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Abstract

Multi-person 3D mesh recovery from videos is a critical
first step towards automatic perception of group behavior
in virtual reality, physical therapy and beyond. However,
existing approaches rely on multi-stage paradigms, where
the person detection and tracking stages are performed in
a multi-person setting, while temporal dynamics are only
modeled for one person at a time. Consequently, their per-
formance is severely limited by the lack of inter-person in-
teractions in the spatial-temporal mesh recovery, as well as
by detection and tracking defects. To address these chal-
lenges, we propose the Coordinate transFormer (Coord-
Former) that directly models multi-person spatial-temporal
relations and simultaneously performs multi-mesh recov-
ery in an end-to-end manner. Instead of partitioning the
feature map into coarse-scale patch-wise tokens, Coord-
Former leverages a novel Coordinate-Aware Attention to
preserve pixel-level spatial-temporal coordinate informa-
tion. Additionally, we propose a simple, yet effective Body
Center Attention mechanism to fuse position information.
Extensive experiments on the 3DPW dataset demonstrate
that CoordFormer significantly improves the state-of-the-
art, outperforming the previously best results by 4.2%, 8.8%
and 4.7% according to the MPJPE, PAMPJPE, and PVE
metrics, respectively, while being 40% faster than recent
video-based approaches. The released code can be found at
https://github.com/Li-Hao-yuan/CoordFormer.

1. Introduction
Considerable progress has been made on monocular 3D

human pose and shape estimation from images [5, 35,
17, 22, 39] due to extensive efforts of computer graph-

*Both authors contributed equally to this work as co-first authors.
†Corresponding author.

Figure 1. Comparison of video-based multi-person mesh recov-
ery pipelines. (a) Multi-stage pipelines [20, 8, 44, 38, 40] ex-
plicitly generate tracklets and model single-person temporal mesh
sequences independently. (b) Our single-stage CoordFormer im-
plicitly matches persons across frames and simultaneously models
multi-person mesh sequences in an end-to-end manner.

ics and augmented/virtual reality researchers. However,
while frame-wise body mesh detection is feasible, many
applications require direct video-based pipelines to avoid
spatial-temporal incoherence and missing frame-based de-
tections [20, 8, 38].

Existing video-based methods follow a multi-stage de-
sign that involves using a 2D person detector and tracker
to obtain the image sequences of a single-person for pose
and shape estimation [18, 20, 38, 41, 40]. More specifi-
cally, these methods first detect and crop image patches that
contain persons, then track these individuals across frames,
and associate each cropped image sequence with a per-
son. The frame-level or sequence-level features are then
extracted and used to regress 3D human mesh sequences
under spatial and temporal constraints. However, the accu-
racy of the detection and tracking stage greatly affects the
performance of these multi-stage approaches, making them
particularly sensitive to false, overlapping, and missing de-
tections. Moreover, these multi-stage approaches have a
considerable computation cost and lack real-time perspec-
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tives since the single-person meshes can only be recovered
sequence-by-sequence after detection and tracking.

To address the above issues, we introduce CoordFormer,
the first single-stage approach for multi-person 3D mesh
recovery from videos that can be trained in an end-to-end
manner. As shown in Fig. 1, our method differs from current
state-of-the-art approaches [20, 8, 44, 38, 40] by being a
single-stage pipeline that implicitly performs detection and
tracking through the interaction of feature representations,
producing multiple mesh sequences simultaneously.

In particular, CoordFormer leverages a multi-head
framework to predict a body center heatmap, which is en-
coded using our proposed Body Center Attention (BCA).
BCA serves as a weak/intermediate person detector that fo-
cuses the framework-wide feature representations on po-
tential body centers. Many-to-many temporal-spatial re-
lations among people and across frames are then derived
from the BCA-focused features and directly mapped to
mesh sequences using our novel Coordinate-Aware Atten-
tion (CAA). CAA is integrated into a Spatial-Temporal
Transformer (ST-Trans) [44, 26, 24] to capture non-local
context relations at the pixel level. See Fig. 2 for an illus-
tration of CAAs motivation. Facilitated by BCA and CAA,
CoordFormer advances existing video mesh recovery solu-
tions beyond explicit detection, tracking and sequence mod-
eling. Under various experimental settings on the 3DPW
dataset, CoordFormer significantly outperforms the best re-
sults of state-of-the-art by 4.2%, 8.8% and 4.7% on MPJPE,
PAMPJPE and PVE metrics, respectively. CoordFormer
also improves inference speed by 40% compared to the
state-of-the-art video-based approaches [20, 38]. More-
over, we demonstrate that enhancing and capturing pixel-
level coordinate information significantly benefits the per-
formance under multi-person scenarios.

The main contributions of this work are as follows:
• We propose the first single-stage multi-person video

mesh recovery approach, where our BCA mechanism
fuses position information and our CAA module en-
ables end-to-end multi-person model training.

• We demonstrate that the pixel-level coordinate corre-
spondence is the most critical factor for performance.

• Extensive experiments on challenging 3D pose
datasets demonstrate that the proposed method
achieves significant improvements, outperforming the
state-of-the-art methods.

