
ply weighted summation over scales, e.g., from 1/4 scale to
1/32 scale, and normalization after each summation. The
weights are related to the up-ratio as 1/upratio. As for n̂4,
it is the common pixel-wisely average over all scales.

4. Experiments
4.1. Implementation Details

In this work, we choose existing depth estimation meth-
ods, namely BTS [24], Adabins [5] and NeWCRs [43], to
present the effectiveness of CORE losses and SANE on
various DNN architectures. For details, BTS proposes a
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Method σ1 ↑ σ2 ↑ σ3 ↑ Abs.Rel↓ RMSE↓ log10 ↓
Eigen et al. [12] 0.769 0.950 0.988 0.158 0.641 −
DORN [14] 0.828 0.965 0.992 0.115 0.509 0.051
GeoNet [32] 0.862 0.965 0.989 0.113 0.527 0.049
VNL [41] 0.875 0.976 0.994 0.108 0.416 0.048
SharpNet* [34] 0.888 0.979 0.995 0.139 0.495 0.047
ASNDepth [29] 0.890 0.982 0.996 0.101 0.377 0.044
DPT* [35] 0.904 0.988 0.998 0.110 0.357 0.045
P3Depth [31] 0.904 0.988 0.998 0.104 0.356 0.043
IronDepth [4] 0.910 0.985 0.997 0.101 0.352 0.043
BinsFormer [26] 0.925 0.989 0.997 0.094 0.330 0.040
PixelFormer [1] 0.929 0.991 0.998 0.090 0.322 0.039
BTS [24] 0.885 0.978 0.994 0.110 0.392 0.047
Adabins [5] 0.903 0.984 0.997 0.103 0.364 0.044
NeWCRFs [43] 0.922 0.992 0.998 0.095 0.334 0.041
Ours (BTS) 0.890 0.982 0.996 0.106 0.375 0.046
Ours (Adabins) 0.899 0.984 0.997 0.106 0.359 0.044
Ours (NeWCRFs) 0.932 0.992 0.998 0.088 0.317 0.038

Table 1: Quantitative results of depth estimation on
NYUv2. “*” means using additional data during training.

Figure 4: The point cloud from bird view. The dashed box
indicates the better flatness; The dashed circle indicates the
better plane intersection; The arrow and zoom-in box indi-
cate better recovered surface. Zoom in for better view.

CNN-based encoder-decoder architecture. Adabins com-
bines a CNN-based encoder-decoder with a Vision Trans-
former [10]. The latest NeWCRFs employs the Swin-
Transformer [28] in the design. For fair comparison, except
our CORE losses and SANE, other implementation details,
such as learning rate, batch size, training epoches and etc.,
are identical to the original methods. Relevant details are
omitted because of the limited space.

4.2. Datasets

NYU depth v2 [37] is an indoor RGB-D dataset which pro-
vides samples with the resolution of 480 × 640 and max-
imum depth of 10 meters. We train our network with the
same subsets as [24, 5, 43], and evaluate our method on the
official 654 testing samples with center cropping defined by
Eigen et al. [12]. For surface normal evaluation, we use
654 ground truth generated by Ladicky et al. [22] on only
the valid pixels by following Zhang et al. [44] and Do et
al. [9].
KITTI [16] is a stereo-LiDAR dataset for outdoor scenes.
It provides the 376 × 1241 stereo-RGBs and sparse depth
map with maximum depth of 80 meters. We reserve the
training subset defined by [24, 43]. The test set contains

Method Sup. Mean↓ 11.2◦ ↑ 22.5◦ ↑ 30◦ ↑
Surface Normal Estimation Network

Ladicky et al. [22] ✓ 35.5 24.0 45.6 55.9
Wang et al. [40] ✓ 28.8 35.2 57.1 65.5
Eigen et al. [11] ✓ 23.7 39.2 62.0 71.1

