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Abstract

Scene Graph Generation (SGG) aims to detect all the vi-
sual relation triplets <sub, pred, obj> in a given image.
With the emergence of various advanced techniques for bet-
ter utilizing both the intrinsic and extrinsic information in
each relation triplet, SGG has achieved great progress over
the recent years. However, due to the ubiquitous long-tailed
predicate distributions, today’s SGG models are still easily
biased to the head predicates. Currently, the most prevalent
debiasing solutions for SGG are re-balancing methods, e.g.,
changing the distributions of original training samples. In
this paper, we argue that all existing re-balancing strategies
fail to increase the diversity of the relation triplet features
of each predicate, which is critical for robust SGG. To this
end, we propose a novel Compositional Feature Augmenta-
tion (CFA) strategy, which is the first unbiased SGG work
to mitigate the bias issue from the perspective of increas-
ing the diversity of triplet features. Specifically, we first de-
compose each relation triplet feature into two components:
intrinsic feature and extrinsic feature, which correspond to
the intrinsic characteristics and extrinsic contexts of a rela-
tion triplet, respectively. Then, we design two different fea-
ture augmentation modules to enrich the feature diversity
of original relation triplets by replacing or mixing up either
their intrinsic or extrinsic features from other samples. Due
to its model-agnostic nature, CFA can be seamlessly incor-
porated into various SGG frameworks. Extensive ablations
have shown that CFA achieves a new state-of-the-art per-
formance on the trade-off between different metrics.

1. Introduction

As one of the fundamental comprehensive visual scene

understanding tasks, Scene Graph Generation (SGG) has

attracted unprecedented interest from our community and

has made great progress in recent years [29, 47, 44, 2, 4,

35, 24, 26, 21, 43, 23, 32]. Specifically, SGG aims to trans-

† Corresponding author. Work was done when Lin Li visited HKUST.
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Figure 1: (a) The intrinsic and extrinsic information for

SGG. The entity prediction is for the green box, and the

predicate prediction is for the relation between the red and

green boxes. (b) Illustration of the diversity of feature space

and decision boundary between on and laying on be-

fore and after using re-balancing and CFA. Each sample de-

notes the corresponding visual triplet features.

form an image into a visually-grounded graph representa-

tion (i.e., scene graph) where each node represents an ob-

ject instance with a bounding box and each directed edge

represents the corresponding predicate between the two ob-

jects. Thus, each scene graph can also be formulated as a

set of visual relation triplets (i.e., <sub, pred, obj>).

Since such structural representations can provide strong ex-

plainable potentials, SGG has been widely-used in various

downstream tasks, such as visual question answering, im-

age retrieval, and captioning.

In general, due to the extremely diverse visual appear-

ance of different visual relation triplets, recent SGG meth-
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ods all consider both intrinsic and extrinsic information for

entity and predicate classification [44, 36, 30]. By “intrinsic

information”, we mean these intrinsic characteristics of the

subjects and objects, such as their visual, semantic, and spa-

tial features. For example in Figure 1(a), with the help of

these intrinsic features, we can easily infer all possible en-

tity categories (e.g., pole or surfboard) and predicate

categories (e.g., on or holding) of each triplet. However,

sometimes it is still hard to confirm the exact correct pre-

dictions with only intrinsic information, especially for tiny

objects. Thus, it is also essential to consider other “extrinsic

information” in the same image, such as the context features

from neighbor objects. As shown in Figure 1(a), after en-

coding the features of surrounding objects (e.g., wave and

hand), we can easily infer that the categories of the entity

and predicate should be surfboard and holding.

Although numerous advanced techniques have been pro-

posed to effectively leverage both intrinsic and extrinsic in-

formation, today’s SGG methods still fail to predict some

informative predicates due to the ubiquitous long-tailed

predicate distribution in prevalent SGG datasets [20]. Such

a distribution is characterized by few categories with vast

samples (head1) and many categories with rare samples

(tail). Since the discrepancy of feature diversity and sample

size among different categories, the learned decision bound-

ary becomes improper (c.f . Figure 1(b)), i.e., their predic-

tions are biased towards the head predicates (e.g., on) and

they are error-prone for the tail ones (e.g., laying on).

To overcome the bias issue, the most prevalent unbiased

SGG solutions are re-balancing strategies, e.g., sample re-

sampling [26, 49] and loss re-weighting [41, 1, 27, 31, 17].

They alleviate the negative impact of long-tailed distribu-

tion by increasing samples or loss weights of tail classes.

Then, the decision boundaries are adjusted to reduce the

bias introduced by imbalanced distributions. However, we

argue that all the existing re-balancing strategies fail to in-

crease the diversity of relation triplet features2 of each pred-

icate, i.e., they only change the frequencies or contributions

of existing relation triplet features (c.f . Figure 1(b)). Since

these tail categories are under-represented, it is still hard

to infer the complete data distribution, i.e., making it chal-

lenging to find the optimal direction to adjust the decision

boundaries [6, 38]. For example in Figure 1(b), the fea-

ture space of laying on is so sparse that the decision

boundary can be adjusted within a large range. The perfor-

mance of this naive adjustment without “complete” distri-

bution is always sensitive to hyperparameters, i.e., exces-

sively increasing the sample number or loss weight of tail

predicates may cause some head predicate samples to be in-

1We directly use “tail”, “body”, and “head” categories to represent the

predicate categories in the tail, body, and head parts of the number distri-

butions of different predicates in SGG datasets, respectively.
2We use the “relation triplet feature” to represent the combination of

both intrinsic and extrinsic features of each visual relation triplet.

