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Abstract

Current methods for open-vocabulary object detec-
tion (OVOD) rely on a pre-trained vision-language model
(VLM) to acquire the recognition ability. In this paper,
we propose a simple yet effective framework to Distill the
Knowledge from the VLM to a DETR-like detector, termed
DK-DETR. Specifically, we present two ingenious distilla-
tion schemes named semantic knowledge distillation (SKD)
and relational knowledge distillation (RKD). To utilize the
rich knowledge from the VLM systematically, SKD trans-
fers the semantic knowledge explicitly, while RKD exploits
implicit relationship information between objects. Further-
more, a distillation branch including a group of auxiliary
queries is added to the detector to mitigate the negative ef-
fect on base categories. Equipped with SKD and RKD on
the distillation branch, DK-DETR improves the detection
performance of novel categories significantly and avoids
disturbing the detection of base categories. Extensive ex-
periments on LVIS and COCO datasets show that DK-
DETR surpasses existing OVOD methods under the setting
that the base-category supervision is solely available. The
code and models are available at https://github.
com/hikvision-research/opera.

1. Introduction
Object detection has witnessed rapid progress [10, 9, 28,

13, 20, 2, 45, 33, 32, 35] for years, which aims to localize
and categorize objects in an image. However, the object de-
tection model can only perform well on a closed and small
set of categories, while cannot detect novel ones which
are not trained. Recently, visual-language models [24, 15]
(VLM), consisting of an image encoder and a text encoder,
have shown impressive zero-shot classification ability af-
ter being trained on large-scale loosely aligned image-text
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Figure 1. Comparison of different distillation implementations.
VKD in (a) denotes vanilla knowledge distillation that forces
source features to align with target features in a one-to-one man-
ner. SKD in (b) and RKD in (c) are newly proposed for OVOD in
this paper. (d) indicates that we implement distillation on auxiliary
queries to avoid original detection branch being disturbed.

pairs. This motivates the community to implement an open-
vocabulary object detector [11, 5, 7, 39, 43, 42, 44, 23]
which is expected to recognize arbitrary categories.

Distilling the knowledge of novel-category objects from
the VLM to the detector is a typical practice [11, 36, 22] to
solve the open-vocabulary object detection (OVOD) prob-
lem. ViLD [11] is a representative distillation-based ap-
proach. Category text embeddings, extracted by the VLM
text encoder, serve as the classifier to perform OVOD
(known as ViLD-text). A knowledge distillation (KD) mod-
ule is further introduced to align the object features to vi-
sual embeddings extracted by the VLM image encoder. By
adopting the vanilla KD as depicted in Figure 1, ViLD ev-
idently improves the performance of novel categories. Be-
sides, ZSD-YOLO[36] and HierKD [22] also adopt knowl-
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Method APr APc APf

ViLD-text [11] 10.1 23.9 32.5
ViLD [11] 16.6 24.6 30.3

Table 1. OVOD performance of ViLD on LVIS benchmark.
APr , APc and APf denote the performance of rare, common and
frequent categories in LVIS dataset, respectively. Compared with
ViLD-text which does not adopt distillation, there is an evident
APf drop for ViLD.

edge distillation techniques to improve the novel-category
performance based on one-stage detectors [27, 41], instead
of the two-stage detector [13] used in ViLD. Recently, end-
to-end detectors [2, 45] boost the development of object de-
tection due to their high efficiency and effectiveness. How-
ever, distilling the knowledge to an end-to-end detector is
less studied in the OVOD field.

In this paper, we propose a framework to distill the
knowledge from the VLM to a DETR-like detector, termed
DK-DETR. Nevertheless, the vanilla knowledge distillation
adopted by aforementioned methods leads to limited im-
provement on novel categories. To this end, we propose
two ingenious knowledge distillation schemes, namely se-
mantic knowledge distillation (SKD) and relational knowl-
edge distillation (RKD) , as shown in Figure 1. In SKD, the
feature alignment between the detector and the VLM im-
age encoder is treated as a pseudo-classification problem
instead of a regression problem as in vanilla knowledge dis-
tillation. It not only pulls together features belonging to the
same object but also pushes away features from different
objects. In RKD, considering that the VLM can construct
a well-structured feature space among abundant visual en-
tities, we propose to model relationships between objects
hidden in the VLM image encoder and distill the relational
knowledge to our detector.

