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Abstract

Sampling from diffusion probabilistic models (DPMs)
can be viewed as a piecewise distribution transformation,
which generally requires hundreds or thousands of steps
of the inverse diffusion trajectory to get a high-quality im-
age. Recent progress in designing fast samplers for DPMs
achieves a trade-off between sampling speed and sample
quality by knowledge distillation or adjusting the variance
schedule or the denoising equation. However, it can’t be op-
timal in both aspects and often suffer from mode mixture in
short steps. To tackle this problem, we innovatively regard
inverse diffusion as an optimal transport (OT) problem be-
tween latents at different stages and propose the DPM-OT,
a unified learning framework for fast DPMs with a direct ex-
pressway represented by OT map, which can generate high-
quality samples within around 10 function evaluations. By
calculating the semi-discrete optimal transport map be-
tween the data latents and the white noise, we obtain an ex-
pressway from the prior distribution to the data distribution,
while significantly alleviating the problem of mode mix-
ture. In addition, we give the error bound of the proposed
method, which theoretically guarantees the stability of the
algorithm. Extensive experiments validate the effectiveness
and advantages of DPM-OT in terms of speed and quality
(FID and mode mixture), thus representing an efficient so-
lution for generative modeling. Source codes are available
at https://github.com/cognaclee/DPM-OT.

1. Introduction
Diffusion probabilistic models (DPMs) [40, 17, 43] are

a class of new prevailing generative models which use a
parameterized Markov chain to produce samples matching
the data distribution after a finite time. Transitions of this
chain include two processes: the diffusion process grad-
ually adds noise to a data distribution and the sampling
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process gradually reverses each step of the noise corrup-
tion over a long trajectory of timesteps. DPMs are able to
produce high-quality samples and even superior to the cur-
rent SOTAs generative adversarial networks (GANs) [15]
on many tasks, such as image generation [11, 33, 10], video
generation [18], text-to-image generation [37], point cloud
generation [32, 34], shape generation [49, 47] and speech
synthesis [7, 8]. Despite their success, the sampling of
DPMs often requires iterating over thousands of timesteps,
which is two or three orders of magnitude slower [41, 3]
than single-step generative models GANs and VAEs [22].

To accelerate the sampling process, the community has
been focusing on fast DPMs. Existing works have success-
fully accelerated DPMs by knowledge distillation [38, 31],
or adjusting the variance schedule [39, 35, 26, 46] or the
denoising equation [41, 19, 44, 36, 28, 3, 30, 48]. How-
ever, as [23, 28] remarks, early fast samplers cannot main-
tain the quality of samples and even introduce new noise at
a high speedup rate, which limits their practicability. More-
over, existing methods try to approximate a continuous dif-
fusion process with a deep neural network, but ignore the
discontinuity of the target data manifold at the class bound-
ary, which leads to mode mixture in the generated images.

To resolve the above issues, we cast the denoising pro-
cess as an OT problem and then compute the Brenier poten-
tial [4, 5] to represent the OT map which is discontinuous
at singularity sets [13, 9, 1] and thus avoids mode mixture.
Then we construct an optimal trajectory between different
timestep latents, which combines multiple denoising pro-
cesses into an OT map, thus greatly shortening the sampling
trajectory. Building upon it, we propose DPM-OT which
can generate high-quality images within around 10 steps of
inverse diffusion. In summary, our main contributions are:

• By combining OT and diffusion model, we propose a
unified learning framework DPM-OT for fast DPMs.

• DPM-OT computes the Brenier potential to represent
the OT map between different timesteps latents which
relieves mode mixture significantly.
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• We theoretically analyze the single-step error and give
the upper bound of the error between the generated
data distribution and the target data distribution.

• Extensive experiments demonstrate DPM-OT outper-
forms SOTAs in quality, especially for mode mixture.

2. Preliminaries
In this paper, we are committed to providing a plug-

and-play fast DPM framework by incorporating the OT into
DPM. So, in this section, we first review the generalized
DPMs from [17, 41, 43]. Then we introduce the semi-
discrete optimal transport (SDOT) used later in this paper.

