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Abstract

Open-World Compositional Zero-Shot Learning (OW-
CZSL) aims to recognize new compositions of seen at-
tributes and objects. In OW-CZSL, methods built on the
conventional closed-world setting degrade severely due to
the unconstrained OW test space. While previous works
alleviate the issue by pruning compositions according to
external knowledge or correlations in seen pairs, they in-
troduce biases that harm the generalization. Some methods
thus predict state and object with independently constructed
and trained classifiers, ignoring that attributes are highly
context-dependent and visually entangled with objects. In
this paper, we propose a novel Distilled Reverse Attention
Network to address the challenges. We also model attributes
and objects separately but with different motivations, cap-
turing contextuality and locality, respectively. We further
design a reverse-and-distill strategy that learns disentan-
gled representations of elementary components in training
data supervised by reverse attention and knowledge distil-
lation. We conduct experiments on three datasets and con-
sistently achieve state-of-the-art (SOTA) performance.

1. Introduction

Humans can recognize complex concepts never seen be-
fore (e.g., the pink elephant) by composing their knowledge
of familiar visual primitives (elephants and other pink ob-
jects). This ability of compositional learning is considered
a hallmark of human intelligence [17] that deep learning
methods clearly lack [18]. Deep learning often requires a
large quantity of labeled examples to train. However, real-
world instances follow a long-tailed distribution [34, 38],
making it impractical to gather supervision for all cate-
gories. Compositional Zero-shot Learning (CZSL) mimics
the human ability to tackle these issues [31, 23, 29, 15].

CZSL learns the compositionality of seen objects (e.g.
fruits, animals, etc.) and attributes (e.g. colors, sizes, etc.)
as primitives to recognize unseen attribute-object pairs. For
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Figure 1: Motivation behind our disentangling strategy
for OW-CZSL. When extracted features of objects and at-
tributes are disentangled (images 3 and 5), their residual
features (images 4 and 6) carry sufficient information about
each other to classify correctly, and produce large overlap
between the object residuals and the attribute features (im-
ages 4 and 5). For entangled attribute-object features (im-
ages 1 and 3), the phenomena are otherwise reversed (image
2: few object information; images 1 and 4: small overlap).

example, CZSL composes and generalizes Peeled-Orange
and Sliced-Apple to Peeled-Apple (Fig. 1). Conventional
CZSL methods characterize closed-world (CW-CZSL) set-
tings [31, 28, 30, 23], where unseen attribute-object pairs
contained in test images are given as priors to restrict the
search space. For example, the test space of the widely-used
benchmark MIT-States [13] is simplified to 1,662 compo-
sitions out of 28,175 possible pairs (115 attributes × 245
objects) for CW-CZSL. This setup fundamentally reduces
the generalization ability of CZSL models. Therefore, in
this work, we study a more realistic and challenging task:
unconstrained Open-World CZSL (OW-CZSL) [14, 15, 26,
27], where arbitrary compositions may appear at test time.

A notable line of works for CW-CZSL projects attribute-
object pairs and images onto a shared embedding space
to perform similarity-based composition classification [41,
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29, 39]. However, their performances severely degrade for
OW-CZSL [26] due to greatly expanded output space (e.g.,
∼ 17 times in MIT-States). Thus, some works adapt them to
OW-CZSL by pruning OW composition space based on fea-
sibility scores calculated according to linguistic side infor-
mation [15] or seen attribute-object dependencies [26, 27].
Such scores inevitably introduce biases caused by distribu-
tion shifts between images and external linguistic knowl-
edge bases or seen and unseen compositions, resulting
in visual-semantic inconsistent or seen-biased predictions.
Therefore, for OW-CZSL, we follow another direction that
adopts two parallel discriminative modules to infer objects
and attributes respectively, reducing composition search to
separate attribute and object search [15, 14, 19, 43].

Despite the success of separate modeling techniques in
CW- and OW-CZSL, these ignore the intrinsic differences
between attributes and objects [19, 43, 15, 14]. Children,
for instance, learn nouns faster than adjectives because they
relate to context differently [7]. Similarly, visual primitives
of attributes (often adjectives) are more context-sensitive
than objects (usually nouns) [28, 30]. For example, Small
in Small-Cat and Small-Building is not visually equivalent,
while Tomato in Red-Tomato and Fresh-Tomato is simi-
lar. Extracting attribute and object features using identical
structures [15, 14] without considering the heavier context
dependencies of attributes may impair the discrimination.