Figure 2: (a) Intrinsic-CFA: Replacing the entity feature

of tail predicate triplet dog-laying on-bed from dog
to cat to enhance the intrinsic feature. (b) Extrnisc-CFA:

Mixing up the feature of tail predicate triplet pillow-

laying on-bed into the context of pillow-on-bed to

enhance the extrinsic feature.

correctly predicted as tail classes (right solid line), and vice

versa (left solid line).

In this paper, we propose a novel Compositional Fea-

ture Augmentation (CFA) strategy for unbiased SGG, which

tries to solve the bias issue by enhancing the diversity of re-

lation triplet features, especially for tail predicates. Specifi-

cally, CFA consists of two components: an intrinsic feature

augmentation (intrinsic-CFA) and an extrinsic feature aug-

mentation (extrinsic-CFA), which enhance the intrinsic and

extrinsic features2, respectively. As shown in Figure 1(b),

by increasing the feature diversity of the tail predicates (e.g.,

laying on), SGG models can easily learn the proper de-

cision boundaries (vs. re-balancing strategies).

For intrinsic-CFA, we replace the entity features (e.g.,

subject or object) of a tail predicate triplet with other “suit-

able” entity features. To determine the suitable entity cate-

gories for the augmentation, we propose a new hierarchical

clustering method to find the correlations between differ-

ent entity categories, and then we regard the entity features

from the same cluster are suitable. Specifically, we calcu-

late the category correlation by pattern, context, and seman-

tic similarities. For example in Figure 2(a), the entity cat-

egories cat and dog are in the same cluster, i.e., we can

augment the intrinsic feature by replacing the dog entity

feature with a cat entity feature. For extrinsic-CFA, we

take advantage of the context or interactions of other triplets

(i.e., context triplets) and enhance the features of tail pred-

icate triplets by these context triplets. Specifically, given a

context triplet randomly selected from an image, we first se-

lect a reasonable tail predicate triplet as the target by limit-

ing the categories and relative position of two objects. Then,

to minimize the impact on the prediction of other triplets in

the original image and make use of the extrinsic features of
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the context triplet, we use a mixup operation to fuse the fea-

tures of targeted tail predicate triplet into the context triplet.

For example in Figure 2(b), triplet pillow-laying on-

bed is mixed up into the image of pillow-on-bed.

We evaluate CFA on two most prevalent and challenging

SGG datasets: Visual Genome (VG) [20] and GQA [16].

Since CFA is a model-agnostic debiasing strategy, it can

be seamlessly incorporated into various SGG architectures3

and consistently improve their performance. Unsurpris-

ingly, CFA can achieve a new state-of-the-art performance

on the trade-off between different metrics. Extensive abla-

tions and results on multiple SGG tasks and backbones have

shown the generalization ability and effectiveness of CFA.

In summary, we make three contributions in this paper:

1. We reveal the issue of existing re-balancing methods, i.e.,

the lack of triplet feature diversity of tail categories. To

this end, we are the first to tackle unbiased SGG from the

perspective of increasing the diversity of triplet features.
2. We propose the model-agnostic CFA for unbiased SGG,

which is an efficient and novel compositional learning

framework that spans the feature space of the tail cate-

gories by two independent plug-and-play modules.
3. Extensive results show the effectiveness of CFA, i.e., it

achieves a new SOTA performance on SGG benchmarks.

2. Related Work
Unbiased Scene Graph Generation. Biased predictions

prevent further use of scene graphs in real-world applica-

tions. Recent unbiased SGG works can be roughly divided

into three main categories: 1) Re-balancing: It alleviates the

negative impact of long-tailed predicate distribution by re-

weighting or re-sampling [41, 27, 31, 26, 8]. 2) Unbiased
Inference: It makes unbiased predictions based on biased

models [35, 42]. 3) Noisy Label Learning: It reformulates

SGG as a noisy label learning problem and corrects these

noisy samples [21, 22]. In this work, we point out the draw-

backs of existing re-balancing methods and study unbiased

SGG from the new perspective of feature augmentation.

Feature Augmentation. Data augmentation is a prevalent

training trick to improve models’ performance. Conven-

tional data augmentation methods [9, 48] usually synthe-

size new samples in a hand-crafted manner. Compared to

these image-level data augmentation methods, feature aug-

mentation is another efficient way to improve models’ gen-

eralizability by directly synthesizing samples in the feature

space [6, 25]. Compared to existing data augmentation ap-

plications, SGG is a sophisticated task that involves intrin-

sic and extrinsic features. In this work, we propose CFA to

enrich the diversity of relation triplet features for debiasing.