2.1. Generalized Diffusion Probabilistic Model

Given a data distribution x0 ∼ q(x0), DPMs define a
diffusion process q(xt|xt−1) which produces a diffusion
trajectory {xt}Tt=1 by adding gaussian noise and a sampling
process p(xt−1|xt) which reverse the diffusion process to
reconstruct the original data. As song et al. remark in [43],
generalized DPMs can be expressed as solutions of stochas-
tic differential equations (SDEs) of the form:

dx = b(x, t)dt+ σ(t)dw (1)

where w is the standard Winener process (a.k.a., Brow-
nian motion), b(., t) : Rd → Rd is vector-valued funciton
called the drift coefficient of x(t), and σ(·) : R → R is a
scalar function known as the diffusion coefficient of x(t).
Eq. (1) is the limit of the following discrete form (Eq. 2) in
∆t→ 0, which is also known as forward SDE.

xt+∆t = xt + b(x, t)∆t+ σ(t)
√
∆tz, z ∼ N (0, I) (2)

From a probability point of view, Eq. (2) is reformulated
in the following conditional probability:

q(xt+∆t|xt) ∼ N
(
xt + b(x, t)∆t, σ2(t)∆tI

)
. (3)

With a sufficiently long diffusion trajectory {xt}Tt=0 and
a well-behaved schedule of {(b(·, t), σ(t))}Tt=0, the last la-
tent xT is nearly a Gaussian distribution. Starting from
xT ∼ N (0, I), the exact reverse diffusion distribution
q(xt−1|xt) is indispensable for the sampling process which
gradually reverses each step of the noise corruption latents
xt−1 from xt. However, since q(xt−1|xt) depends on the
entire data distribution, DPMs approximate it using a neural
network parameterized by θ as follows:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

Using Bayes rule, the posterior satisfies p(xt−∆t|xt) ∼
N (xt − [b(xt, t) − σ2(t)∇xt

logq(xt)]∆t, σ2(t)∆tI). In
∆t→ 0 , it converges to the following inverse SDE:

dx = [b(x, t)− σ2(t)∇xt
logq(xt)]dt+ σ(t)dw. (5)

The estimation of ∇xt logq(xt) is achieved by sθ. The
optimization of θ can be achieved by minimizing the varia-
tional lower bound (Eq. 6) on negative log-likelihood.

Lvlb =− log pθ(x0|x1) +DKL(q(xT |x0))||p(xT ))

+
∑
t>1

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))
(6)

After the model is trained well, sθ is a function approxi-
mator intended to predict z ∼ N (0, I) from xt. To sample
xt−1 from the posterior distribution defined in Eq. (4) is
equivalent to inverse diffusion through Eq. (7).

xt−∆t = xt − [b(x, t)− σ2(t)sθ(xt, t)]∆t+ σ(t)z. (7)

2.2. Semi-discrete Optimal Transport

Suppose the source measure µ defined on a convex do-
main Ω ⊂ Rd, the target domain is a discrete set Y =
{yi}i∈I ,yi ∈ Rd. The target measure is a Dirac measure
ν =

∑
i∈I νiδ (y − yi) and the source measure is equal

to total mass as µ(Ω) =
∑

i∈I νi. Under a semi-discrete
transport map g : Ω → Y , a cell decomposition is in-
duced Ω =

⋃
i∈I Wi, such that every x in each cell Wi

is mapped to the target yi, g : x ∈ Wi 7→ yi. The map
g is measure preserving, denoted as g#µ = ν, if the µ-
volume of each cell Wi equals to the ν-measure of the im-
age g (Wi) = yi, µ (Wi) = νi. The cost function is given
by c : Ω × Y → R, where c(x,y) represents the cost for
transporting a unit mass from x to y. The total cost of trans-
port map g(x) is given by∫

Ω

c(x, g(x))dµ(x) =
∑
i∈I

∫
Wi

c (x,yi) dµ(x). (8)

The SDOT map g∗ is a measure-preserving map that mini-
mizes the total cost in Eq. (8),

g∗ := arg min
g#µ=ν

∫
Ω

c(x, g(x))dµ(x). (9)

Based on Theorem 1.1 of supplementary material,
when the cost function c(x,y) = 1/2∥x − y∥2, we have
g∗(x) = ∇u(x). This explains that the SDOT map is
the gradient map of Brenier’s potential u. As [27, 1] re-
mark, u is the upper envelope of a collection of hyper-
planes πh,i(x) = xTyi + hi and can be parametrized
uniquely up to an additive constant by a height vector h =
(h1, h2, ..., h|I|)

T . In such a case, uh parameterized by h
can be stated as follows,

uh(x) = max
i∈I
{πh,i(x)},uh : Ω→ Rn, (10)

Given the target measure ν, there exists Brenier’s poten-
tial uh in Eq. (10) whose projected volume of each support
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Figure 1. The framework of the proposed DPM-OT. The red curve indicates the Optimal Trajectory, which is induced by the SDOT map
g (·) between xT and xM . Correspondingly, the blue line indicates the first T -M steps inverse diffusion of the vanilla DPM.

plane is equal to the given target measure νi. To receive
uh, we only need to optimal h by minimizing the follow-
ing convex energy function:

E(h) =

∫ h

0

∑
i∈I

wi(η)dηi −
∑
i∈I

hiνi, (11)

where ωi(η) is the µ-volume of Wi(η).