3D Geometry Estimation Network
GeoNet [32] ✓ 36.8 15.0 34.5 46.7
VNL [41] × 24.6 34.1 60.7 71.7
ASNDepth [29] ✓ 20.0 43.5 69.1 78.6
IronDepth [4] ✓ 20.8 49.7 70.5 77.9

Calculated Surface Normal from Depth
DORN [14] × 36.6 15.7 36.5 49.9
Hu et al. [17] × 32.1 24.7 48.5 59.9
BTS [24] × 44.0 14.4 32.2 43.2
Adabins [5] × 33.2 22.3 47.2 58.7
NeWCRFs [43] × 29.5 27.1 52.2 64.5
Ours (BTS) × 30.2 24.6 47.4 58.7
Ours (Adabins) × 29.0 25.5 48.1 60.1
Ours (NeWCRFs) × 21.9 34.6 63.6 75.4

Table 2: Quantitative results of surface normal estimation
on NYUv2. “✓” means training (including pre-training)
supervised by ground-truth normals, while “×” means not.

697 samples specified by Eigen et al. [12] and cropped as
Garg et al. [15].
ScanNetv2 [8] is also an RGB-D video dataset containing
2.5 million views in more than 1, 500 scans indoors. We use
the 2, 167 official test samples to cross-evaluate our method
that is well trained with NYUv2 dataset. This dataset is not
used as training data.

4.3. Evaluation Metrics

Depth. We consider evaluation metrics used in Eigen et
al. [12] to compare our depth with others. These metrics are
defined as: Root Mean Squared Error (RMSE) and its log
variant RMSElog , Average Relative Error (Abs.ReL) and its
square variant Sqr.Rel, Average (log10) Error, and Thresh-
old Accuracy (δi) for 1.25, 1.252, 1.253.
Surface normal. Following previous works [25, 42], the
main ranking metrics of mean and the percentage of pix-
els with error under thresholds t ∈ [11.25◦, 22.5◦, 30◦] are
reported for angular errors.

4.4. Comparison with the State-of-the-Art

Evaluation on NYU depth v2. We evaluate our method on
NYUv2 dataset for indoor scenes. As presented in Tab. 1,
the performance of depth estimation has been steadily im-
proved after applying CORE losses and SANE onto the
original methods [24, 5, 43]. Since NYUv2 dataset has been
saturated for a while [43], we use relative gains for better in-
dication. On NeWCRFs [43], our method further improves
its main indicators by 5.1% (RMSE) and 7.3% (AbsRel).
Also, the enhanced NeWCRFs [43] by our method outper-
forms the latest state-of-the-art of PixelFormer [1] on all
the metrics. Besides the metrics, our method is able to ame-
liorate the 3D geometry estimation from over-smoothing,
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(a) Input RGB. (b) Adabins. (c) NeWCRFs. (d) Our depth. (e) GT depth. (f) Our normals. (g) GT normals.

Figure 5: The qualitative results on NYUv2. Depth and normal estimation are from ours (NeWCRFs) because of limited
spaces. More qualitative results can be found in our supplementary material. Zoom-in and best view in color.

Method σ1 ↑ σ2 ↑ σ3 ↑ Abs.Rel↓ RMSE↓ Sqr.Rel↓ RMSElog ↓
Eigen et al. [12] 0.702 0.898 0.967 0.203 6.307 1.548 0.282
DORN [14] 0.932 0.984 0.994 0.072 2.727 0.307 0.120
GeoNet [33] 0.897 0.968 0.986 0.094 − − −
VNL [41] 0.938 0.990 0.998 0.072 3.258 − 0.117
DPT* [35] 0.959 0.995 0.999 0.062 2.573 − 0.092
P3Depth [31] 0.953 0.993 0.998 0.071 2.842 0.270 0.103
BinsFormer [26] 0.974 0.997 0.999 0.052 2.098 0.151 0.079
PixelFormer [1] 0.976 0.997 0.999 0.051 2.081 0.149 0.077
BTS [24] 0.956 0.993 0.998 0.059 2.756 0.245 0.096
Adabins† [5] 0.962 0.995 0.999 0.058 2.422 0.217 0.091
NeWCRFs [43] 0.974 0.997 0.999 0.052 2.129 0.155 0.079
Ours (BTS) 0.962 0.994 0.999 0.060 2.442 0.202 0.092
Ours (Adabins) 0.962 0.995 0.999 0.059 2.379 0.195 0.091
Ours (NeWCRFs) 0.976 0.997 0.999 0.052 2.095 0.149 0.077