2. Related Work
Single image-based 3D human pose and shape esti-

mation. Single image-based methods typically train mod-
els to estimate pose, shape, and camera parameters from
images, and then output a 3D human mesh using paramet-
ric human body models, for example, the SMPL [27]. Sig-
nificant progress has been made in this area by leveraging

Figure 2. The motivation of our Coordinate-Aware Attention
(CAA) module in CoordFormer. (Top) The standard Transformer
based modules (such as ST-Trans [44, 26, 24]) model patch-level
dependency, which results in corruption of pixel-level features.
(Bottom) CAA encodes pixel-level spatial-temporal coordinates
and preserves pixel-level dependencies in features.

inherent properties of the 3D human, supervising the mod-
els using 2D keypoints [22], semantic segmentation [13],
texture consistency [30], interpenetration and depth [13],
body shape [9] and IUV maps [16]. However, they pri-
marily use a multi-stage paradigm that is limited by the
first stage. BMP [42] improves upon this by proposing a
single-stage model that is more robust to occlusions through
inter-instance ordinal relation supervision and taking into
account body structure. Concurrently, ROMP [32] adopts
a multi-head design which predicts a Body Center heatmap
and a Mesh Parameter map. Via parsing the Body Cen-
ter heatmap and sampling from the Mesh Parameters map,
ROMP is able to extract and predict 3D human meshes for
multi-person scenarios. BEV [33] extends upon this by
further leveraging relative depth information to effectively
avoid mesh collision in the single-stage design, as well as
age information. Despite these advances in estimating hu-
man pose and shape from single images, these above meth-
ods are restricted to single images and poorly capture mo-
tion relations of spatial interaction.

Video-based 3D human pose and shape estimation.
The existing video-based methods are similarly built based
on SMPL and extract SMPL parameters from frames [34,
18, 3]. However, in these methods, a greater focus is put on
modeling temporal consistency and motion coherence. As
their image counterparts, video methods follow a two-stage
design where people are first detected and features of the
bounding-boxes are extracted. In the second stage, tracking
is used to capture the motion sequence and refine the pose
and shape estimation. More specifically, Sun et. al [34] dis-
entangle skeleton features for improving the learning of spa-
tial features and develop a self-attention temporal network
for modelling temporal relations. Additionally, they pro-
pose an unsupervised adversarial training strategy for guid-
ing the representation learning of motion dynamics in the
video. HMMR [18] proposes a temporal encoder that learns
to capture 3D human dynamics in a semi-supervised man-
ner, while Arnab et al. [3] presents a bundle-adjustment-
based algorithm for human mesh optimization and a new
dataset consisting of in-the-wild videos. Compared to tem-
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poral convolutions and optimization across frames, recur-
rent structures and attention mechanisms provide superior
motion information for mesh regression. VIBE [20] first
extracts features from each frame and uses a temporal en-
coder, i.e. bidirectional gated recurrent units (GRU), to
model temporal relations and obtain consistent motion se-
quences. For more realistic mesh results, the discriminator
adopts an attention mechanism to weight the contribution
of distinct frames. TCMR [42] proposes the PoseForecast
approach composed of GRUs, which integrates and refines
static features by fusing pose information from past and fu-
ture frames to ensure motion consistency. MPS-Net [38]
further extends the non-local concept to capture motion
continuity, as well as temporal similarities and dissimilar-
ities. MPS-Net further develops a hierarchical attentive fea-
ture integration to refine temporal features observed from
past and future frames. However, these methods only opti-
mize the motion of individual people and ignore the spatial
interactions among people, which is crucial in multi-person
scenarios. CoordFormer, instead, adopts a single-stage de-
sign for multi-person mesh recovery, aiming at modeling
spatial-temporal relations and constraints across frames.

3. CoordFormer
Overview. We present the CoordFormer framework (see

Fig. 3) to advance multi-person temporal-spatial modelling
for video-based 3D mesh recovery. We take inspiration
from single-stage image-based approaches for mesh recov-
ery [32] and leverage a multi-head design that predicts a
Body Center heatmap as well as a Mesh parameter map. To
further capture the spatial-temporal relations, we introduce
two novel modules: (1) the BCA mechanism (Sec. 3.1),
which focuses spatial-temporal feature extraction on per-
sons for better performance and faster convergence, and
(2) the CAA module (Sec. 3.2) incorporated in a Spatial-
Temporal Transformer (Sec. 3.3), which preserves pixel-
level spatial-temporal coordinate information. CAA avoids
the spatial information degradation which usually occurs in
the patch-level tokenization of standard vision transformers.

For completeness and notation consistency we briefly
present the Body Center heatmap and the Mesh Parameter
map which are predicted by the backbone network. They
follow [32] and are computed for all the T frames in a video.

Body Center Heatmap Cm ∈ RT×1×H×W : Cm

(where H=W=64) represents the likelihood of there be-
ing a 2D human body center at a given pixel in the image,
where each potential body center is characterised by a Gaus-
sian distribution. Following [32], scale information such as
body size is encoded in the kernel size of the Gaussian k.
More specifically, let dbb be the diagonal length of the per-
son bounding box and W be the width of the Body Center
heatmap, then k is computed as:

k = kl +

√
2W

dbb

2

kr, (1)

where kl is the minimum kernel size, kr is the range of k.
Note, for in-the-wild images of multiple people, Cm not

only contains the scale information of every potential tar-
get, but also contains strong location information that can
be leveraged to reduce redundancy and focus features. This
is further explored in Sec. 3.1.

Mesh Parameter map Pm ∈ RT×145×H×W : Pm

(where H=W=64) contains the camera parameters Am ∈
RT×3×H×W and SMPL parameters Sm ∈ RT×142×H×W .