3. Diffusion Probabilistic Model Based on Op-
timal Transport

Leveraging the generative capabilities of DPMs and the
distribution-aligned nature of OT, we propose a fast DPM
whose framework is shown in Fig. 1. We give the definition
of our DPM-OT sampler in Section 3.1 and error analysis
in Section 3.3. Section 3.2 describes the proposed fast DPM
from the perspective of the algorithm.

3.1. Optimal Trajectory and Sampler

Effective trajectory shortening method has been shown
significant for sampling acceleration [46, 3, 2] and high-
fidelity generation. To this end, Eric and Salimans et
al. [31, 38] recursively distill the 2-step trajectory in the
teacher network into a single-step using the knowledge dis-
tillation technique. Bao et al. [3] and Watson et al. [46]
use dynamic programming to estimate optimal trajectory,
which can quickly generate high-quality images. Bao et
al. [2] propose to estimate the optimal covariance and its
correction given imperfect means by learning these condi-
tional expectations at each time step. Inspired by that prior
wisdom, we propose a new SDOT based diffusion model
DPM-OT, which builds a direct expressway represented by
optimal trajectory. Thus, the single-step optimal trajectory
replaces the multi-step trajectory in the vanilla DPM. The
definition of optimal trajectory is given below.

Definition 3.1. (Optimal Trajectory). Given a M steps
trajectory {xt−i}Mi=0 at time t, M ≤ t, xt ∈ Xt, the op-
timal trajectory from xt to xt−M is a single-step trajectory
that is obtained by minimizing the following transport cost:

g∗ := arg min
g#µ=ν

∫
Xt

c(xt−M , g(xt))dµ(xt). (12)

According to Brenier’s theorem, the OT map g∗(·) is the
gradient of the convex Brenier potential uh which satis-
fies the Monge-Ampére equation. The existence and the
uniqueness of the solution to the Monge-Ampére equation
have been proved by the Fields medalist Figalli in Chapter 2
of [14], where he used Alexandrov’s approach and claimed:
i). The sequence of Dirac distributions {νn} weakly con-
verges to data distribution ν; ii). For each Dirac measure
νn, there exists an Alexandrov’s solution un (which is ex-
actly the discrete Brenier potential in this paper); iii). The
weak solution un converges to the real solution uh which is
C1 almost everywhere, except at the singular set. Thus, the
OT map g∗(·) is continuous internally and discontinuous at
the boundary singular set.

Definition 3.2. (DPM-OT Sampler). Given an initial la-
tent code xT ∼ N (0, I) at time T , the DPM-OT sampler
needs to go through a M+1 steps trajectory xT ∪{xi}0i=M ,
where M < T . Let g(·) denote the OT map between xT

and xM , ft(·, ·) denote the parameterized reverse diffusion
process which can be any off-the-shelf DPM model. The
DPM-OT sampler is defined as follows:

xM = g(xT ),

xt−1 = ft(xt, z), t = M, ..., 1.
(13)

The DPM-OT Sampler first transmits the white noise
xT to the manifold represented by the latent variable xM

through the OT map g(·), thus providing a near-perfect
initial value for the subsequent inverse diffusion process.
From Definition 3.1, g(·) is discontinuous at the singular
set. Therefore, the manifold xM can maintain the same at-
tributes as the original data manifold, that is, discontinuity
at the boundary singular point, thus avoiding mode mixture.
Further, the subsequent M -step inverse diffusion gradually
pushes latent variable xM onto the target data manifold, and
finally achieves high-quality data generation. The variable
z in ft(·, ·) is 0 when t = 1 or z ∼ N (0, I) when t > 1.
M -step inverse diffusion process improves the generation
ability of DPM-OT Sampler, which essentially completes
the continuity of SDOT map.

3.2. Sampling Algorithm

The overall framework of our DPM-OT is shown in
Fig. 1, which includes an optimal trajectory from xT to xM
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Algorithm 1 SDOT Map
Require: Target dataset Y = {yi}i∈I with empirical dis-

tribution ν = 1
|I|

∑
i∈I νiδ (y − yi), number of Monte

Carlo samples N , learning rate lr, threshold τ , positive
integer s, reverse diffusion steps M and a well-behaved
schedule of {(bt, σt)}Tt=0.