3Following the mainstream and concurrent unbiased SGG works, we

also only focus on two-stage frameworks. As for one-stage models, a sim-

ilar idea can be applied at the image-level, and we leave it for future works.
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Figure 3: The illustration of unbiased SGG framework with

CFA.

Compositional Learning (CL). CL has been successfully

applied to various computer vision tasks. As for visual

scene understanding, some Human Object Interaction de-

tection works [14, 18, 15] compose new interaction sam-

ples that significantly benefit both low-shot and zero-shot

settings. To the best of our knowledge, only two unpub-

lished SGG work [13, 19] also uses CL. Compared to [13],

we have several key differences: 1) They aim to generate

new representations which are close to the original triplet.

Instead, we try to increase the diversity of triplet features. 2)

They only change the entities and ignore the extrinsic fea-

tures. 3) Their augmentation strategies are mainly based

on the spatial locations or IoU of the entities. The sec-

ond work [19] primarily addresses classification tasks. Our

work differs from it in two aspects: 1) CFA increases the di-

versity of tail predicate features by leveraging both intrinsic

and extrinsic information. 2) we aim to improve robustness

and performance under long-tailed predicate distributions.

3. Approach
Given an image I , a scene graph is formally represented

as G = {N , E}, where N and E denote the set of all objects

and their pairwise visual relations, respectively. Specifi-

cally, the i-th object in N consists of a bounding box (bbox)

bi ∈ B and its entity category oi ∈ O. A relation rij ∈ R
denotes the predicate category between i-th object and j-th

object. bij denotes the union box of bbox bi and bbox bj .

B, O, and R represent the set of all entity bboxes, entity

categories, and predicate categories, respectively.

In this section, we first revisit the two-stage SGG base-

lines in Sec. 3.1. Then, we detailedly introduce our CFA in

Sec. 3.2, including intrinsic-/extrinsic-CFA (c.f . Figure 3).

Finally, we introduce the training objectives in Sec. 3.3.

3.1. Revisiting the Two-Stage SGG Baselines

Since the mainstream SGG methods are two-stage mod-

els, we review the two-stage SGG framework3 here [44, 36].
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Figure 4: The pipeline of Intrinsic CFA (a) and Extrinsic CFA (b). The blue and green boxes represent operations on the

query triplet features in Intrinsic-CFA and context triplet features in Extrinsic-CFA, respectively.

A typical two-stage SGG model involves three steps: pro-

posal generation, entity classification, and predicate classi-

fication. Thus, the SGG task P (G|I) is decomposed into:

P (G|I) = P (B|I)P (O|B, I)P (R|O,B, I). (1)

Proposal Generation P (B|I). This step aims to generate

all bbox proposals B. Given an image I , they first utilize

an off-the-shelf object detector (e.g., Faster R-CNN [34]) to

detect all the proposals B and their visual features {vi}.

Entity Classification P (O|B, I). This step mainly predicts

the entity category of each bi ∈ B. Given a visual feature vi

and proposal bi, they use an object context encoder Encobj
to extract the contextual entity representation fi:

fi = Encobj(vi ⊕ bi), (2)

where ⊕ denotes concatenation. Then, they use an object

classifier Clsobj to predict their entity categories:

ôi = Clsobj(fi). (3)

Predicate Classification P (R|O,B, I). This step predicts

the predicate categories of every two proposals in B along

with their entity categories. First, they use a relation context

encoder Encrel to extract the refined entity feature f̃i:

f̃i = Encrel(vi ⊕ fi ⊕wi), (4)

where wi is the GloVe embedding [33] of predicted ôi. It

is worth noting that both Enccls and Encrel often adopt a

sequence model (e.g., Bi-LSTM [44], Tree-LSTM [36], or

Transformer [42]) to better capture context. After relation

feature encoding, they use a relation classifier Clsrel to pre-

dict the relation r̂ij between any two subject-object pairs:

r̂ij = Clsrel([f̃i ⊕ f̃j ] ◦ uij), (5)

where ◦ denotes element-wise product, and uij denotes the

visual feature of the union box bij .

3.2. CFA: Compositional Feature Augmentation

In this paper, we treat a relation triplet feature2 in SGG as

a combination of two components: intrinsic feature and ex-

trinsic feature, which refer to the intrinsic information (i.e.,

the subject and object itself) and extrinsic information (i.e.,

the contextual objects and stuff), respectively. Correspond-

ingly, our CFA consists of intrinsic-CFA and extrinsic-CFA

to augment these two types of features. For ease of presen-

tation, we call the “targeted tail predicate triplet whose fea-

ture to be enhanced” as “query triplet”, and the “relation

triplet whose image is used to provide context” as “context
triplet”. Besides, to facilitate the feature augmentation, we

store all the visual features of all tail predicate triplets (i.e.,

visual features v of two entities and their union feature u)

in a feature bank before training. Besides, we adopt the

repeat factor η = max(1, ηr) [12, 26] to sample images to

provide enough context triplet and query triplet for augmen-

tation, where ηr =
√
λ/fr, fr is the frequency of predicate

category r on the entire dataset, and λ is hyperparameter.