• In terms of camera parameters, Am = (ξ, tx, ty) de-
scribes the 2D scale and translation information for
every person in each frame, such that the 2D projec-
tion Ĵ of the 3D body joints J can be obtained as Ĵx =
ξJx + tx, Ĵy = ξJy + ty .

• The SMPL parameters, Sm, describe the 3D pose θ
and shape β of the body mesh at each 2D position. For
every potential person, θ ∈ R6×22 describes the 3D ro-
tations in the 6D representation [45] of each body joint
apart from the hands, and β ∈ R10 are the shape pa-
rameters. Combining θ with β, SMPL establishes an
efficient mapping to a human 3D Mesh M ∈ R6890×3.

3.1. BCA: Body Center Attention

The Body Center Attention mechanism is at the core of
CoordFormer. It aims to fuse position information and acts
as a learnable feature indexer by leveraging the represen-
tation pattern of the body center heatmap Cm. Each pixel
in Cm represents a potential person and learning relations at
this pixel-level through Multi-Head Self-Attention (MHSA)
would result in redundant calculations as most pixels do
not contain people. Instead, we leverage the fact that Cm

contains effective position information which can be used
as a natural additional attention map for locating people in
the corresponding frame. We thus use the Body Center
heatmap as the Attention map, i.e. Body Center Attention,
to focus and extract features of all persons.

Specifically, given an input video sequence V = {It}Tt=1

with T frames, we first use the backbone to extract the fea-
ture map Fm ∈ RT×H×W×C . To enhance the perception of
the coordinate system, we extend Fm with coordinate chan-
nels [25] resulting in Fcoord and predict Cm from it. Finally,
we compute the focused features as the Hadamard product
between Cm and Fm. Note, here we leverage Fm instead of
Fcoord, to avoid altering the coordinate features of Fcoord.

Let Ft
m ∈ RH×W×C , Ft

coord ∈ RH×W×(C+2) and
Ct

m ∈ RH×W×1 be the feature map, coordinate feature
map and Body Center heatmap of the tth frame, respec-
tively. The focused feature map of the tth frame Ft

focus ∈
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Figure 3. An overview of the CoordFormer. (a) Given a video sequence, CoordFormer first extracts a Feature map from each image and
predicts the Body Center heatmap that reflects the probability of each position being a body center. Then CoordFormer leverages our
proposed BCA mechanism and Spatial-Temporal Decoder to predict the pixel-level Mesh Parameter map that contains SMPL and camera
parameters. Finally, the Body Center heatmap is parsed and the 3D mesh results are sampled. (b) The Coordinate Enhancing Layer that the
Spatial Transformer and the Temporal Transformer of CoordFormer are comprised of. Each layer consist of multi-head CAA operations, a
feed-forward network (FFN), Layernorm, and skip connections.

RH×W×C can then be computed as follows,

Ft
coord = ACC( Ft

m ), (2)

Ct
m = Convc( Ft

coord ), (3)

Ft
focus,c = ⊙( Ct

m,Ft
m,c ), (4)

where ACC(·) indicates adding the coordinate channels,
⊙(·, ·) indicates the Hadamard product, Convc(·) is the
head convolution layers to obtain the Body Center heatmap,
and Ft

focus,c and Ft
m,c indicate the cth channel of Ft

focus

and Ft
m, respectively.

As obtaining Cm is arguably the simplest learning task
in the multi-head framework, it represents a reliable source
to obtain the focused features Ffocus and facilitates the ef-
fectiveness of BCA.

3.2. CEL : Coordinate Enhancing Layer
After establishing the existence and location of the peo-

ple in the video, the motion sequence features must be used
to determine their temporal relationships. Moreover, in
multi-person scenarios, it is imperative to understand the
spatial-temporal interactions to facilitate accurate mesh re-
covery. The spatial-temporal constraints between all known
entities must therefore be modeled effectively.

Inspired by the progress on Spatial-Temporal Transform-
ers (ST-Trans) with joint coordinates as input [26, 44, 46],
we adopt a powerful ST-Tran as the base model for our
Spatial-Temporal Decoder. However, directly applying a
ST-Tran on Ffocus does not produce the desired results.
This is because the patch-level position information cap-
tured from the Position-Encoding [36] is not enough to
regress the precise joint coordinates required for our single-
stage design. Moreover, as illustrated in Fig. 2, vision trans-
formers [11] that split features into patches and extract to-
kens from them, can lead to a degradation in the pixel-level
information, especially for Cm. Empirical evidence for this
is provided in the supplementary material.

To add precise coordinate information across frames
and maintain the pixel-level representation of Cm and
Pm, we introduce the CAA module that expands the self-
attention operation of the Transformer Encoder [36]. Un-
like Position-Encoding [36], which provides only rough lo-
cation information at the patch-level, the CAA module cap-
tures the the coordinate relationships between (t, x, y) of
each pixel. As depicted in Fig. 4, we extend Cm with both
time and axis coordinates, enabling us to leverage Cm for
detection while also leveraging the coordinate features to
capture relations.

Specifically, we set Pixel coordinate PC ∈ RW×1 =
[1, 2, 3...,W ] and Time coordinate TC ∈ RT×1 =
[1, 2, 3..., T ] and repeat them to PCr ∈ RT×W×1 and Time
coordinate TCr ∈ RT×H×1. The input feature F1

input ∈
RT×H×(W+2) of the 1th CEL is then the concatenation of
Ffocus, PCr, and TCr.