Table 3: Quantitative results of depth estimation on KITTI.
“†” denotes the retrained model with the same training set
as [24, 43]. “*” means using additional training data.

which is visualized by point clouds in Fig. 4. These point
clouds present that our method can rectify curved planes,
sharpen plane intersection, and recover local surface with
more precise shape and texture, e.g., the hanging box and
heater. Our depth estimation is visualized in Fig. 5, which
shows similarly better geometry details.

For surface normal estimation, Tab. 2 demonstrates
that our weakly supervised method outperforms relevant
methods that involve none of ground-truth normals. The
comparison results are mainly cited from the original
papers and published articles [41, 29]. For NeWCRFs [43]
and Adabins [5], we compute the surface normals from
their estimated depth by least-square plane fitting, follow-
ing the common practice. Although ASNDepth [29] and
IronDepth [4] provide slightly better performance, they
explicitly require the ground-truth normals. From Fig. 5,
qualitative results show that our method is able to predict
more geometry details of textures and boundaries, which
are even absent in the ground truth, e.g., the thin pole (in
the first row) and wrinkles on the towels (in the third row).

Method σ1 ↑ σ2 ↑ σ3 ↑ Abs.Rel↓ RMSE↓ log10 ↓
VNL [41] 0.565 0.856 0.957 0.238 0.505 0.105
ASNDepth [29] 0.609 0.861 0.955 0.233 0.484 0.100
P3Depth [31] 0.551 − − 0.223 0.538 −
BTS [24] 0.583 0.858 0.951 0.246 0.506 0.104
Adabins [5] 0.622 0.858 0.945 0.223 0.466 0.100
NeWCRFs [43] 0.727 0.943 0.984 0.182 0.359 0.081
Ours (BTS) 0.629 0.888 0.966 0.224 0.450 0.094
Ours (Adabins) 0.642 0.885 0.963 0.218 0.443 0.093
Ours (NeWCRFs) 0.739 0.946 0.986 0.178 0.349 0.073

Table 4: Quantitative results of depth estimation on the
ScanNetv2 (cross-evaluation on 2,167 official test images).

Evaluation on KITTI. We only evaluate our depth
estimation on KITTI dataset for outdoor scenes because of
the absence of standard ground-truth normals. Tab. 3 shows
that our method still progressively enhances the original
depth estimation. On BTS [24], our method considerably
reduces its RMSE by 11.4% and Sqr.Rel by 17.6%. On
NeWCRFs [43], our method boosts its performance very
close to the latest PixelFormer [1]. It is worth noting that
this performance gain requires no extra network parameters,
because SANE can be discarded after training. Moreover,
on the condition of distance, we observe that our method
consistently ameliorates Abs.Rel for near scenes < 20m,
and yet slightly affects Abs.Rel at far scenes > 50m (see
details in our supplementary material). We argue that the
local co-planarity assumption holds mostly for near regular
scenes, while some far scenes are exceptions. Fortunately,
the depth density in far range > 50m is usually low, and the
overall impact is insignificant.

Evaluation on ScanNetv2. To indicate the generalisation
of our method, we perform a cross-evaluation on ScanNetv2
dataset, similar to [29, 31]. Tab. 4 shows that our method
steadily improves corresponding original approaches with-
out decreasing the generalisation. Also, our NeWCRFs-
based solution states the best results.
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Depth loss CORE losses Depth Normal
APR CPD loss CPR loss RMSE↓ Mean↓
✓ ✓ ✓ − 35.4

✓ ✓ 0.331 %

✓ ✓ 0.324 %

✓ ✓ ✓ 0.324 %

✓ ✓ ✓ 0.319 27.6
✓ ✓ ✓ ✓ 0.317 21.9

Table 5: Ablation studies on our proposed CORE losses.
%means a failure prediction because of the polar angle col-
lapse. “-” means not applicable. Without depth loss, CPR
loss uses ground-truth depth instead.