The unbiased SGG pipeline with CFA is shown in Figure 3.

3.2.1 Intrinsic-CFA

Intrinsic-CFA enhances the feature of query triplet by re-

placing its visual features of entities (i.e., subject and ob-
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Figure 5: Illustration of the pattern and context similarity

between entity categories cat and dog. a) White boxes

are the behavior patterns common to two categories. b) Blue

and red circles are entity categories that co-occur with cat
and dog, respectively.

ject). It consists of two steps: entity category selection and

entity feature selection and replacement (c.f . Figure 4(a)).

During training, we randomly select a query triplet from a

batch of images, and randomly select one of its entity fea-

tures as input. Then we put it into the Intrinsic-CFA module

(c.f . Figure 3). Next, we detailedly introduce each step.

Entity Category Selection. This step is used for deter-

mining the category to which the entity feature of query

triplet is replaced. Firstly, we propose a novel hierarchical
clustering strategy to mine potentially fungible entity cat-

egories. Then we randomly select an entity category from

the same cluster for the next entity feature selection. For the

query triplet dog-laying on-bed in Figure 4, the cate-

gory cat is selected from the same cluster as dog. The

categories in the same cluster are common in the behavior

patterns (e.g., they can be ridden), contexts (e.g., they can

appear in a scene with a street) as well as semantics. Ac-

cordingly, three kinds of similarity are used to measure the

common characters of two entity categories: pattern simi-

larity, context similarity, and semantic similarity.

(i) Pattern Similarity. It measures the overlap of the be-

havior patterns of two entity categories [39]. Figure 5(a)

visualizes the common pattern between cat and dog (e.g.,

they all can be attached by the paw). Pattern similarity be-

tween two entity categories ci and cj is defined as:

Simp(ci, cj) =
|Ls|

dout(ci) + dout(cj)− |Ls|
+

|Lo|
din(ci) + din(cj)− |Lo| ,

(6)

where |Ls| (|Lo|) is the number of common pred-obj
(sub-pred) classes of the triplet whose sub (obj) class is

ci or cj . din(ci) (dout(ci)) is the number of incoming (out-

going) edges of the entity with class ci in the whole dataset.

(ii) Context Similarity. It measures the overlap of other

entity categories in images of the two entity categories.

Both cat and dog can appear in the same scene with entity

categories, e.g., room in Figure 5(b). It is defined as:

Simc(ci, cj) =
|Le|

dco(ci) + dco(cj)− |Le| , (7)

where |Le| denotes the number of entity category intersec-

tions that appear in the same image with entity category ci
or with cj . dco(ci) is the number of entity instances in the

whole dataset that appear in the same image as category ci.
(iii) Semantic Similarity. It is the Euclidean distance of

two entity categories on semantic embedding [33] space:

Sims(ci, cj) = ||wi −wj ||2. (8)

The final similarity function Sim(ci, cj) used in clustering

is the weighted sum of above three similarities. Complete

clustering algorithm and results are in the appendix.

Entity Feature Selection and Replacement. This step se-

lects an entity feature from the feature bank based on the se-

lected entity category and replaces it with the query triplet.

Specifically, we first update a new entity category of query

triplet (e.g., cat-laying on-bed). Then, we select all

triplet features with the same category as query triplet from

feature bank as candidates (c.f . Figure 4(a)). And we utilize

spatial restriction to filter unreasonable triplet features.

Spatial Restriction. In real augmentation, even if the two

entity categories appear to be interchangeable, the positions

of the subject and object after replacement may not make

sense. For example, in VG dataset (c.f . appendix), though

category hat and shoe are in the same cluster, directly

replacing hat with shoe would place the shoe on the

head and make it contrary to common sense.

To further ensure the rationality of the replacement of the

two entity features, we use the cosine similarity of the rela-

tive spatial position of subject-object of the query triplet and

the selected triplet from the feature bank as the restriction:

Simd(pi,pj) =
pi • pj

|pi||pj| , (9)

where pi is the spatial vector from the center of the subject

bbox to the center of object bbox. When the Simd between

pi of the query triplet and pj of the selected triplet from the

feature bank is larger than the threshold σ, the entity feature

of the selected triplet is reasonable for replacement.

During replacement, we randomly select one of the rea-

sonable entity features and replace it into query triplet and

change the original entity target to the new entity category.

3.2.2 Extrinsic-CFA

Extrinsic-CFA aims to enrich the feature of the query triplet

through the extrinsic information (i.e., the context formed

by all the entities of an image) of context triplets. Different

from the Intrinsic-CFA, we first select context triplet during
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training for computation efficiency. Extrinsic-CFA includes

three steps: context triplet selection, query triplet feature se-

lection, and feature augmentation (c.f . Figure 4(b)). Then,

we will detailedly introduce each step of Extrinsic-CFA.