After adding coordinate information, three linear projec-
tions, fQ, fK , fV , are applied to transfer Cm and Fl

input

into three matrices of equal size, namely the query Q, the
key K, and the value V, respectively. The CAA operation is
then calculated by:

Q = fQ( Finput ),

K = fK( Cm ),

V = fV ( Finput ),

(5)

CAA( Cm,Finput ) = Softmax(
QKT

√
D

)V. (6)

As shown in Fig. 3, in our proposed CEL, H heads of
CAA are applied to Cm and Fl

input. Therefore, the output
of the lth CEL, Fl

output ∈ RT×H×W , can be compute as

F′ = LN(Fl
input + CAA(Fl

input)), (7)
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Figure 4. Network structure of our CAA module. Given the Centermap and Featuremap as input, the precise coordinate information is
encoded in the Centermap by coordinate-encoding and the rough position information is encoded in the Featuremap by Position-Encoding.
Then, K, Q and V are computed for scaled dot-product attention. With powerful position information as key, CAA can capture high-quality
spatial-temporal correspondence among multiple persons.

Fl
output = LN(F′ + FFN(F′)), (8)

where LN indicates the Layer Normalization [4] and FFN
indicates a feed-forward network. The output of layer l,
Fl
output, is then provided as input to the next layer, i.e.

becomes F(l+1)
input. Through multiple CELs, our Spatial-

Temporal Transformers receives sufficient global location
information for implicit feature matching.
3.3. Spatial-Temporal Decoder

Building on the coordinate-awareness induced by CAA,
we leverage the Spatial-Temporal Transformers to learn the
spatial and temporal constraints, respectively. As shown in
Fig. 3, the Spatial-Temporal Decoder forms a residual struc-
ture and first establishes spatial feature relationships, before
modelling the temporal connections.

Spatial Transformer Module. Since the representation
patterns of the Body Center Heatmap bring spatial infor-
mation to the feature due to its similarity around the body
center, we first use the Spatial Transformer to extract the
corresponding spatial information. Given the input Finput,
the Spatial Transformer performs a CAA operation on each
frame, where Q,K, V are ∈ Rkt×Ekt , and where k and Ekt

indicate the number of tokens and the length of the token
embedding, respectively.

Temporal Transformer Module. After building the
spatial relationships, the Temporal Transformer is used to
ensure consistency in the temporal relationships. Given the
input Finput, the Temporal Transformer performs a CAA
operation on all frames, where Q,K, V are ∈ R(T ·kt)×Ekt .

Coordinate Information Fusion. Since the Coordinate
encoding only adds spatial coordinates for one dimension at
a time in the 2D image, we observe improvements by trans-
posing Cm at alternating layers, thereby infusing coordinate
information along both spatial dimensions.

More specifically, each Transformer has 2L CELs. At
every Lth

2N layer where N = [1, 2, 3..., L], Cm will be trans-
posed to Cmt ∈ RT×W×H to add precise coordinate infor-

mation, resulting in
Fl+1
output = CEL(Cmt,Fl

input), l = 2N

Fl+1
output = CEL(Cm,Fl

input), otherwise.

(9)

Through multiple layers of CEL, the Transformer learns
the correspondence along both dimensions.

3.4. Loss Functions
The loss function of CoordFormer consists of a set of

temporal and spatial loss functions that ensure temporal
consistency and spatial accuracy, respectively.

Temporal loss Ltem. We add Ltem to maintain the sim-
ilarity of adjacent frames via

Ltem = waccelLaccel + waj3dLaj3d + wsmLsm, (10)

where Laccel and Laj3d are the Accel error [20] and the
L2 loss of the 3D joints offsets, respectively, and Lsm is
a regular L1 loss between consecutive frames, preventing
mutation of Cm and Fm. For each loss item, w(·) indicates
the corresponding weight.

Spatial losses Lspa. For spatial accuracy, we follow the
previous methods [17, 32] to add loss functions on SMPL
parameters, 3D body joints, 2D body joints and Center
Body heatmap. Specifically, Lcm is the focal loss [32] of
the Center Body heatmap. Lθ and Lβ are L2 loss of SMPL
pose

−→
θ and shape

−→
β parameters respectively. Lprior is the

Mixture Gaussian prior loss [5, 27] of the SMPL parameters
for supervision of prior knowledge. To supervise the accu-
racy of the joint prediction, Lj3d and Lpj2d are added. Lj3d

consist of Lmpj and Lpmpj , where Lmpj is the L2 loss of
predicted 3D joints

−→
J and Lpmpj is the L2 loss of the pre-

dicted 3D joints after Procrustes alignment with the ground
truth [32, 34]. Lpj2d is the L2 loss of the 2D projection
of the 3D joints

−→
J . For each loss item, w(·) indicates the
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corresponding weight and Lspa can be computed as,

Lspa =wcmLcm + wposeLpose + wshapeLshape

+wpriorLprior + wj3dLj3d + wpj2dLpj2d.
(11)

4. Experiments
4.1. Implementation Details

Network Architecture. To facilitate a fair comparison,
we follow prior approaches [32] and leverage the HRNet-
32 [7] as the backbone, similar to [32, 40].

Datasets. To ensure a fair comparison with previous
methods, the training is conducted on well-known datasets.
The image dataset that is used to train the spatial branch
consists of two 3D pose datasets (MPI-INF-3DHP[29] and
MuCo-3DHP [29]) and two in-the-wild 2D pose datasets
(MPII [2] and LSP [14, 15]), while the video dataset con-
sists of the 3DPW [37] and Human3.6M [12] datasets.