Method Backbone GCNet Depth Normal
RMSE↓ Mean↓

BTS [24] DenseNet × 0.380 34.9
✓ 0.375 30.2

Adabins [5] EfficientNet × 0.363 32.1
✓ 0.359 29.0

NeWCRFs [43] Swin-T × 0.317 22.6
✓ 0.317 21.9

Table 6: Ablation studies on our proposed SANE. The
global perception is crucial to benefit the surface normal
estimation for CNN architectures.

4.5. Ablation Study

In this section, we conduct ablation studies to analyze the
effectiveness of our design. The ablation studies are mainly
performed with NeWCRFs [43] and NYUv2 [37] as default.
CORE losses. 1) APR is the spotlight of our design for
CORE losses, which guarantees the weakly supervised
normal estimation. As discussed in Sec. 3.1 and shown
in Fig. 2, without APR, surface normals could not be
properly predicted because of the polar angle collapse. 2)
According to Tab. 5, we notice that CPD loss still improves
the performance of depth prediction regardless of APR.
The latent reason is that azimuthal of ϕ is persistently
optimized by CPD loss even under the degeneracy. 3)
The results in Tab. 5 also indicate that CPR loss is crucial.
This loss further polishes both performance, especially
for the surface normals. As discussed in Sec. 3.2, CPR
loss compensates and refines the relative surface normal
estimation, so that the estimates are more consistent to
the ground truth as shown in Fig. 6. In a nutshell, each
component of our CORE losses is indispensable (see more
analysis in our supplementary material).

SANE. As presented in Tab. 6, when GCNet [7] is removed
from SANE, surface normal estimation obviously decreases
on performance for BTS [24] and Adabins [5] which em-
ploy CNN backbones, whereas the impact is slight for
NeWCRFs [43]. The reason lies in that NeWCRFs has
already utilized Swin-Transformer [28] to perform decent
global perception. This fact suggests that SANE can benefit

(a) Input RGB. (b) w/o CPR. (c) with CPR. (d) GT.

Figure 6: The effectiveness of CPR loss on surface normal
estimation. The surface normal estimates are rectified and
polished by CPR loss. Zoom-in and best view in color.

Module Configs Depth Normal
RMSE↓ Mean↓

Pixel MLPs
1 0.334 34.0
2 0.317 21.9
3 0.317 21.8

Multi-scale Fusion
1 0.319 24.2
2 0.317 22.7
4 0.317 21.9

Table 7: More ablation studies on our proposed SANE. The
default settings are in bold font.

the surface normal estimation for some CNN architectures
without sufficient global information. Moreover, the results
in Tab. 7 indicate that Pixel MLPs and Multi-scale Fusion
basically remains stable to the configurations except for
the extreme setting, e.g. 1 Pixel MLP and 1 Multi-scale
Fusion. Our default settings aim to balance the accuracy
and computation.

Multi-task learning. As also presented in Tab. 5, multi-
task learning is important for both depth and surface nor-
mal estimation. Particularly, the surface normal estimation
is boosted by 13.5◦ after depth branch is enabled. Thus,
it is mostly a wise choice to perform such full multi-task
training and then reserve the necessary regression head at
inference time, because multi-task learning with SANE is
light-weighted and involved only in the training stage.