Ensure: OT map g(·).
Initialize h = (h1, h2, · · · , h|I|)← (0, 0, · · · , 0)
Diffuse yi forwardly by M steps according to Eq. (2),
obtain the latents set XM = {xi

M}i∈I
repeat

Sample N white noise samples {xT ∼ N (0, I)}Nj=1

Calculate∇h = (ŵi(h)− νi)
T .

∇h = ∇h−mean(∇h).
Update h by Adam algorithm with β1 = 0.9,β2 = 0.5.
Calculate E(h) by Eq. (11)
if E(h) has not decreased for s steps then
N ← 2×N ; lr ← 0.8× lr

end if
until E(h) < τ
OT map g(·)← ∇(maxi{⟨xT ,x

i
M ⟩F + hi}).

and an M -step inverse diffusion process gradually pushing
latent variable xM onto the target data manifold. We sum-
marize our framework in Algorithm 1 and Algorithm 2.
Specifically, to sample high-quality images, we need to
compute the SDOT map g : xT → xM by Algorithm 1,
and then use Algorithm 2 to generate images.

Given the target dataset Y = {yi}i∈I which is dis-
tributed on the manifold discretely, our goal is to efficiently
generate high-quality images on the manifold represented
by Y . As Van der Maaten [45] stated in t-SNE, natural
clusters in the data tend to form tight widely separated clus-
ters in the map. i.e., there will be boundaries between dif-
ferent clusters. Unfortunately, in the generation task, what
the community cares about is the coverage and alignment
of the entire target data manifold, while the properties such
as the discrete nature of the boundaries are often ignored.
As a result, existing DPMs try to approximate continuous
diffusion processes with deep neural networks to match any
target distribution with discontinuous supports, which leads
to mode mixtures in their output images.

To accelerate the sampling process and avoid the
mode mixture, we first utilize a well-behaved schedule
{(bt, σt)}Tt=0 to diffuse the original data y into the latent
variable xM and then calculate the OT map between xT and
xM , which induces the Optimal Trajectory from xT to
xM . Considering that both xT and xM are matrices, we set
the Brenier’s potential uh = maxi∈I{⟨xT ,x

i
M ⟩F + hi},

where ⟨·, ·⟩F denotes Frobenius inner product. In Algo-
rithm 1, we use the Monte Carlo method to solve the SDOT
map. For better convergence, we double the number of sam-

Algorithm 2 DPM-OT Sampling
Require: Reverse diffusion steps M , OT map g(·), a well-

trained sθ and a well-behaved schedule of {(bt, σt)}Tt=0.
Ensure: Generated image x0.

Sample xT ∼ N (0, I)
xM = g(xT )
for t = M to 1 do
z ∼ N (0, I) if t > 1, else z = 0
xt−1 = xt − [b(x, t)− σ2(t)sθ(xt, t)] + σ(t)z

end for
return x0

ples N and multiply the learning rate lr by 0.8 when the
energy function E(h) has not decreased for s steps.

After obtaining the SDOT map g(·), we sample with the
help of an off-shelf pre-trained model and summarize the
process in Algorithm 2. With the optimal trajectory, our
DPM-OT Sampler can perform sampling quickly and with
few mode mixture. Given different schedule {(bt, σt)}Tt=0,
our framework DPM-OT will be instantiated into different
fast DPM models. Specifically, if we use the Langevin dy-
namic in NCSNv2 [42] to instantiate the diffusion process,
we can obtain the following sampling process:

xt−1 = xt + σ2(t)sθ(xt, t) + σ(t)z, t = M, ..., 1. (14)

3.3. Error Analysis

In this section, we analyze the error bound of DPM-OT.
First, we prove that the single-step error is controllable.
Then, we give the upper bound of the error between the
generated data distribution and the target data distribution.

Theorem 3.3. Let x̃t and xt be the samples of step t ob-
tained by DPM-OT and forward diffusion respectively, and
t ⩽ M , ζM be the error at step M induced by the optimal
trajectory, then there is a constant Ct > 0 satisfies

∥x̃t − xt∥ ⩽ Ct ∥ζM∥ . (15)

Since the weak solution un converge to the real solu-
tion uh [14, 1, 27] and the OT map g(·) is obtained by the
Monte Carlo method, its error ζM is O(N− 1

2 ) according to
Theorem 2.1 of [6]. So we can find a small enough error
ζM to make ∥x̃t − xt∥ ⩽ δ hold for any given error bound
δ > 0, which indicates the error of DPM-OT is control-
lable. Building upon Theorem 3.3, we obtain Theorem 3.4
and give their proofs in supplementary material.