Evaluation. Evaluation is performed on the 3DPW [37]
dataset as the Human3.6M [12] and MPI-INF-3DHP[29]
datasets only contain one person per frame and can thus not
be used to assess the performance in multi-person scenarios.
Therefore, 3DPW [37] is employed as the main benchmark
for evaluating the 3D mesh/joint error. Moreover, we fol-
low [32] and divide the 3DPW dataset into three subsets,
namely 3DPW-PC, 3DPW-OC and 3DPW-NC. These sub-
sets represent subsets containing person-person occlusion,
object occlusion and non-occluded/truncated cases, respec-
tively, and are used to evaluate the performance under dif-
ferent occlusion scenarios.

Following prior approaches [20, 38], the quantitative
performance is evaluated by computing the mean per joint
position error (MPJPE), the Procrustes-aligned mean per
joint position error (PAMPJPE), and the mean Per Vertex
Error (PVE) for each frame.

Baselines. We compare CoordFormer to both single-
image-based and video-based baseline methods. For
single image-based methods, we include HMR [17],
SPIN [22], CRMH [13], EFT [16], BMP [42], ROMP [32]
and BEV [33]. For video-based methods, we include
HMMR [18], Doersch et al. [10], DSD-SATN [34],
VIBE [20], TCMR [8], MEVA [44], MPS-Net [38] and Mo-
tionBERT [46]. Note that MotionBERT [46] requires addi-
tional 2D skeletons motion information as input.

4.2. Comparisons to the State-of-the-Art

In-the-wild multi-person scenarios. To reveal the ef-
fectiveness of CoordFormer, we evaluate CoordFormer un-
der the different in-the-wild scenarios of 3DPW. For a
fair and comprehensive comparison, we follow [32] to
adopt three evaluation protocols and then compare Coord-
Former with state-of-the-art methods. As ROMP was orig-
inally trained on a considerably larger dataset, which in-
cluded OH [43], the pseduo 3D labels from [16], and Pose-
Track [1], we retrain ROMP on our dataset to ensure fair

comparisons. While we attempted the same with BEV, we
observed that BEV did not converge due to the missing rel-
ative depth and age supervision that is used to learn BEV’s
centermap. For completeness, we still report the original re-
sults reported in [32] for both ROMP and BEV as reference.

To comprehensively verify the in-the-wild performance,
we follow Protocol 1 to evaluate models on the entire
3DPW dataset. Without any ground truth as input, single-
person methods [20, 22] are equipped with a 2D human de-
tector [6, 31]. As shown in Tab. 1, CoordFormer signifi-
cantly outperforms all the baselines in MPJPE and PAM-
PJPE, which reveals that CoordFormer can successfully
learn the pixel-level feature representation and better model
spatial-temporal relations through ST-Trans.

Moreover, to evaluate the ability in modeling tempo-
ral motion constrains, we follow Protocol 2 on the 3DPW
test set without fine-tuning on the 3DPW training set.
In Tab. 1, CoordFormer takes the whole image as input
and the temporal branch is only trained on the Human3.6
M [12] dataset, while multi-stage baseline methods can
use the cropped single-person image as input and train on
more video datasets, i.e. Human3.6 M [12], MPI-INF-
3DHP [29], AMASS [28]. CoordFormer still outperforms
all baselines. Finally, we follow Protocol 3 to evaluate the
models on the 3DPW test set with 3DPW fine-tuning. As
shown in Tab. 2, CoordFormer outperforms all the methods
in MPJPE and PAMPJPE, while being only slightly worse
than MotionBERT in PVE. Note that MotionBERT requires
additional 2D skeleton motion as input, while CoordFormer
can directly be applied on in-the-wild images.

A qualitative comparisons to state-of-the-art methods is
provided in Fig. 5, demonstrating the effectiveness of Co-
ordFormer to precisely recover the mesh. Additional quali-
tative results are included in the supplementary material.

3DPW upper-bound performance. To show the upper-
bound performance of the video-based methods on the
in-the-wild multi-person video dataset, i.e. 3DPW, we
compare CoordFormer with previous state-of-the-art video-
based methods regardless of their training dataset and train-
ing setting. As shown in Tab. 3, CoordFormer achieves the
best results, which demonstrates the effectiveness of Coord-
Former for multi-person mesh recovery from videos.

Occlusion scenarios. As shown in Tab. 4, Coord-
Former achieves superior performance on the 3DPW-NC
and 3DPW-OC subset under non-occlusion and object oc-
clusion cases according to PAMPJPE. Further comparisons
show that CoordFormer outperforms ROMP [32] in MPJPE
on all 3DPW subsets, demonstrating that precise coordinate
information improves the performance under occlusion.

Runtime comparisons. In Tab. 5, all comparisons are
performed on a desktop with a GTX 3090Ti GPU and a In-
tel(R) Xeon(R) Platinum 8163 CPU. All video-based mod-
els are tested on 8-frames video clips. CoordFormer is
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Table 1. Comparisons to the state-of-the-art methods on 3DPW following Protocol 1 and 2 (evaluate on the entire 3DPW dataset and on
the test set only). * means that additional datasets are used for training [32] .