Context Triplet Selection. For each image, this step se-

lects context triplets for extrinsic-CFA. Specifically, we ran-

domly select context triplets with foreground or background

predicate categories to provide more extrinsic information.

For foreground context triplets, considering the large varia-

tion in the number of triplet samples for different predicate

categories, we randomly sample the context triplets by us-

ing probability p = (η − ηr)/η × γ during training, where

γ is hyperparameter. For background context triplets, we

randomly select them with the same subject-object pair as

the tail predicate triplet in the whole dataset.

Query Triplet Feature Selection. This step selects a

query triplet with its features for the feature augmenta-

tion. Specifically, we select triplets with the same subject-

object categories (e.g., pillow-bed) as the context triplet

(e.g., pillow-on-bed) from feature bank as the candi-

date query triplets. Then, we implement the same spatial

restriction as intrinsic-CFA to filter unreasonable triplets.

Finally, we randomly select one of the reasonable triplets as

the query triplet (e.g., pillow-laying on-bed), and its

features are utilized for augmentation (c.f . Figure 4(b)).

Feature Augmentation. To reduce the impact on other

triplets of the original image and enhance the extrinsic fea-

tures of the tail predicate triplets, we perform mixup opera-

tion [46] between the selected query triplet (e.g., pillow-

laying on-bed) and context triplet (e.g., pillow-on-

bed), c.f . Figure 4(b). The mixup operation is written as:

ṽs = θvs + (1− θ)v′
s, (10)

ṽo = θvo + (1− θ)v′
o, (11)

ũ = θu+ (1− θ)u′, (12)

where v′
s (vs) and v′

o (vo) denote the visual features of the

subject and object of the query triplet (context triplet), re-

spectively. The u′ (u) denotes the visual feature of the uion

box of the query triplet (context triplet). Similarly, predicate

target ground-truth r of the context triplet is mixed:

r̃ = θr + (1− θ)r′, (13)

where θ is utilized to control the degree of mixup operation.

After the mixup operation, the query triplet feature can

be enhanced in context modeling (c.f . Figure 3) by leverag-

ing the extrinsic features of the context triplet.

3.3. Training Objectives

Cross-Entropy Losses. The optimization objective of com-

monly used SGG models mainly includes the cross-entropy

of entity and relation classification, the loss functions are:

Lobj =
∑

i
XE(ôi, oi), Lrel =

∑
ij
XE(r̂ij , rij), (14)

where ôi is the predicted entity category and oi is the

ground-truth entity category. r̂ij is the predicted predicate

category and rij is the ground-truth predicate category.

Contrastive Loss. Due to the pattern changes between the

entity features after mixup and original entity features, us-

ing only XE losses may result in performance drops in en-

tity classification. To maintain the discriminative entity fea-

tures after mixup, we further apply a contrastive loss [3]:

Lcl = − log
exp(Sime(zi, zj)/τ)∑2M

k=1 1[k �=i] exp(Sime(zi, zk)/τ)
, (15)

where zi and zj represent the output of the layer before pre-

dictor of original entity and the entity after mixup operation,

M is the number of entities in which the mixup operation is

performed. Sime(•, •) is the cosine similarity.

Training. During training, the total loss includes the cross-

entropy losses Lobj , Lrel and the extra contrastive loss Lcl:

Ltotal = Lrel + Lobj + βLcl, (16)

where β is used to regulate the magnitude of loss.

4. Experiments
4.1. Experimental Settings and Details

Tasks. We evaluated models in three tasks [40]: 1) Predi-
cate Classification (PredCls): Predicting the predicate cat-

egory given all ground-truth entity bboxes and categories.

2) Scene Graph Classification (SGCls): Predicting cate-

gories of the predicate and entity given all ground-truth en-

tity bboxes. 3) Scene Graph Generation (SGGen): Detect-

ing all entities and their pairwise predicates.

Metrics. We evaluated SGG models on three metrics: 1)

Recall@K (R@K): It indicates the proportion of ground-

truths that appear among the top-K confident predicted re-

lation triplets. 2) mean Recall@K (mR@K): It is the av-

erage of R@K scores which are calculated for each predi-

cate category separately. 3) Mean: It is the average of all

R@K and mR@K scores. Since R@K favors head pred-

icates while mR@K favors tail predicates, the Mean can

better reflect the overall performance of all predicates [21].

Datasets and Implementation Details. We conducted all

experiments on two datasets: VG [20] and GQA [16]. More

details of datasets and implementation are in the appendix.