Another bottleneck for separate modeling is visual en-
tanglement. Taking Fig. 1 as an example, given an image
of the unseen composition, i.e., Peeled-Apple, it is hard
to distinguish which visual features are Apple and which
ones are Peeled. The extracted features of attributes and
objects are highly entangled (images 1 and 3), leading to a
wrong prediction biased towards the seen pairs, i.e., Sliced-
Apple. Some efforts disentangle the embeddings in CW-
CZSL [33, 1, 43, 19]. However, they either learn pair-wise
attribute-object correlations in compositional space [32, 1]
or adopt generative methods to synthesize samples for all
pairs [33, 19], thus making them infeasible for OW-CZSL
due to the drastically expanded output space.

To address these issues, we propose the Distilled Re-
verse Attention Network (DRANet) that extracts and disen-
tangles visual primitives of attributes and objects for OW-
CZSL. First, we design attribute/object-specific networks to
extract their features differently according to their charac-
teristics. As suggested by [35], Convolutional Neural Net-
works (CNNs), used to extract visual embeddings in CZSL,
are built on top of local neighborhoods and thus cannot cap-
ture long-range context. Therefore, we adapt non-local at-
tention blocks [35, 6] to model spatial and channel contex-
tual relationships for attribute learning while adopting local
attention to focus on essential parts for object recognition.

Second, we design an attention-based disentangling
strategy for OW-CZSL, namely Reverse-and-Distill. This

strategy is based on the observation that humans can still
recognize Apple after removing Peeled from the images of
Peeled-Apple. Intuitively, if learned primitives of attributes
and objects are disentangled, removing either of them from
the feature space will not affect the classification of the
other. Thus, object predictions after erasing the attribute
features (or attribute predictions after object removal) can
indicate the unraveling degree of attribute and object fea-
tures. For example, as shown in Fig. 1, models can still
recognize Apple (image 6) after removing attribute features
when primitives are disentangled (images 3 and 5) but fail
(image 2) when entangled (images 1 and 3). Given that fea-
ture removal is intractable in practice, we approximate it by
reversing attention. We then achieve attribute and object
feature disentanglement by supervising their residuals to
crossly carry sufficient object and attribute information. Be-
sides, when attribute and object features are disentangled,
the overlaps between attribute features and object residu-
als (or object features and attribute residuals) become large
(seeing images 4 and 5 or images 3 and 6 in Fig. 1). We
enlarge such overlaps by distilling primitives to learn from
mutual residuals for further unraveling.

In summary, our contributions are as follows: 1) We pro-
pose the DRANet for OW-CZSL. DRANet employs distinct
extractors to capture attribute and object features, enhanc-
ing contextuality and locality, simultaneously. 2) We design
the reverse-and-distill strategy to disentangle the attribute
and object embeddings in OW-CZSL, where existing dis-
entangling methods in CW-CZSL are impractical. 3) We
achieve SOTA performance on three benchmark datasets,
and analyze the limitations and extensibility of our model.

2. Related work
Compositional Zero-Shot Learning (CZSL) aims to

recognize unseen concepts by composing learned attribute
and object primitives. A typical schema of CZSL is to learn
joint representations of compositions [37, 29, 32, 39, 41].
[29] establishes element and composition relationships in a
graph space. [31] uses a gating network to generate a uni-
fied classifier for compositions. [44] refines composition
embeddings by hierarchically constructing concepts. Other
methods try to model attributes as transformations applied
to objects [23, 30] and learn a classifier based on objects
modified by attributes. The transformation can be linear
projection [30] or symmetry coupling and decoupling [23].

Another mainstream methods model attributes and ob-
jects separately [43, 19, 33, 1] to reduce composition learn-
ing into attribute and object learning. [43] employs a block
memory network to generate features for concepts. [19, 33]
compare images with the same objects or objects to decom-
pose visual primitives. Among them, some works [19, 33,
1] find that isolated modeling ignores attribute-object in-
teractions and thus proposes to disentangle attributes and

1783



Orange Apple

Image
Encoder

Non-local  
Spatial Module

Non-local  
Channel Module

Local  
Channel Module

Local  
Spatial Module

Reverse Reverse Reverse Reverse

Attribute  
Classifier

Reversal-based 
Object Classifier

Object  
Classifier

Reversal-based
Attribute Classifier 

Sliced PeeledSliced Peeled Orange Apple Orange Apple
Distill:        
Distill:        

C  H  W

1
Softmax

×

Sigmoid Softmax

×

(H  W)  (H  W)
×

Pool
+

Pool+

''Reversed''

Non-local Spatial Module

Sigmoid

1 P

P

Pool

Pool

''Reversed''

Local Spatial Module × Matrix Product

P Element-wise Product

Element-wise Sum

Element-wise Minus

+

Peeled-Apple DRANet

Training:

Sliced Peeled

Sliced Peeled

+

+

× ...