Protocol 1 Protocol 2

Methods MPJPE ↓ PAMPJPE ↓ Methods MPJPE ↓ PAMPJPE ↓ PVE ↓

ROMP(ResNet-50)* [32] 87.0 62.0 ROMP(ResNet50)* [32] 91.3 54.9 108.3

Openpose + SPIN [22] 95.8 66.4
HMR [17] 130.0 76.7 -

HMMR [18] 116.5 72.6 139.3

CRMH [13] 105.9 71.8 Arnab et al. [3] - 72.2 -

YOLO + VIBE[20]* 94.7 66.1
GCMR [23] - 70.2 -

DSD-SATN [34] - 69.5 -

BMP [42]* 104.1 63.8 SPIN [22] 96.5 59.2 116.4

ROMP [32] 90.87 61.34 ROMP [32] 96.96 57.48 110.13

CoordFormer(Ours) 88.95 59.86 CoordFormer(Ours) 95.27 54.58 110.35

Figure 5. Qualitative results of ROMP [32], BEV [33], VIBE [20], MPS-Net [38] and CordFormer on 3DPW and the internet videos.

slightly slower than image-based methods [32, 33] due to
the overhead in spatial-temporal modeling, however, Co-
ordFormer is significantly faster than the video-based meth-
ods [20, 38].

4.3. Ablation Study

To validate the effectiveness of the BCA and CAA mod-
ules in CoordFormer, we train CoordFormer under differ-
ent settings and conduct ablation studies following Proto-
col 3 to evaluate on 3DPW. Specifically, we evaluate the
BCA module by replacing Ffocus with Fcoord without ex-
tra attention mechanism and evaluate the CAA module by
skipping the Coordinate encoding in Fig. 4. As shown in

Tab. 6, CoordFormer with BCA and CCA achieves the best
result in the in-the-wild scenarios, which fully demonstrates
the effectiveness of BCA and CCA. Specifically, the results
confirm that BCA can effectively enhance the perception of
potential people in the multi-person scenario. Second, the
ablation experiments strongly reflect the importance of pre-
cise coordinate information in videos. In summary, the re-
sults from Tab. 6 reveal the importance of capturing position
information in the multi-person scenario and the effective-
ness of the BCA and CCA modules. We further perform
an additional ablation study on the Spatial-Temporal Trans-
former of CoordFormer. Results in Tab. 7 illustrate the ben-
efit of exploiting temporal and spatial information jointly.
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Table 2. Comparisons to the state-of-the-art methods on 3DPW
following Protocol 3 (fine-tuned on the training set). * means that
additional datasets are used for training [32].

Methods MPJPE ↓ PAMPJPE ↓ PVE ↓

ROMP(ResNet-50)* [32] 84.2 51.9 100.4

ROMP(HRNet-32)* [32] 78.8 48.3 94.3

BEV* [33] 78.5 46.9 92.3

EFT [16] - 51.6 -

VIBE [20] 82.9 51.9 99.1

MPS-Net [38] 84.3 52.1 99.7

MotionBERT [46] 80.9 49.1 94.2

ROMP [32] 81.06 49.07 96.74

CoordFormer(Ours) 79.41 46.58 94.44

Table 3. Comparisons of best result to the state-of-the-art video-
based methods for in-the-wild scenarios on 3DPW.

Methods MPJPE ↓ PAMPJPE ↓ PVE ↓

HMMR [18] 116.5 72.6 139.3

Doersch et al. [10] - 74.7 -

Arnab et al. [3] - 72.2 -

DSD-SATN [34] - 69.5 -

VIBE [20] 82.9 51.9 99.1

MEVA [44] 86.9 54.7 -

TCMR [8] 86.5 52.7 103.2

GLAMR [40] + SPEC [21] - 54.9 -

GLAMR [40] + KAMA [19] - 51.1 -

MPS-Net [38] 84.3 52.1 99.7

CoordFormer(Ours) 79.41 46.58 94.44
Table 4. Comparisons to state-of-the-art methods on the person-
occluded (3DPW-PC), object-occluded (3DPW-OC) and non-
occluded/truncated (3DPW-NC) subsets of 3DPW. * means that
additional datasets are used for training.

Metric Method 3DPW-PC ↓ 3DPW-NC ↓ 3DPW-OC ↓

PAMPJPE

ROMP* 75.8 57.1 67.1

CRMH [13] 103.55 65.7 78.9

VIBE [20] 103.9 57.3 65.9

ROMP 77.64 56.67 66.6

CoordFormer 79.30 54.13 64.47

MPJPE
ROMP 103.70 95.53 100.79

CoordFormer 101.51 93.17 97.25

Table 5. Run-time comparison on a 3090 GPU.

Methods
Time

per frame(s)
↓ FPS↑ Backbbone

Using Temporal

information

ROMP [32] 0.01329 75.26 HRNet-32 ✕

BEV [33] 0.01448 69.04 HRNet-32 ✕

VIBE [20] 0.07881 12.68 HRNet-32 ✓

MPS-Net [38] 0.08013 12.47 HRNet-32 ✓

CoordFormer 0.01867 53.55 HRNet-32 ✓

Table 6. Ablation study under 3DPW Protocol 3.
Methods MPJPE ↓ PAMPJPE ↓ PVE ↓

CoordFormer w/o CAA 83.19 50.62 99.21

CoordFormer w/o BCA 82.20 48.84 98.23

CoordFormer 79.41 46.58 94.44

Table 7. Ablation study of spatial and temporal Transformer on
3DPW. S means only training the spatial branch, ST means fine-
tuning the temporal branch on Human3.6 M, ST-fine means fine-
tuning on the 3DPW training set.