Theorem 3.4. Let Ldpm ot be the error between the data
distribution generated by DPM-OT and the target data dis-
tribution which is defined in Eq. (16), Lvlb is the variational
lower bound on negative log-likelihood between data distri-
bution generated by vanilla DPM and the target data distri-
bution which is defined in Eq. (6). We have Ldpm ot ⩽ Lvlb.
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Table 1. Sample quality measured by FID ↓ on CIFAR-10,
CelebA, and FFHQ, the number of function evaluations (NFE) is
the number of times the neural network called.

Dataset CIFAR-10 CelebA 64× 64 FFHQ 256× 256

Models NFE FID ↓ NFE FID ↓ NFE FID ↓
DDIM [41] 100 4.60 100 6.53 – –
NCSNv2 [42] 1160 10.87 2500 10.23 6933 12.73
DPM-Solver [30] 20 3.72 20 3.13 20 3.13
EDM [20] 27 3.73 – – – –
UniPC [48] 10 3.87 – – 10 6.99
Analytic-DDIM [3] – – 50 6.13 – –

5 3.78 5 3.30 5 4.69
10 3.61 10 3.21 10 4.46

DPM-OT 20 3.33 20 3.12 20 4.32
30 3.12 30 3.01 30 4.26
50 2.92 50 2.85 50 4.11

Table 2. Comparison of precision ↑ and recall ↑ .
Dataset Models Precision ↑ Recall ↑

CelebA 64× 64

DDIM [41] 0.75 0.42
NCSNv2 [42] 0.85 0.42
DPM-Solver [30] 0.71 0.46
DPM-OT 0.79 0.78

Hence, Lvlb is the upper bound of Ldpm ot.

Ldpm ot = L0 + L1 + ...+ LM + LT

= − log p̃θ(x0|x1) +DKL(q(xT |x0)), p(xT ))

+

M−1∑
t=1

DKL(q(xt|xt+1,x0)||p̃θ(xt|xt+1))

+DKL(q(xM |xT ,x0)||p̃θ(xM |xT )),

(16)

where p̃θ(xM |xT ) = pθ(xM − ζM |xT ), p̃θ(xt|xt+1) =
pθ(xt−ζt|xt+1) and ζt = x̃t−xt for t = 0 to t = M−1.
Theorem 3.4 shows that our DPM-OT sampler can fit the
target data distribution no worse than vanilla DPMs, which
theoretically guarantees the robustness of the algorithm.

4. Experiments
Section 3 analyzes the benefits of our model from the

theoretical perspective, and then we will further evaluate the
performance of the model experimentally. The experimen-
tal results indicate that the DPM-OT has the following pros:
1) it can be well embedded in pre-trained diffusion models
to accelerate sampling; 2) the generation efficiency of our
model has been drastically enhanced, and high-quality im-
ages can be generated with only 5 function evaluations; 3)
mode mixture can be alleviated via the proposed method.

More specifically, we instantiate our framework DPM-
OT with pre-trained models of NCSNv2 [42] on CI-
FAR10 [24], CelebA [29] and FFHQ [21] respectively.
Compared to the NCSNv2, our method has a great im-
provement in sampling speed. NCSNv2 needs 1160, 2500,

and 6933 function evaluations on the corresponding three
datasets to get preferable images, while our model can get
high-quality images with only 5 function evaluations. Fur-
thermore, we employ FID score [16] and the improved
precision and recall metric [25] to assess its performance
against the SOTA models on the above three datasets. These
SOTA models include DDIM [41], Analytic-DDIM [3],
DPM-Solver [30], EDM [20], UniPC [48].