Peeled 
-Apple

Inference

AppleOrange

Figure 2: DRANet Overview. It contains four modules to extract non-local and local features from spatial and channel
dimensions. The concatenated spatial-channel embeddings from the non-local and local modules are used to predict attributes
and objects, respectively. Their reversed knowledge is swapped as inputs for reversal-based object and attribute classifiers,
respectively. The model is optimized with four classification losses and reversal-oriented distillation losses. The Non-local
and Local Spatial Modules are based on non-local attention [35] and soft attention [40], respectively, and adapted using
reverse attention for attribute-object disentanglement. During inference, all the results are combined for final predictions.

objects for CW-CZSL with affinity estimation [33], con-
trastive learning [19], or cutting the confounding links [1].
In this work, we design a new disentangling strategy suit-
able for OW-CZSL, i.e., reverse-and-distill. It takes a single
image as input without image pair comparisons or sample
generations [19, 33], regularizes and distills feature extrac-
tion via reverse attention to unravel attributes and objects.
Existing disentangling methods unravel attributes and ob-
jects on the feature level, while our method disentangles via
reverse attention and thus can be projected to the pixel level.

Open-world CZSL (OW-CZSL) is more challenging
due to its relaxed constraints on the output space [26, 14, 15,
27]. Feasibility [26] is estimated to remove compositions
by using ConceptNet to measure attribute-object compati-
bility [15], or constructing graph convolutional networks to
model primitive correlations [27]. As in [15, 14], we predict
objects and attributes separately, different in that their pre-
dictions are in isolation, while we, as the first disentangling
attempt in OW-CZSL, untwine two branches mutually and
collaboratively for better generalization.

Attention mechanisms are commonly adopted in com-
puter vision tasks such as scene segmentation [5, 6], im-
age classification [2, 4], or Zero-Shot Learning (ZSL) [22,
20, 25, 21] that closely relates to CZSL. In ZSL, attention
mechanisms are usually used to capture subtle visual dif-
ferences [20] or locate semantics-rich regions to improve
attribute-visual compatibility [22, 24]. Despite the success
of attention mechanisms in vision tasks, as most CZSL tasks
focus on how to explore compositional nature rather than
visual representation learning, incorporation of visual at-

tention in CZSL is underexplored. A previous work [43]
in CZSL adopts attention, but in the linguistic view. In this
paper, we utilize attention in visual cues, adopting non-local
attention inspired by [36, 6] to capture contextuality and us-
ing local attention to enhance visual distinction. With visual
attention, DRANet can extract context without external lin-
guistic knowledge (e.g., pre-trained word embeddings [30]).

3. Method
Problem definitions and notations. CZSL models im-

ages as compositions of attributes a ∈ A and objects o ∈ O.
Suppose A, O, and training data S = {(x, y)|x ∈ XS , y ∈
Y S} from seen compositions (compositions with labeled
samples) are given, where x ∈ XS is an image with la-
bel y ∈ Y S ; y is a tuple (a, o) of attribute-object labels
and a ∈ A, o ∈ O. Given a test set T = {(x, y)|x ∈
XT , y ∈ Y T }, CZSL aims to predict the label y ∈ Y T for
each image x ∈ XT . For OW-CZSL, Y T is the set of all
possible attribute-object pairs Y T = A × O. More specif-
ically, output space in OW-CZSL consists of seen compo-
sitions Y S , unseen compositions Y U without training sam-
ples, and pairs not present in the dataset. Note that seen and
unseen compositions are disjoint, i.e., Y S ∩ Y U = ∅. To
bridge them, all attributes and objects in Y U appear as label
elements in Y S , i.e., seen elements form unseen pairs.

Overview. As shown in Fig. 2, our DRANet includes
non-local and local modules. Under the constraints of at-
tribute and object classification losses, non-local blocks at-
tempt to extract spatial and channel contextuality for at-
tribute learning; local blocks aim to discover important
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regions and channels for object recognition. Attention-
based reversing operations mimic feature erasures to en-
courage the attribute-object disentanglement supervised by
the reversal-based classification losses. Distillation losses
further encourage mutually exclusive learning of non-local
and local blocks throughout the training process.

3.1. Non-local Networks for Attributes.

Contextuality is crucial for attribute understanding [28,
30] due to its heavy dependency on context. Thus for at-
tributes, we adapt non-local attention [35, 6] to relate high-
response regions and channels with themselves and with
externals to capture contextuality. However, the extracted
attribute features may be highly entangled with object fea-
tures; thus, we design the reverse attention mechanism and
incorporate it with the non-local blocks to perform feature
disentanglement. In this section, we introduce the design
of reverse attention in attribute learning. Object reverse at-
tention, and how to realize the decoupling by the reverse
attention are detailed in Secs. 3.2 and 3.3, respectively.