5. Conclusion
In this paper, we explore the feasibility to utilize depth-

normal constraints as pixel-wise loss functions for 3D ge-
ometry estimation. Firstly, we propose CORE losses from
spherical depth-normal constraints, which enable surface
normal regression weakly supervised by only ground-truth
depth map. Then, we design SANE for multi-task learning,
which introduces CORE losses to existing methods of depth
estimation, and boosts the whole performance. Finally, our
method achieves new state-of-the-art of indoor depth esti-
mation, comparable outdoor depth estimation and superior
surface normal estimation. In future, we will focus on the
further improvement of our method for outdoor scenes.
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Caner Hazirbas, Vladimir Golkov, Patrick van der Smagt,
Daniel Cremers, and Thomas Brox. Flownet: Learning op-
tical flow with convolutional networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 2758–2766. 3

[14] Huan Fu, Mingming Gong, ChaohuiWang, Nematollah Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2002–2011, 2018. 3, 6, 7

[15] Ravi Garg, Vijay Kumar B.G., Gustavo Carneiro, and Ian
Reid. Unsupervised cnn for single view depth estimation:
Geometry to the rescue. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 740–756,
2016. 3, 6

[16] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research, 32:1231–1237, 2012.
1, 6

[17] Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani.
Revisiting single image depth estimation: Toward higher res-
olution maps with accurate object boundaries. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 1043–1051, 2018. 2, 6

[18] Jingwei Huang, Yichao Zhou, Thomas Funkhouser, and
Leonidas Guibas. Framenet: Learning local canonical
frames of 3d surfaces from a single rgb image. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2019. 1, 3

[19] Lam Huynh, Phong Nguyen-Ha, Jiri Matas, Esa Rahtu, and
Janne Heikkila. Guiding monocular depth estimation using
depth-attention volume. In arXiv preprint arXiv:2004.02760,
2020. 3

[20] Uday Kusupati, Shuo Cheng, Rui Chen, and Hao Su. Nor-
mal assisted stereo depth estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

[21] Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. Semi-
supervised deep learning for monocular depth map predic-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2215–
2223, 2017. 3

[22] Lubor Ladicky, Bernhard Zeisl, and Marc Pollefeys. Dis-
criminatively trained dense surface normal estimation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2014. 1, 2, 6

[23] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. In Proceedings
of the International Conference on 3D Vision (3DV), 2016. 3

[24] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and Il Hong
Suh. From big to small: Multi-scale local planar guid-
ance for monocular depth estimation. In arXiv preprint
arXiv:1907.10326, 2019. 3, 5, 6, 7, 8

[25] Boying Li, Yuan Huang, Zeyu Liu, Danping Zouy, and
Wenxian Yu. Structdepth: Leveraging the structural regu-

8804



larities for self-supervised indoor depth estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022. 3, 6

[26] Zhenyu Li, Xuyang Wang, Xianming Liu, and Junjun Jiang.
Binsformer: Revisiting adaptive bins for monocular depth
estimation. arXiv preprint arXiv:2204.00987, 2022. 3, 6, 7

[27] Fayao Liu, Chunhua Shen, Guosheng Lin, and I. Reid.
Learning. Learning depth from single monocular images us-
ing deep convolutional neural fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38:2024–2039,
2015. 3

[28] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 3, 6, 8

[29] Xiaoxiao Long, Cheng Lin, Lingjie Liu, and Wei Li. Adap-
tive surface normal constraint for depth estimation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 2, 3, 6, 7

[30] Xiaoxiao Long, Lingjie Liu, Christian Theobalt, and Wen-
ping Wang. Occlusion-aware depth estimation with adaptive
normal constraints. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2020. 2

[31] Vaishakh Patil, Christos Sakaridis, Alexander Liniger, and
Luc Van Gool. P3depth: Monocular depth estimation with a
piecewise planarity prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 2, 3, 6, 7

[32] Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun,
and Jiaya Jia. Geonet: Geometric neural network for joint
depth and surface normal estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 283–291, 2018. 2, 3, 6

[33] Xiaojuan Qi, Zhengzhe Liu, Renjie Liao, Philip HS Torr,
Raquel Urtasun, and Jiaya Jia. Geonet++: Iterative geo-
metric neural network with edge-aware refinement for joint
depth and surface normal estimation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020. 1, 3, 7
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