To measure the ability of generative models to generate
images with obvious categories, that is, not to produce im-
ages that do not exist in the real world with multiple cat-
egories mixed together, we design a mode mixture indica-
tor to judge whether the image is mixed. Exactly, for each
generated image, we use a pre-trained classification model
which is the SOTAs model in the community to evaluate its
probability of belonging to each category. If the image has
probabilities greater than a given threshold λ on more than
two categories, it is identified with mode mixture. Given
the classification model cls(y)=(py1 , p

y
2 , ..., p

y
C), number of

categories C, the definition of mode mixture indicator is:

I(y) =

{
1, |{pyj |p

y
j ≥ λ}| ≥ 2

0, others,
j = 1, · · · , C, (17)

where | · | denotes the number of elements in the set, pyj
represents the probability that the image y belongs to the
j-th category. Then, We use mode mixture ratio (MMR) to
measure the performance of the generative model in avoid-
ing mode mixture, which is defined as follows:

MMR =
1

K

K∑
i=1

I(yi), i = 1, · · · ,K, (18)

where K is the number of images. I(yi) indicates the pre-
diction of whether there is a mode mixture on i-th image.
MMR is a simple but effective metric, which circumvents
the dilemma of accuracy calculations but no labels. The
lower its value, the fewer images with mode mixture.

4.1. Sample Quality and Efficiency

To illustrate the remarkable performance of the DPM-
OT, we give its analysis of sampling quality and efficiency.
As the universal evaluation metrics of image generation, the
FID scores for our model on CIFAR-10, CelebA, and FFHQ
datasets are reported in Tab. 1. Moreover, in order to eval-
uate the quality of the generated models in several dimen-
sions, we give the results of precision and recall in Tab. 2 on
CelebA. Precision is quantified by querying for each gener-
ated image whether the image is within the estimated man-
ifold of real images. Symmetrically, recall is calculated by
querying for each real image whether the image is within
the estimated manifold of the generated image.

Combining the above metrics, the following result analy-
sis is provided. Results on CIFAR-10, the FID of our model
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Table 3. Comparison of Mode mixture in CIFAR-10 dataset. NIG: the number of images generated, threshold: the image has a probability
greater than a given threshold on more than two categories, it is identified as mode mixture.

NIG models NFE threshold

λ = 0.1 λ = 0.11 λ = 0.13 λ = 0.16 λ = 0.2

49984 DDIM 100 3834(7.69%) 3626(7.25%) 3306(6.61%) 2859(5.71%) 2416(4.83%)
50000 DPM-solver 20 3824(7.65%) 3614(7.22%) 3295(6.59%) 2868(5.73%) 2397(4.79%)
50000 EDM 27 1579(3.16%) 1512(3.02%) 1379(2.75%) 1203(2.41%) 980(1.96%)
50000 NCSNv2 1160 8876(17.75%) 8217(16.43%) 7463(14.92%) 6527(13.05%) 5552(11.10%)

5 699(1.40%) 743(1.48%) 678(1.35%) 585(1.17%) 426(0.85%)
10 778(1.56%) 746(1.49%) 674(1.34%) 590(1.18%) 492(0.98%)

50000 DPM-OT 20 829(1.66%) 835(1.67%) 746(1.49%) 645(1.29%) 527(1.05%)
30 840(1.68%) 834(1.66%) 749(1.49%) 645(1.29%) 496(0.99%)
50 984(1.97%) 951(1.90%) 872(1.74%) 760(1.52%) 622(1.24%)

(a) DDIM (b) NCSNv2 (c) EDM (d) DPM-solver (e) DPM-OT

Figure 2. The visual comparison on CIFAR-10 dataset.

outperforms other fast DPM methods, this shows that our
model is able to improve the image quality while accel-
erating sampling speed. And compared with DDIM, NC-
SNv2, EDM, and DPM-solver, the images generated by our
method are much sharper, while other models have some
images with mode mixture. Such as a bird head with a horse
body, as marked in the red box of Fig. 2. Results on celebA,
Tab. 1 and Fig. 3 provide quality evaluation and visual-
ization comparisons in CelebA, respectively. Our model
only needs 5 function evaluaitons to achieve excellent per-
formance in image quality assessment and compared to the
other models in Tab. 1, the DPM-OT is superior in terms
of both speed and quality. Although DDIM, NCSNv2, and
DPM-solver get highly realistic images, their results appear
to some not exist face images in the real world caused by
mode mixture, such as the red box marks in Fig. 3, while
our method does not arise in this case. Results on FFHQ, in
comparison to DPM-solver and UniPC, our method attains
superior results after 5 times of neural network inference.
Fig. 3 shows the DPM-OT generated high fidelity and al-
most no mixture images, yet the NCSNv2 appears some de-
formed face images in Fig. 3 with a marked red box. In
addition to this, The results of precision and recall of our
model on CelebA are shown in Tab. 2. Compared with NC-
SNv2, though the precision of our model is slightly lower,

the recall is over a lot, which shows that our model has en-
hanced in both diversity and image quality.

In summary, the quantitative evaluation and visualized
results demonstrate our model has superior performance. In
particular, the sampling speed has been greatly enhanced,
requiring only 5−10 NFEs to generate high-quality images.