Non-local Spatial Module (NSM). Given an image x,
the image encoder embeds x to obtain the feature map
z ∈ RC×H×W . Then, as shown in Fig. 2 (left and top-
center in the figure), NSM feeds z to three one-layer 1 × 1
CNNs, i.e., fsq , fsk, and fsv , to generate the query, key,
and value maps (esq , esk, and esv , respectively), where
{esq, esk} ∈ Rc×H×W (c is a reduced channel number to
save computations), and esv ∈ RC×H×W . We reshape esq
and esv to Rc×N , where N = H × W , and perform a dot
product between the transpose of esq and esk: ws = eTsqesk.

To capture the contextuality, we then normalize ws with
Softmax to calculate the non-local attention map and mul-
tiply the reshaped esv ∈ RC×N with the transpose of the
attention map. We then construct residual connections by
adding the product (reshaped to RC×H×W ) to x, and pool
the sum to obtain the final non-local spatial outputs ens:

ens = Pool(αesvSoftmax (ws)
T + x) (1)

where α is a learnable scale factor that is initialized to zero
and is gradually optimized, and Pool(·) is the average pool-
ing function. For each position, ens computes a weighted
sum of the features across all positions and the original fea-
tures x, contributing to a global contextual view, thus im-
proving the attribute representation learning.

We also calculate the reversed embeddings based on ws.
We first use Sigmoid to activate ws into (0,1) and subtract it
from 1 to reverse the focus. We then apply a Softmax layer
to generate the reversed attention and calculate the reversed
non-local spatial embedding erns:

erns = Pool(αesvSoftmax (1− Sigmoid(ws))
T + x) (2)

For the non-local spatial attention maps, the overall size
is N×N , i.e., (H×W )×(H×W ), which means each po-
sition corresponds to a sub-attention map of size (H ×W ).

Fig. 2 illustrates such sub-attention maps for the same posi-
tion in the non-local attribute attention and its reversed at-
tention. The reversed sub-attention emphasizes the features
neglected by the attribute sub-attention. We approximate
the reversed embeddings (or so-called attribute reversal) af-
ter the reversed attention as the residuals after removing the
learned attribute features from the original features.

Non-local Channel Module (NCM). While NSM ex-
tracts contextuality in the spatial view, we further propose to
capture semantic contextuality from the channel view. The
channel maps of high-level features can be viewed as re-
sponse activation of specific classes. Therefore, establish-
ing their interrelationships can explore semantic contextu-
ality [6, 3]. We employ NCM to extract the channel in-
terdependencies. The structure and pipeline of NCM are
similar to NSM, but with two-fold differences. First, we
adopt Fully-Connected Networks (FCN) instead of CNN to
generate the query, key, and value maps. The FCNs are de-
signed using the idea of Squeeze-and-Excitation [12] with
the FC layers replacing the convolutional blocks. Second,
the spatial module performs pooling at the last step, while
the channel module performs pooling at first; thus, all em-
bedding sizes during the process differ accordingly. Passing
x through NCM, we obtain the non-local channel embed-
ding enc and its reversal ernc for the attribute and reversal-
based object classification, respectively.

Attribute classification. The extracted non-local spatial
and channel embeddings ens and enc are concatenated to
form en and fed to the attribute classifier fac to predict the
attributes. During training, we minimize the cross-entropy
loss to improve the attribute compatibility:

La =
∑

x,y=(a,o)∈S Lce(x, a) = −
∑

x,y=(a,o)∈S log fac(en, a) (3)

where Lce denotes cross-entropy loss; a is the ground-truth
attribute label for x. fac(en, a) represents the probability of
a, assigned by fac based on the input en.

3.2. Local Networks for Objects

Existing works in CZSL often model object recognition
as part of the composition task and treat it as equivalent of
learning the attributes, thus ignoring how to better recog-
nize objects from an object perspective. We argue that the
goal of object learning in CZSL is not only limited to trans-
ferring object knowledge in compositions, but also to im-
prove object classification performance. A case for the lat-
ter comes from related fields such as zero-shot image clas-
sification, where adopting the local attention mechanisms
have led to successful attempts at extracting discriminative
features [20, 9], localizing distinct regions [8, 22], etc. Thus
we consider local attention for improved object learning.

Local Spatial and Channel Module (LSM and LCM).
The structure of LSM is illustrated in Fig. 2 (bottom cen-
ter). A convolutional layer followed by the Sigmoid func-
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tion acts upon z to produce the local attention weights
and their reversed mappings (obtained by subtracting the
weights from 1). We multiply z with the two attention maps
to obtain the local spatial embedding els and its reversal
erls. Local and reverse-local channel embeddings elc and
erlc are computed in a similar manner by LCM.

Object classification. To combine the local spatial and
channel features, we concatenate els and elc as el. We then
use the object classifier foc to predict objects supervised by
the cross-entropy loss:

Lo =
∑

x,y=(a,o)∈S

Lce(x, o) = −
∑

x,y=(a,o)∈S

log foc(el, o) (4)

where o is the ground-truth object of x, and foc(el, o) out-
puts the probabilities corresponding to the object labels.