Evaluation Methods MPJPE ↓ PAMPJPE ↓ PVE ↓

On entire 3DPW
S 95.05 63.22 115.90

ST 88.95 59.86 103.88

On test set only

S 103.95 58.03 120.67

ST 95.27 54.58 110.35

ST-fine 79.41 46.58 94.44

The reason for the decline in performance when only lever-
aging the spatial branch can be attributed to two factors: the
inability to utilize temporal information and the fact that
CAA lacks temporal coordinate information.

5. Conclusion
We proposed CoordFormer to achieve single-stage

multi-person mesh recovery from videos. CoordFormer
incorporates implicit multi-person detection, tracking, and
spatial-temporal modeling. Two critical novelties are the
Coordinate-Aware Attention mechanism for pixel-level fea-
ture learning and the Body Center Attention for person-
focused feature selection. CoordFormer paves the way
for various downstream applications related to perceiving
group behavior, including but not limited to virtual reality
and physical therapy.

Despite CoordFormer’s robust performance to recover
multi-person meshes, its current version lacks the ability
to recover completely occluded meshes. We plan to ex-
plore this exciting area by leveraging the continuity along
the temporal dimension of the body center heatmap.

Acknowledgment: This work was supported in part
by National Key R&D Program of China under Grant
No. 2020AAA0109700, Guangdong Outstanding
Youth Fund (Grant No. 2021B1515020061), Shen-
zhen Science and Technology Program (Grant No.
RCYX20200714114642083), Shenzhen Fundamental
Research Program(Grant No. JCYJ20190807154211365),
Nansha Key RD Program under Grant No.2022ZD014 and
Sun Yat-sen University under Grant No. 22lgqb38 and
76160-12220011. We thank MindSpore for the partial sup-
port of this work, which is a new deep learning computing
framwork1.

1https://www.mindspore.cn/

8751



References
[1] Mykhaylo Andriluka, Umar Iqbal, Eldar Insafutdinov,

Leonid Pishchulin, Anton Milan, Juergen Gall, and Bernt
Schiele. Posetrack: A benchmark for human pose estima-
tion and tracking. In CVPR, pages 5167–5176. IEEE, 2018.
6

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In CVPR, pages 3686–3693.
IEEE, 2014. 6

[3] Anurag Arnab, Carl Doersch, and Andrew Zisserman. Ex-
ploiting temporal context for 3d human pose estimation in
the wild. In CVPR, pages 3395–3404. IEEE, 2019. 2, 7, 8

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv, 2016. 5

[5] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a
single image. In ECCV, pages 561–578. Springer, 2016. 1, 5

[6] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In CVPR, pages 7291–7299. IEEE, 2017. 6

[7] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi,
Thomas S Huang, and Lei Zhang. Higherhrnet: Scale-aware
representation learning for bottom-up human pose estima-
tion. In CVPR, pages 5386–5395. IEEE, 2020. 6

[8] Hongsuk Choi, Gyeongsik Moon, Ju Yong Chang, and Ky-
oung Mu Lee. Beyond static features for temporally consis-
tent 3d human pose and shape from a video. In CVPR, pages
1964–1973. IEEE, 2021. 1, 2, 6, 8

[9] Vasileios Choutas, Lea Müller, Chun-Hao P Huang, Siyu
Tang, Dimitrios Tzionas, and Michael J Black. Accurate 3d
body shape regression using metric and semantic attributes.
In CVPR, pages 2718–2728. IEEE, 2022. 2

[10] Carl Doersch and Andrew Zisserman. Sim2real transfer
learning for 3d human pose estimation: motion to the res-
cue. NeurIPS, 2019. 6, 8

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv, 2020. 4

[12] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3. 6m: Large scale datasets and pre-
dictive methods for 3d human sensing in natural environ-
ments. TPAMI, pages 1325–1339, 2013. 6

[13] Wen Jiang, Nikos Kolotouros, Georgios Pavlakos, Xiaowei
Zhou, and Kostas Daniilidis. Coherent reconstruction of
multiple humans from a single image. In CVPR, pages 5579–
5588. IEEE, 2020. 2, 6, 7, 8

[14] Sam Johnson and Mark Everingham. Clustered pose and
nonlinear appearance models for human pose estimation. In
BMVC, page 5. Citeseer, 2010. 6

[15] Sam Johnson and Mark Everingham. Learning effective hu-
man pose estimation from inaccurate annotation. In CVPR,
pages 1465–1472. IEEE, 2011. 6

[16] Hanbyul Joo, Natalia Neverova, and Andrea Vedaldi. Ex-
emplar fine-tuning for 3d human pose fitting towards in-the-
wild 3d human pose estimation. In ECCV, pages 68–84.
IEEE, 2020. 2, 6, 8

[17] Angjoo Kanazawa, Michael J Black, David W Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In CVPR, pages 7122–7131. IEEE, 2018. 1, 5, 6, 7

[18] Angjoo Kanazawa, Jason Y Zhang, Panna Felsen, and Jiten-
dra Malik. Learning 3d human dynamics from video. In
CVPR, pages 5614–5623. IEEE, 2019. 1, 2, 6, 7, 8

[19] Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece,
Remo Ziegler, and Otmar Hilliges. Convolutional autoen-
coders for human motion infilling. In 3DV, pages 918–927.
IEEE, 2020. 8

[20] Muhammed Kocabas, Nikos Athanasiou, and Michael J
Black. Vibe: Video inference for human body pose and
shape estimation. In CVPR, pages 5253–5263. IEEE, 2020.
1, 2, 3, 5, 6, 7, 8