4.2. Validity of Mode Mixture Indicator

To verify the validity of the mode mixture indicator, i.e.,
Eq. (17), we conduct empirical analysis and give the rele-
vant examples and results which are reported in Fig. 5 and
Fig. 6. We randomly select an image with mode mixture
and an image with significant category characteristics to
obtain classification results by the pre-training model ViT-
B16 [12], judging whether the image is with mode mixture
or not. Fig. 5 shows that the probability of a horse and deer
in the mixed image is 0.3 and 0.4, respectively, this also
aligns with our visual perception which is a mixture of a
horse and a deer. While the other image can immediately be
recognized as an automobile, and the output probability of
the classification model is close to 1, this also indicates that
the selected classification model is effective, and the indica-
tor defined in Eq. (17) can effectively detect mode mixture.

Furthermore, we further randomly collected 100 clear
images from CIFAR-10 and 50 images with mode mixture
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(a) DDIM (b) NCSNv2 (c) DPM-solver (d) DPM-OT

Figure 3. The visual comparison on CelebA dataset.

(a) NCSNv2

(b) DPM-OT

Figure 4. The visual comparison on FFHQ dataset.

from generated results, the accuracy of the indicator’s re-
sults are shown in Fig. 6. We found that the mode mix-
ture indicator has a great ability to recognize clear images.
Moreover, when the threshold λ is about 0.11, the image
with mode mixture can be effectively identified. In sum-
mary of the results, it is reasonable to assume the proposed
indicator is effective in the detection of mode mixture.

4.3. Mode Mixture Analysis

This part will demonstrate that the DPM-OT can miti-
gate mode mixture from experimental results. We devised
a new metric to quantitatively assess model mixture, i.e.
Eq. (18), which assumes that no less than two components
of the probability vector are greater than the setup thresh-
old. Furthermore, we utilize the best pre-trained classifi-
cation model ViT-B16 to count the number of blended im-
ages. The results of MMR are reported in Tab. 3, with a
nearly consistent number of images, we calculate the ra-
tio of obfuscated images under the corresponding threshold.
According to the results in Section 4.2, we know that when
the value of γ is around 0.1, the prediction of the mode
mixture indicator on clear images and mixed images will
be more accurate, so we have selected five values in the in-
terval [0.1, 0.2] for comparative experiments. Judging from
the results, the DPM-OT consistently maintains excellent
performance under different thresholds, which indicates our
model can effectively alleviate mode mixture.

In addition, the visualized results further illustrate the
ability of our model to mitigate mode mixture in Fig. 2 ∼
Fig. 4. The visual results on the CIFAR-10 in Fig. 2, (a) ∼
(d) appear confusing images, such as a red box marked ei-
ther a variety of animal images mixed together or blurred
and unclear. And for face image results on the celebA
64×64 in Fig. 3, DDIM has a broken face formed by mixing
faces of different sizes, NCSNv2 produces a completely de-
formed face, DPM-solver generates strange unnatural faces.
This also demonstrates that the DPM-OT can better miti-
gate mode mixture on face images. The results of the high-
resolution face image on FFHQ 256 × 256 are displayed
in Fig. 4, Although NCSNv2 generates clean face images,

22630



Figure 5. Examples of verifying mode mixture indicator. The image of the top row and the bottom row are judged as existence and
nonexistence mode mixture by the indicator in Eq. (17).
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Figure 6. Randomly chosen mixed and unambiguous images to ob-
tain the mode mixture indicator results under different thresholds.

there are still existed missing ears and overlapping facial
features. The high-quality unconfused images are gener-
ated by our model. To sum up, from the MMR and visual
results, the output results of other models have a serious
mode mixture, and the MMR of our model maintains a very
small prediction rate, this shows that our proposed method
can well mitigate this problem and also improves the qual-
ity of images. We then briefly analyze the reason for mode
mixture via optimal transport theory.

According to the regularity theory of Monge-Ampére, if
the support set of the target distribution is non-convex, then
there exists a singular set of points with zero measure and
the transport mapping is interrupted at the singular points.
While traditional deep neural networks (DNN) can only ap-
proximate continuous maps, this internal conflict leads to
mode collapse/mixture. We are aware that the transforma-
tion from noise to generated images involves a transition
from continuous to discrete distribution, which results in
singular boundaries, and the images generated at the bound-
ary points inevitably appear mode mixture. While existing
DPMs attempt to use DNN to approximate the continuous
diffusion process, which arise intrinsic conflict and cause
mode mixture. Our method calculates the SDOT map from

xT to xM to avoid using DNNs approximate continuous
map, which can eliminate mode mixture at the first step of
DPM-OT sampler. Therefore, it can effectively mitigate
mode mixture of our model.