3.3. Attribute-Object Disentanglement

The non-local and local modules capture contextuality
and locality for independent attribute and object recognition
without considering their compositional nature. To account
for the latter, we propose the reverse-and-distill strategy that
disentangles the attribute and object features so that any
unseen composition becomes perceptible. As illustrated in
Fig. 1, to disentangle the visual primitives, we regularize the
attribute learning by the attribute- and object-reversals. The
underlying reasoning for this is two-fold: 1) the object’s
feature map and its reversal are naturally disentangled; 2)
if the attribute reversal contains much object information,
the attribute features become less likely to contain object
knowledge thus disentangled from the object features. Such
attribute features are then entangled and largely overlapped
with the object reversals due to the virtue of the first point.
Note that these inferences also hold for object learning.

Reverse. Owing to the aforementioned reasoning, we
desire the object- and attribute-reversals to be sufficiently
informative to predict attributes and objects, respectively.
In this case, the attribute and object features would exclude
information about each other thus, becoming disentangled.
We combine non-local attribute-reversals erns and ernc into
ern, and concatenate local object-reversals erls and erlc into
erl. Then, ern and erl are swapped to be fed to the reversal-
based object and attribute classifier, respectively. We guide
the reverse learning with the cross-entropy loss:

Lr = −(
∑

x,y=(a,o)∈S

log froc(ern, o) + log frac(erl, a)) (5)

Distill. We also optimize the attribute features to learn
from object reversal and the object features to learn from
attribute reversal to enlarge the overlaps for further disen-
tanglement. Intuitively, if the attribute features completely
overlap with the object reversal, the attribute features would
be disentangled from the object features due to the nat-
ural disentanglement between the object and its reversal.

Training Testing
Dataset a o p sp i sp up i cw/p

MIT-States 115 245 28175 1262 30k 400 400 13k 6%
UT-Zappos 16 12 192 83 23k 18 18 3k 53%
C-GQA 413 674 278362 5592 27k 888 923 5k 2%

Table 1: Datasets: a, o, p, i, sp, and up are the number of
attributes, objects, all pairs, images, seen pairs, and unseen
pairs. cw/p is the ratio of CW testing pairs to all pairs.

We introduce a knowledge distillation loss [11] quantified
by the Kullback–Leibler (KL) Divergence term to perform
the teacher-student learning where the attribute- and object-
reversals act as teachers:

Ld =
∑

x,y=(a,o)∈S

KL(foc(el, o)∥froc(ern, o))

+KL(fac(en, a)∥frac(erl, a))
(6)

3.4. Training and Inference

Training objectives. To enable collaborative learning of
modules in DRANet, we define the overall training loss as:

Lczsl = La + Lo + λ1Lr + λ2Ld (7)

where λ1 and λ2 are hyper-parameters.
Inference. We fuse attribute and reversal-based attribute

predictions, fuse object and reversal-based object predic-
tions, and multiply the fusions to obtain final predictions:

y′ = argmax
y=(a,o)∈Y T

((1− η1)fac(en, a) + η1frac(erl, a))

∗ ((1− η2)foc(el, o) + η2froc(ern, o))
(8)

where η1 and η2 modulate the fusion amounts of reversed
classifier predictions.

4. Experiment
4.1. Experiment Settings

Datasets and evaluation metrics. We evaluate our
model on three widely-used datasets: MIT-States [13] com-
posing 115 attributes and 245 objects, UT-Zappos [45, 46]
containing 16 attribute and 12 objects, and C-GQA [29]
consisting of 413 attributes and 674 objects. We follow pre-
vious works [31, 29] to split the datasets into seen and un-
seen compositions, and adopt the Generalized CZSL [29]
setting where both seen and unseen pairs may appear at test
time. The statistics of the split and datasets are shown in
Tab. 1. Note that unseen compositions are not revealed in
OW-CZSL, i.e., the model may output non-existing pairs.
For example, as shown in Tab. 1, only 2% out of all possi-
ble pairs occur in C-GQA test data. We evaluate the model
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Method
MIT-States UT-Zappos C-GQA