[21] Muhammed Kocabas, Chun-Hao P Huang, Joachim Tesch,
Lea Müller, Otmar Hilliges, and Michael J Black. Spec: See-
ing people in the wild with an estimated camera. In ICCV,
pages 11035–11045. IEEE, 2021. 8

[22] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In ICCV, pages
2252–2261. IEEE, 2019. 1, 2, 6, 7

[23] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-
ilidis. Convolutional mesh regression for single-image hu-
man shape reconstruction. In CVPR, pages 4501–4510.
IEEE, 2019. 7

[24] Wenhao Li, Hong Liu, Hao Tang, Pichao Wang, and Luc
Van Gool. Mhformer: Multi-hypothesis transformer for
3d human pose estimation. In CVPR, pages 13147–13156.
IEEE, 2022. 2

[25] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Pet-
roski Such, Eric Frank, Alex Sergeev, and Jason Yosinski.
An intriguing failing of convolutional neural networks and
the coordconv solution. NeurIPS, 2018. 3

[26] Shuying Liu, Wenbin Wu, Jiaxian Wu, and Yue Lin. Spatial-
temporal parallel transformer for arm-hand dynamic estima-
tion. In CVPR, pages 20523–20532. IEEE, 2022. 2, 4

[27] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. TOG, pages 1–16, 2015. 2, 5

[28] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Ger-
ard Pons-Moll, and Michael J Black. Amass: Archive of mo-
tion capture as surface shapes. In ICCV, pages 5442–5451.
IEEE, 2019. 6

[29] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian
Theobalt. Monocular 3d human pose estimation in the wild
using improved cnn supervision. In 3DV, pages 506–516.
IEEE, 2017. 6

[30] Georgios Pavlakos, Nikos Kolotouros, and Kostas Daniilidis.
Texturepose: Supervising human mesh estimation with tex-
ture consistency. In CVPR, pages 803–812. IEEE, 2019. 2

[31] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv, 2018. 6

8752



[32] Yu Sun, Qian Bao, Wu Liu, Yili Fu, Michael J Black, and
Tao Mei. Monocular, one-stage, regression of multiple 3d
people. In ICCV, pages 11179–11188. IEEE, 2021. 2, 3, 5,
6, 7, 8

[33] Yu Sun, Wu Liu, Qian Bao, Yili Fu, Tao Mei, and Michael J
Black. Putting people in their place: Monocular regression
of 3d people in depth. In CVPR, pages 13243–13252. IEEE,
2022. 2, 6, 7, 8

[34] Yu Sun, Yun Ye, Wu Liu, Wenpeng Gao, Yili Fu, and Tao
Mei. Human mesh recovery from monocular images via a
skeleton-disentangled representation. In ICCV, pages 5349–
5358. IEEE, 2019. 2, 5, 6, 7, 8

[35] Gul Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. In CVPR, pages 109–117.
IEEE, 2017. 1

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 2017. 4

[37] Timo Von Marcard, Roberto Henschel, Michael J Black,
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering ac-
curate 3d human pose in the wild using imus and a moving
camera. In ECCV, pages 601–617. Springer, 2018. 6

[38] Wen-Li Wei, Jen-Chun Lin, Tyng-Luh Liu, and Hong-
Yuan Mark Liao. Capturing humans in motion: Temporal-
attentive 3d human pose and shape estimation from monoc-
ular video. In CVPR, pages 13211–13220. IEEE, 2022. 1, 2,
3, 6, 7, 8

[39] Yuanlu Xu, Song-Chun Zhu, and Tony Tung. Denserac: Joint
3d pose and shape estimation by dense render-and-compare.
In ICCV, pages 7760–7770. IEEE, 2019. 1

[40] Ye Yuan, Umar Iqbal, Pavlo Molchanov, Kris Kitani, and Jan
Kautz. Glamr: Global occlusion-aware human mesh recov-
ery with dynamic cameras. In CVPR, pages 11038–11049.
IEEE, 2022. 1, 2, 6, 8

[41] Ailing Zeng, Xuan Ju, Lei Yang, Ruiyuan Gao, Xizhou Zhu,
Bo Dai, and Qiang Xu. Deciwatch: A simple baseline for
10x efficient 2d and 3d pose estimation. arXiv, 2022. 1

[42] Jianfeng Zhang, Dongdong Yu, Jun Hao Liew, Xuecheng
Nie, and Jiashi Feng. Body meshes as points. In CVPR,
pages 546–556. IEEE, 2021. 2, 3, 6, 7

[43] Tianshu Zhang, Buzhen Huang, and Yangang Wang. Object-
occluded human shape and pose estimation from a single
color image. In CVPR, pages 7376–7385. IEEE, 2020. 6

[44] Ce Zheng, Sijie Zhu, Matias Mendieta, Taojiannan Yang,
Chen Chen, and Zhengming Ding. 3d human pose estima-
tion with spatial and temporal transformers. In ICCV, pages
11656–11665. IEEE, 2021. 1, 2, 4, 6, 8

[45] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In CVPR, pages 5745–5753. IEEE, 2019. 3

[46] Wentao Zhu, Xiaoxuan Ma, Zhaoyang Liu, Libin Liu, Wayne
Wu, and Yizhou Wang. Motionbert: Unified pretraining for
human motion analysis. arXiv, 2022. 4, 6, 8

8753