4.2. Comparison with State-of-the-Arts

Setting. Due to the model-agnostic nature, we equipped

our CFA with three strong two-stage SGG baselines: Mo-

tifs [44], VCTree [36] and Transformer [37], and they
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SGG Models

PredCls SGCls SGGen
mR@K R@K

Mean
mR@K R@K

Mean
mR@K R@K

Mean50 100 50 100 50 100 50 100 50 100 50 100

Motifs [44]CVPR’18 16.5 17.8 65.5 67.2 41.8 8.7 9.3 39.0 39.7 24.2 5.5 6.8 32.1 36.9 20.3

VCTree [36]CVPR’19 17.1 18.4 65.9 67.5 42.2 10.8 11.5 45.6 46.5 28.6 7.2 8.4 32.0 36.2 20.9

Transformer [37]NIPS’17 17.9 19.6 63.6 65.7 41.7 9.9 10.5 38.1 39.2 24.4 7.4 8.8 30.0 34.3 20.1

BGNN [26]CVPR’21 30.4 32.9 59.2 61.3 45.9 14.3 16.5 37.4 38.5 26.7 10.7 12.6 31.0 35.8 22.5

Motifs+PCPL [41]ACMMM’20 24.3 26.1 54.7 56.5 40.4 12.0 12.7 35.3 36.1 24.0 10.7 12.6 27.8 31.7 20.7

Motifs+DLFE [5]ACMMM’21 26.9 28.8 52.5 54.2 40.6 15.2 15.9 32.3 33.1 24.1 11.7 13.8 25.4 29.4 20.1

Motifs+BPL-SA [11]ICCV’21 29.7 31.7 50.7 52.5 41.2 16.5 17.5 30.1 31.0 23.8 13.5 15.6 23.0 26.9 19.8

Motifs+NICE [21]CVPR’22 29.9 32.3 55.1 57.2 43.6 16.6 17.9 33.1 34.0 25.4 12.2 14.4 27.8 31.8 21.6

Motifs+IETrans [45]ECCV’22 30.9 33.6 54.7 56.7 44.0 16.8 17.9 32.5 33.4 25.2 12.4 14.9 26.4 30.6 21.1

Motifs+CFA (ours) 35.7 38.2 54.1 56.6 46.2 17.0 18.4 34.9 36.1 26.6 13.2 15.5 27.4 31.8 22.0
VCTree+PCPL [41]ACMMM’20 22.8 24.5 56.9 58.7 40.7 15.2 16.1 40.6 41.7 28.4 10.8 12.6 26.6 30.3 20.1

VCTree+DLFE [5]ACMMM’21 25.3 27.1 51.8 53.5 39.4 18.9 20.0 33.5 34.6 26.8 11.8 13.8 22.7 26.3 18.7

VCTree+BPL-SA [11]ICCV’21 30.6 32.6 50.0 51.8 41.3 20.1 21.2 34.0 35.0 27.6 13.5 15.7 21.7 25.5 19.1

VCTree+NICE [21]CVPR’22 30.7 33.0 55.0 56.9 43.9 19.9 21.3 37.8 39.0 29.5 11.9 14.1 27.0 30.8 21.0

VCTree+IETrans [45]ECCV’22 30.3 33.9 53.0 55.0 43.1 16.5 18.1 32.9 33.8 25.3 11.5 14.0 25.4 29.3 20.1

VCTree+CFA (ours) 34.5 37.2 54.7 57.5 46.0 19.1 20.8 42.4 43.5 31.5 13.1 15.5 27.1 31.2 21.7
Transformer+IETrans [45]ECCV’22 30.8 34.5 51.8 53.8 42.7 17.4 19.1 32.6 33.5 25.7 12.5 15.0 25.5 29.6 20.7

Transformer+CFA (ours) 30.1 33.7 59.2 61.5 46.1 15.7 17.2 36.3 37.3 26.6 12.3 14.6 27.7 32.1 21.7

Table 1: Performance (%) of the SOTA trade-off SGG models on VG [20]. “Mean” is the average of mR@50/100 and

R@50/100.

SGG Models
PredCls SGCls SGGen

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

Motifs+TDE [35]CVPR’20 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8

Motifs+CogTree [42]IJCAI’21 20.9 26.4 29.0 12.1 14.9 16.1 7.9 10.4 11.8

Motifs+RTPB [1]AAAI’22 28.8 35.3 37.7 16.3 20.0 21.0 9.7 13.1 15.5

Motifs+PPDL [27]CVPR’22 27.9 32.2 33.3 15.8 17.5 18.2 9.2 11.4 13.5

Motifs+GCL [10]CVPR’22 30.5 36.1 38.2 18.0 20.8 21.8 12.9 16.8 19.3
Motif+HML [7]ECCV’22 30.1 36.3 38.7 17.1 20.8 22.1 10.8 14.6 17.3

Motifs+CFA‡ (ours) 31.5 39.9 43.0 17.3 20.9 22.4 11.2 15.3 18.1

VCTree+TDE [35]CVPR’20 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1

VCTree+CogTree [42]IJCAI’21 22.0 27.6 29.7 15.4 18.8 19.9 7.8 10.4 12.1

VCTree+RTPB [1]AAAI’22 27.3 33.4 35.6 20.6 24.5 25.8 9.6 12.8 15.1

VCTree+PPDL [27]CVPR’22 29.7 33.3 33.8 20.3 21.8 22.4 9.1 11.3 13.3

VCTree+GCL [10]CVPR’22 31.4 37.1 39.1 19.5 22.5 23.5 11.9 15.2 17.5

VCTree+HML [7]ECCV’22 31.0 36.9 39.2 20.5 25.0 26.8 10.1 13.7 16.3

VCTree+CFA‡ (ours) 31.6 39.2 42.5 21.5 26.3 28.3 10.8 15.1 17.9
Transformer+CogTree [42]IJCAI’21 22.9 28.4 31.0 13.0 15.7 16.7 7.9 11.1 12.7

Transformer+HML [7]ECCV’22 27.4 33.3 35.9 15.7 19.1 20.4 11.4 15.0 17.7

Transformer+CFA‡ (ours) 31.2 38.6 41.5 17.2 20.9 22.7 10.6 15.0 17.9

Table 2: Performance (%) of the SOTA tail-focused SGG models on VG [20]. ‡ means using the component prior knowledge.