S U HM AUC S U HM AUC S U HM AUC

TMN [31] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 NA NA NA NA
AoP [30] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 NA NA NA NA
LE+ [28] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08
VisProd [28] 20.9 5.8 5.6 0.7 54.6 42.8 36.9 19.7 24.8 1.7 2.8 0.33
SymNet [23] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CGEff [29] 29.6 4.0 4.9 0.7 58.8 46.5 38.0 21.5 28.3 1.3 2.2 0.30
CGE [29] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47
CompCosCW [26] 25.3 5.5 5.9 0.9 59.8 45.6 36.3 20.8 28.0 1.0 1.6 0.20
CompCos [26] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 28.4 1.8 2.8 0.39
VisProdff++ [14] 24.6 6.7 6.6 1.0 58.3 47.1 39.3 22.8 27.2 2.1 3.3 0.46
VisProd++ [14] 28.1 7.5 7.3 1.2 62.5 51.5 41.8 26.5 28.0 2.8 4.5 0.75
KG-SPff [15] 23.4 7.0 6.7 1.0 58.0 47.2 39.1 22.9 26.6 2.1 3.4 0.44
KG-SP [15] 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.78

DRANetff 27.1 6.6 6.9 1.1 60.7 46.1 39.7 23.5 28.2 3.1 5.0 0.71
DRANet 29.8 7.8 7.9 1.5 65.1 54.3 44.0 28.8 31.3 3.9 6.0 1.05
——Base Model 25.6 6.8 7.0 1.1 59.5 50.9 41.1 25.2 31.4 3.0 4.6 0.75
——ANet 28.9 7.2 7.4 1.3 61.0 53.7 42.9 27.3 30.6 3.5 5.4 0.88
——RANet 30.9 7.5 7.8 1.4 64.5 54.2 43.8 28.3 30.6 3.8 5.9 0.94

Table 2: Main results and the overall module ablation. The performance is evaluated by best accuracy on seen (S), unseen
(U), their harmonic mean (H), and the area under the curve (AUC). ff represents fixing backbone during training. Best results
are in bold. Second best results are in blue.

following the protocol in [31, 26]: we calibrate a bias on
seen compositions during testing and vary the bias to obtain
the best seen accuracy (S), best unseen accuracy (U), best
harmonic mean (HM) and the area under the curve (AUC).

Implementation Details. We follow prior practices [15,
29] to adopt ResNet18 [10] as our image encoder. Other
modules in DRANet are built as one- or two-layer FCN
or CNN. The model is trained end-to-end with Adam op-
timizer [16]. The learning rate is set to 5e− 5.

4.2. Comparisons with SOTAs

We compare DRANet with approaches adapted from
CW-CZSL [31, 30, 28, 23, 29], and methods designed for
OW-CZSL [27, 14, 15]. Given the same data splits and
evaluation protocols, we use the results reported in [15] for
competitors. Results are shown in Tab. 2. As can be seen,
our DRANet achieves the best or comparable results on all
datasets. In particular, DRANet yields 8.7% and 34.6% rel-
ative improvements of AUC over the second-best methods
on UT-Zappos and C-GQA datasets, respectively. It also
achieves impressive gains for the harmonic mean (HM) on
the two datasets, i.e., 1.7% and 1.3%, respectively. HM is
the key criterion among S, U, and HM, since it depicts the
balance between both seen (S) and unseen classes (U). On
MIT-State, our model performs the second-best inferior to
CompCos [26]. Although DRANet shows a lower HM with
a gap of 1.0, the AUC gap drops to 0.1, indicating that the
performance of our model is uniform and robust, albeit with

a more modest peak compared with CompCos.
A variant of our model that fixes the backbone dur-

ing training (DRANetff) also performs the best among the
fixed-backbone methods, demonstrating that our improve-
ments are not derived from the image encoder. The reasons
for improvements are three-fold. First, comparing meth-
ods containing two parallel attribute and object discrimina-
tors (DRANet, KG-SP, and VisProd++) with other meth-
ods that predict in the composition space, we find that for
the OW-CZSL setting, modeling attributes and objects sep-
arately is more appropriate, and leads to better performance
in general. Second, we propose the reverse-and-distill strat-
egy to disentangle the attributes and objects, thus improving
the generalization ability. Comparing KG-SP [15] with our
model, both of which adopt two separate classification mod-
ules, our model shows superior performance on all criteria,
proving that our models can transfer knowledge to unseen
pairs better. Third, we adopt different non-local and local
feature extractors designed based on distinct characteristics
of attributes and objects, benefiting their recognition. Fur-
ther analysis of the extractor structure is detailed in Sec. 4.3.