5. Conclusion
In this paper, we propose a novel fast sampling diffusion

probability model in combination with optimal transport,
i.e. DPM-OT, which can generate high-quality images
while greatly speeding up the sampling. Our method built
an optimal trajectory from the prior distribution to the target
latents distribution by calculating the SDOT map between
them. The optimal trajectory provides a near-perfect initial
value for the subsequent diffusion process through a single-
step transmission, which greatly shortens the sampling tra-
jectory, thus improving the sampling efficiency. Moreover,
the discontinuity of the SDOT map at the boundary singular
point dramatically alleviates the problem of mode mixture
in the generated image. Furthermore, the error bound of the
proposed method is provided, which theoretically guaran-
tees the stability of the algorithm. To detect mode mixture
without labels, an effective indicator is proposed and ver-
ified. Extensive experiments validate the proposed DPM-
OT can generate high-quality samples with almost no mode
mixture within only 5− 10 function evaluations.

Limitations One limitation of our approach is that the
noisy training data samples xM need to be stored for use at
sampling time. This means additional storage requirements,
although we have designed batch-processing algorithms to
reduce the demand for device storage. Another limitation
is that we just only consider unconditional generation here.
In future research, it would be interesting to incorporate the
DPM-OT framework into conditional synthesis tasks.

Acknowledgment
This research was supported by the National Key

R&D Program of China (2021YFA1003003) and the Na-
tional Natural Science Foundation of China under Grants
61936002 and T2225012.

22631



References
[1] Dongsheng An, Yang Guo, Na Lei, Zhongxuan Luo, Shing-

Tung Yau, and Xianfeng Gu. Ae-ot: a new generative model
based on extended semi-discrete optimal transport. ICLR
2020, 2019. 1, 2, 4

[2] Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo
Zhang. Estimating the optimal covariance with imper-
fect mean in diffusion probabilistic models. arXiv preprint
arXiv:2206.07309, 2022. 3

[3] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-
DPM: An analytic estimate of the optimal reverse variance in
diffusion probabilistic models. In International Conference
on Learning Representations, 2022. 1, 3, 5

[4] Yann Brenier. Polar decomposition and increasing rear-
rangement of vector-fields. COMPTES RENDUS DE L
ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE,
305(19):805–808, 1987. 1

[5] Yann Brenier. Polar factorization and monotone rearrange-
ment of vector-valued functions. Communications on pure
and applied mathematics, 44(4):375–417, 1991. 1

[6] Russel E Caflisch. Monte carlo and quasi-monte carlo meth-
ods. Acta numerica, 7:1–49, 1998. 4

[7] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Moham-
mad Norouzi, and William Chan. Wavegrad: Estimating gra-
dients for waveform generation. In International Conference
on Learning Representations, 2021. 1

[8] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Moham-
mad Norouzi, Najim Dehak, and William Chan. Wavegrad
2: Iterative refinement for text-to-speech synthesis. In Inter-
national Speech Communication Association, pages 3765–
3769, 2021. 1

[9] Shibing Chen and Alessio Figalli. Partial w2, p regularity
for optimal transport maps. Journal of Functional Analysis,
272(11):4588–4605, 2017. 1

[10] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune
Gwon, and Sungroh Yoon. Ilvr: Conditioning method for
denoising diffusion probabilistic models. in 2021 ieee. In
CVF International Conference on Computer Vision (ICCV),
pages 14347–14356, 2021. 1

[11] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion
models beat GANs on image synthesis. In Advances in Neu-
ral Information Processing Systems, volume 34, pages 8780–
8794, 2021. 1

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020. 6

[13] Alessio Figalli. Regularity properties of optimal maps be-
tween nonconvex domains in the plane. Communications in
Partial Differential Equations, 35(3):465–479, 2010. 1

[14] Alessio Figalli. The Monge–Ampère equation and its appli-
cations. 2017. 3, 4

[15] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,

and Yoshua Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, vol-
ume 27, pages 2672–2680, 2014. 1

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local Nash equi-
librium. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Information
Processing Systems, volume 30, pages 6626–6637, 2017. 5

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 6840–6851,
2020. 1, 2

[18] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. arXiv preprint arXiv:2204.03458, 2022. 1

[19] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer,
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