Models
PredCls SGCls SGGen

mR@50/100 mR@50/100 mR@50/100

Motifs [44] 13.9 / 14.7 7.2 / 7.5 5.5 / 6.6

+CFA 31.7 / 33.8 14.2 / 15.2 11.6 / 13.2
VCTree [36] 14.4 / 15.3 6.1 / 6.6 5.8 / 6.0

+CFA 33.4 / 35.1 14.1 / 15.0 10.8 / 12.6
Transformer [37] 15.2 /16.1 7.5 / 7.9 6.9 / 7.8

+CFA 27.8 / 29.4 16.2 / 16.9 13.4 / 15.3

Table 3: Performance (%) of the SGG models on GQA [16].

are denoted as Motifs+CFA, VCTree+CFA, and Trans-
former+CFA, respectively. In addition, due to the limited

diversity of tail predicate components [28], it has a high

correlation with the category of subject & object. Thus, we

further equip our three models with the component prior

knowledge collected from the dataset to further improve the

performance of the tail predicates. And they are denoted as

Motifs+CFA‡, VCTree+CFA‡, and Transformer+CFA‡

(More details about the priors are discussed in appendix).

Baselines. We compared our methods with the SOTA

models in the VG dataset (Table 1, Table 2) and the GQA

dataset (Table 3). Specifically, these models can be divided

into three groups: 1) Model-specific designs: Motifs, VC-

Tree, Transformer, and BGNN [26]. 2) Model-agnostic
trade-off methods: consider the performance of all predi-

cates comprehensively (i.e., higher Mean), e.g., PCPL [41],

DLFE [5], BP-LSA [11], NICE [21], and IETrans [45]. 3)

Model-agnostic tail-focused methods: improve tail predi-
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Figure 6: The examples of reasonable entities for the query triplet in in-

trinsic CFA. The lefts are original entities of the query triplets. The rights

are some alternate entity categories (red) and their samples (gray boxes) for

each query triplet to replace.

Component PredCls

IN EX-fg EX-bg mR@50 / 100 R@50 / 100 Mean

16.5 / 17.8 65.6 / 67.2 41.8

� 19.3 / 21.2 64.7 / 66.6 43.0

� 25.6 / 27.8 63.0 / 64.8 45.3

� 23.9 / 26.3 63.3 / 65.7 44.8

� � 27.2 / 29.3 61.9 / 64.3 45.7

� � 27.5 / 30.0 61.7 / 64.1 45.8

� � 27.8 / 30.3 60.7 / 63.4 45.6

� � � 35.7 / 38.2 54.1 / 56.6 46.2

Table 4: Ablation study on each component on

VG [20]. IN: Replace the intrinsic features. Ex-

fg: Mix up the extrinsic features of foreground

triplets. Ex-bg: Mix up the extrinsic features of

background triplets.

cates performance at the expense of excessively sacrificing

the head (i.e., higher mR@K and R@50 less than 50.0%

on PredCls), e.g., TDE [35], CogTree [42], RTPB [1],

PPDL [27], GCL [10], and HML [7]. For a fair compari-

son, we compared with the methods in the last two groups.

Quantitative Results on VG. From the results of trade-
off methods in Table 1, we can observe that: 1) Com-

pared to the three strong baselines (i.e., Motifs, VCTree and

Transformer), CFA can significantly improve model perfor-

mance on mR@K metric over all three settings. 2) CFA

can achieve the best trade-off between R@K and mR@K,

i.e., highest Mean, and surpass the SOTA trade-off method

NICE [21] in Mean metric under all settings. CFA shows

minimal performance degradation on the head predicates

(c.f . R@K) while maintaining the performance of the tail

(c.f . mR@K), demonstrating the superiority of CFA con-

sidering all predicates. From the results of tail-focused
methods in Table 2, we can observe that: after further im-

plementing strategies to improve tail performance, CFA‡

can achieve the highest mR@K and exceed the SOTA tail-

focused method HML [7] on mR@K metric under all set-

tings. More experiment analysis is in the appendix.

Quantitative Results on GQA. From the results of Ta-

ble 3, we can observe that: CFA can also greatly improve

the mR@K of three strong baselines (i.e., Motif, VCTree

and Transformer) on the large dataset GQA, which proves

the universality and effectiveness of our method.