4.3. Ablation Study and Parameter Analysis

Overall Module Ablation. We compare DRANet with
its three variants: Base Model without attentions and disen-
tanglement, ANet adopting non-local and local attentions
over the base model, and RANet that further equips re-
verse attention and reversal-based classification into ANet
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S U HM AUC HM-a HM-o

A
tt

en
tio

n Both Local 62.6 52.0 42.3 26.8 52.7 73.9
Both Non-local 62.5 53.7 42.4 27.2 53.5 73.4
SwapA 60.8 52.0 41.8 26.3 51.5 72.6
ANet 61.0 53.7 42.9 27.3 53.3 73.8

R
ev

er
se ANet w Lr 64.1 53.0 42.6 27.7 53.1 72.8

a′ ∗ o′ + a′
r ∗ o′r 64.1 53.7 43.2 28.1 53.1 73.0

RANet 64.5 54.2 43.8 28.3 53.5 73.1

D
is

til
l l-oriented 64.4 53.6 43.5 28.1 53.3 73.2

n-oriented 64.3 53.8 43.3 28.3 53.4 73.2
DRANet 65.1 54.3 44.0 28.8 53.6 73.5

Table 3: Detailed module design ablation. Best results are
marked for each module.

for disentanglement (without revers distillation compared
to DRANet). Results are shown in Tab. 2. We find that HM
and AUC increase with each additional module across all
datasets, suggesting that 1) extracting attributes and objects
with strengthened contextuality and locality is beneficial; 2)
reverse classification and reverse distillation both improve
the model’s adaptability to unseen compositions. We then
analyse the detailed design of each component in Tab. 3.

Design of Attentions. We contrast ANet with adopt-
ing identical attention (both local or non-local) or swapped
attentions (SwapA: non-local for objects and local for at-
tributes) to extract attributes and objects . Tab. 3 shows
that adopting non-local and local attention improves the at-
tribute and object accuracy respectively, with ANet achiev-
ing the best HM and AUC while Swap performing the
worst. This is consistent with our claim that attributes and
objects are of different contextual dependencies and identi-
cal extractors may impair their discrimination.

Incorporation of Reversal. We analyze how incorporat-
ing reversal-based classification results can aid the final pre-
diction. We namely compare only using reverse loss Lr for
model optimization (ANet with Lr), and two variants fur-
ther incorporating reversal-based predictions in inference,
i.e, a′ ∗ o′ + a′r ∗ o′r and (a′ + a′r) ∗ (o′ + o′r) (adopted by
RANet ). As shown in Tab. 3, integrating reverse learning
helps improve the performance, with (a′ + a′r) ∗ (o′ + o′r)
yielding a larger gain. a′∗o′+a′r∗o′r and (a′+a′r)∗(o′+o′r)
can be viewed as ensembles of two and four models, respec-
tively (each product can be seen as the output of a distinct
model). The performance gain is thus correlated with a bet-
ter model ensemble that helps alleviate domain shift while
increasing the robustness against noise [42].

Orientation of Distillation. We also evaluate the effect
of distilling orientation in Tab. 3 by comparing DRANet
with variants that: 1) treat attribute and reversal-based
object classifier on top of non-local modules as teach-
ers, namely n-oriented, 2) consider two classifiers built
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Figure 3: Loss and fusing ratios on UT-Zappos.

on local modules as teachers, namely l-oriented. We
find that only DRANet aids further disentanglement on
top of RANet. It may be because 1) DRANet performs
mutual distillation between non-local and local modules,
while the n- and l-oriented approaches rely on the local
or non-local modules dominating the teacher-student learn-
ing, thus hurts the performance; 2) DRANet adopt rever-
sals as teachers. Seeing Fig. 1 and comparing using rever-
sals as teachers (Img2teach−→ Img3unravel−→ Img1) with as stu-
dents (Img3teach−→ Img2reverse−→ Img1unravel−→ Img3), the former
is more straightforward, and the extra Img2reverse−→ Img1 in
the latter may cause gradient vanishing since reversing op-
eration contains Sigmoid. Therefore it is better to use rever-
sals as teachers instead of students.

Hyper-parameter Analysis. We also analyze model’s
sensitivity to hyper-parameters on UT-Zappos. Figs. 3a
and 3b show the results with varying loss ratios. We observe
that on varying Lr, the performance increases first and then
decreases. This trend gets reversed while varying Ld with
both the loss ratios achieving the best results around 1.0.
We also vary the fusion ratios (η1, η2) and show the results
in Figs. 3c and 3d. HM and AUC are best at (0.1, 0.3).

4.4. Visualization Results

Attentions and reverse-and-distill. We choose samples
from three datasets and visualize attention maps in Fig. 4a
to explain what attention learns and how the reverse-and-
distill optimizes the attention. We visualize the local spatial
attention directly, show the non-local attention correspond-
ing to the pixel with the peak local attention weight, and
display feature maps of some attended channels since it is
hard to directly display channel attention. From image of
Canvas-Loafers, we observe that the learned attention maps
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Distill
Distill
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(a) Attention and reverse-and-distill.