4.3. Ablation Studies

Effectiveness of Each Component. We evaluated the im-

portance of each component of CFA based on Motifs [44]

under the PredCls setting. There are three components of

CFA: replace the intrinsic features (IN), mix up the extrin-

sic features of the foreground triplets (EX-fg), and mix up

the extrinsic features of the background triplets (EX-bg).

As reported in Table 4, we have the following observations:

Similarity PredCls

Pattern Context Semantic mR@50 / 100 R@50 / 100 Mean

� 33.4 / 36.2 52.0 / 54.0 43.9

� 34.6 / 37.3 55.2 / 57.0 46.0

� 35.3 / 38.0 51.4 / 54.1 44.7

� � 35.3 / 37.8 52.6 / 55.2 45.2

� � 35.2 / 37.9 54.0 / 56.2 45.8

� � 34.5 / 36.9 55.2 / 57.5 46.0

� � � 35.7 / 38.2 54.1 / 56.6 46.2

(a) Ablation study on each similarity in clustering of intrinsic

CFA.

K
PredCls

mR@50 / 100 R@50 / 100 Mean

15 35.7 / 38.2 54.1 / 56.6 46.2
40 33.5 / 36.0 55.3 / 57.8 45.7

150 33.2 / 35.7 55.7 / 57.9 45.6

(b) Ablation study on the number

of clusters K of intrinsic CFA.

θ
PredCls

mR@50 / 100 R@50 / 100 Mean

0.0 27.1 / 29.5 62.2 / 64.3 45.8
0.3 28.5 / 31.0 60.8 / 63.3 45.9
0.5 35.7 / 38.2 54.1 / 56.6 46.2
0.7 32.9 / 35.2 50.4 / 53.0 42.9
1.0 19.3 / 21.2 64.7 / 66.6 43.0

(c) Ablation study on mixup pa-

rameter θ of extrinsic CFA.

Table 5: Ablation studies on the different hyperparameters

of each component of CFA. Motifs [44] is used in all abla-

tion on VG [20].

1) Using only IN can slightly improve mR@K (e.g., 2.8%

∼ 3.4% gains) and slightly hurts R@K (0.6% ∼ % 0.9 loss).

The reason is that there are not enough tail predicate triplets,

resulting in the feature diversity still being limited after re-

placing the intrinsic features. 2) Both Ex-fg and Ex-bg can

significantly improve mR@K and keep competitive R@K

compared to baseline (e.g., 17.8% vs. 30.3% in mR@100,

and 67.2% vs. 63.4% in R@100). 3) Combining all compo-

nents allows for the best trade-off, i.e., the highest Mean.

Similarity of Clustering in Intrinsic CFA. We analyzed

the influence of three kinds of similarity (pattern, context,

and semantic similarities) under the PredCls setting with

baseline model Motifs [44]. From Table 5(a), we can ob-
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serve that using only pattern similarity shows the worst per-

formance, since it ignores the contextual and semantic in-

formation which gives crucial guidance for selection. For

example, both boat and car can be ridden, but we cannot

replace boat with car because car can’t appear in the

sea. Once the other two similarities are fused, the SGG per-

formance becomes robust and the highest Mean is achieved.

Different Clusters K of Clustering in Intrinsic CFA. We

performed K ∈ {15, 40, 150} to evaluate the impact of the

number of clusters under PredCls setting with Motifs [44].

All results are reported in Table 5(b). We find that K=15

works best in mR@K. The reason may be that when K=15,

there is a larger selection range of replaceable entity cate-

gories and richer feature diversity of tail predicate triplets.

Mixup Parameter θ in Extrinsic CFA. As mentioned in

Sec. 3.2.2, θ indicates the proportion of selected features

in final augmented features. We investigated θ ∈ {0.0, 0.3,

0.5, 0.7, 1.0} under the PredCls setting with Motifs [44]

in Table 5(c). When θ is too small, the query triplet has too

much impact on the other triplets in the image of the context

triplet, and when θ is too large, feature augmentation of the

query triplet is not strong enough. To better trade-off the

performance on different predicates, we set θ to 0.5.

Visualization of Reasonable Entities in Intrinsic CFA.
Figure 6 shows some alternative entities for query triplets.

The visual features of the candidate entities are quite differ-

ent from the original entity, but are still reasonable for the

query triplet, e.g., the samples of zebra differ greatly in

color and texture from the giraffe, but they can all eat

plants. Replacing the giraffe with the zebra can pro-

vide new features to enrich the feature diversity of eating.

5. Conclusion and Future Work

In this paper, we revealed the drawbacks of existing re-

balancing methods and discovered that the key challenge for

unbiased SGG is to learn proper decision boundaries under

the severe long-tailed predicate distribution. Thus, we pro-

posed a model-agnostic CFA framework that can enrich the

feature space of tail categories by augmenting both intrinsic

and extrinsic features of the relation triplets. Comprehen-

sive experiments on the challenging VG and GQA datasets

showed that CFA significantly improves the performance of

unbiased SGG. In the future, we would like to extend CFA

to compose new triplets features by fusing features from

open-vocabulary categories or images from other domains.
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