Dark-Sky

ANet: Dark-Sky
RANet: Dark-Cloud

Bright-Lightning

ANet: Bright-Lighting
RANet: Dark-Sky

Blue-Table

RANet: Blue-Cake
DRANet: Blue-Table

Wood-Table

RANet: Wood-Plate
DRANet: Wood-Table

(b) Limitation and extensibility.
Ripe-Banana

ANet: Sliced-Banana 
RANet: Ripe-Banana 

Satin-Sandals

RANet: Leather-Sandals 
DRANet: Satin-Sandals 

Top-3 seen co-occurrences
Ripe: Apple, Coffee, Pear

Banana: Sliced, Mashed, Squished

Top-3 seen co-occurrences
Satin: Shoes.Heels, Shoes.Flats

Sandals: Leather, Suede, Faux.Leather

Suede- Boots.Mid-Calf

RANet: Suede-Boots.Ankle 
DRANet: Suede-Boots.Mid-Calf 

Top-3 seen co-occurrences
Suede: Sandals, Shoes.Heels, Boots.Ankle 
Boots.Mid-Calf: Leather, Full.Grain.Leather, 

Engraved-Necklace

ANet: Engraved-Coin 
RANet: Engraved-Necklace 

Top-3 seen co-occurrences
Engraved: Building, Church, Coin

Necklace: Old, Ancient, Large  Synthetic

(c) Disentanglement.

Figure 4: Visualization. (a) Attention and reverse-and-distill. For each image, the three activation maps on the left and the
right refer to the non-local (N) attention of attributes and the local (L) attention of objects, respectively. S, C and R further
denote the spatial, channel and reverse attention maps while att-map and channel-map represent the spatial attention maps
and channel feature maps, respectively. (b)-(c) Qualitative results: (b) Cases for limitations and extensibility of our model.
(c) For unseen compositions, we show the top-3 frequent seen co-occurrences of their attributes and objects in training data,
and the predictions of DRANet and its variants, to explore disentanglements.

attend to discriminative regions. To identify Burnt-Coffee,
we observe that ANet is fooled by the fork and knife to mis-
classify it as Molten-Bread, while RANet shifts its attention
to the coffee and cup through the reversing strategy and thus
predicts correctly. For White-Bowl, RANet ignores the rice
and predicts it as Empty-Bowl, while the reverse attention
distills the non-local attention to expand its focus from bowl
to both rice and bowl thus producing the right label.

Qualitative results. We study the qualitative results
to explore if visual disentangling is actually happening
(Fig. 4c), and if happens, what are its limitations and ex-
tensibility (Fig. 4b).

Disentanglement: As shown in Fig. 4c, we choose im-
ages of unseen compositions and display the top-3 fre-
quent seen co-occurrences of ground-truth primitives. In
the two leftmost images, ANet can be seen to predict cor-
rect attributes/objects but mispredict the images as seen
compositions with the correct primitives due to the en-
tanglement. For example, ANet recognizes Ripe-Banana
as Sliced-Banana, where Sliced is the most frequent at-
tribute co-occurring with Banana in training data. Similarly,
ANet misclassifies Engraved-Necklace as Engraved-Coin.

RANet enhances ANet with reverse attention to cut off co-
occurrences; thus, it rectifies mistakes. Distilling further en-
larges attribute-object gaps to unravel features that RANet
cannot handle. This is shown in the rightmost two images
in Fig. 4c, where DRANet corrects entangled predictions of
RANet to Satin-Sandal and Suede-Boots.Mid-Calf.

Limitations: Reverse attention may 1) confuse the focal
point of the image – as shown in Fig. 4b, RANet identifies
Bright-Lighting as Dark-sky and Dark-Sky as Dark-Cloud
(although also correct); or 2) even lead to attribute-object
inconsistency, e.g., misclassifying Blue-Table as Blue-Cake
and Wood-Table as Wood-Plate when the images have cakes
or plates on the table. The reason is that attention and
reverse-attention reinforce attributes and objects indepen-
dently.

Extensibility: Limitation (1) inspires us to adopt re-
verse attention in multi-object recognition as it can find ne-
glected information, such as dark sky around bright light-
ning. Limitation (2) can be relieved by the distilling pro-
cess as it coordinates attention and reverse-attention mutu-
ally (e.g., DRANet amends Blue-Cake to Blue-Table, and
Wood-Table to Wood-Plate in Fig. 4b).
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5. Conclusion
In this work, we propose a Distilled Reverse Atten-

tion Network (DRANet) to tackle the Open-World Com-
positional Zero-Shot Learning task. We capture attribute
context-dependency and object local distinction through ex-
tractors tailored to their inherent discrepancies. We then
design the reverse-and-distill strategy, which adopts reverse
attention as the regularizer and the cross-distiller, to disen-
tangle attribute and object features, thus better transferring
recognition ability to unseen compositions. Through com-
prehensive experiments, we prove the effectiveness of our
model and achieve SOTA performance on three datasets. In
addition, we highlight the limitations of our work, including
entity inconsistency and focal confusion, which, however,
may be beneficial for uncovering overlooked information,
if extended to multi-object recognition in the future.
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