Although knowledge distillation can effectively improve
the novel-category performance, it negatively affects base
categories which are well trained with sufficient ground-
truth labels (e.g., base-category performance APf in ViLD
drops from 32.5 to 30.3 in Table 1). Such a phenomenon
can be attributed to training objective inconsistence and do-
main shift between the VLM and the detector. Under the
supervision of ground-truth labels, object features in the de-
tector are trained to localize and recognize base-category
objects, but distillation forces object features to align with
VLM visual embeddings, which results in feature distur-
bance. Consequently, we add a group of auxiliary queries
in our approach for distillation exclusively, which avoids the
performance degradation of base categories.

Equipped with SKD and RKD on auxiliary queries, DK-
DETR achieves satisfactory performance on both base and
novel categories. Note that both distilling implementations

and auxiliary queries are only used for training, and do not
introduce any budget at inference. The main contributions
of this work are summarized as follows.

• We propose a simple yet effective distilling framework
for the end-to-end open-vocabulary object detector and
effectively improve novel-category performance.

• To distill the knowledge from the VLM to the detector,
the proposed SKD transfers the semantic knowledge ex-
plicitly, while RKD exploits implicit relationship infor-
mation between objects.

• By introducing a group of auxiliary queries, DK-
DETR disentangles the training of the detection and
distillation, which avoids the performance degradation
of base categories.

• DK-DETR surpasses existing OVOD methods on both
LVIS and COCO datasets under the setting that only
the base-category supervision is available, and also
achieves competitive performance when it generalizes
to other datasets.

2. Related Work
2.1. Open-vocabulary Object Detection

Current open-vocabulary object detection methods usu-
ally acquire the ability to recognize novel-category objects
by utilizing pre-trained vision-language models (VLM).
From the perspective of how to use the VLM, we can divide
current researches about OVOD into three main groups.

Knowledge distillation. It is straightforward to mine the
knowledge about novel categories by transferring it from
the VLM to the detector. ViLD[11], ZSD-YOLO[36] and
HierKD[22] use knowledge distillation to perform the trans-
ferring. Such methods effectively improve the detection
performance for novel categories. However, ViLD needs
an external RPN to generate proposals for distillation in
advance, and a cumbersome dual-head structure to assem-
ble scores, which makes it inefficient. ZSD-YOLO distills
the knowledge to YOLO [25, 26, 27] more efficiently with-
out offline proposals. HierKD designs hierarchical distilla-
tion by using caption annotations upon ATSS [41], which
achieves both high performance and efficiency. All these
methods adopt vanilla knowledge distillations (VKD) in a
one-to-one manner. In this paper, we find VKD only mines
limited information and propose two ingenious knowledge
distillation schemes.

Exploiting extra data. PromptDet [7] uses CLIP [24]
to explore objects of novel categories on an external dataset
LAION-400M [30], and produces pseudo bounding box an-
notations to further train the detector. Detic [44] uses the ex-
ternal ImageNet-21K [4] for joint training, which expands
the vocabulary of the detector to a large number of concepts.
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Figure 2. The overall architecture of DK-DETR. Given an input image, we extract feature tokens and feed them into an encoder followed
by a decoder to generate object features as in Deformable DETR [45]. These object features are projected and used to calculate cosine
similarities with text embeddings from the VLM text encoder to perform detection for base and novel categories. Moreover, we introduce
two kinds of knowledge distillation schemes based on a newly added distillation branch along with a group of auxiliary KD queries. The
distillation branch transfers the knowledge, which is beneficial for novel categories, from the VLM image encoder to the detector. Note
that the distillation branch is only used for training and introduces no cost during inference.

VL-PLM [42] trains a class-agnostic foreground detector to
mine novel-category objects in LVIS [12] itself. By adopt-
ing external data or pseudo labels, these methods improve
the performance of novel categories considerably and are
orthogonal to distillation-based approaches.

Text prompt tuning. The VLM such as CLIP [24]
uses a human-designed prompt, i.e. “a photo of a
[CLASS]”, along with categories names to produce text
embeddings. DetPro [5] and PromptDet [7] think that the
human-designed prompt is not suitable enough for classes
and scenes to be detected. And they propose a prompt en-
gineering pipeline to train several learnable prompt embed-
dings on the detection dataset before training the detector.

2.2. Transformer in Object Detection

Transformer [34] has been widely applied in natural lan-
guage processing. Recently, DETR [2] opens up the oppor-
tunity for employing transformers in object detection tasks.
Many follow-up researches attempted to speed up training
convergence of DETR. Deformable DETR [45] proposes
deformable attention modules which only attend to certain
sampling points. DN-DETR [18] and DINO [40] present
denoising training methods with noise-added ground-truth
labels. Group DETR [3] and Hybrid Matching [16] intro-
duce auxiliary queries to convert the one-to-one matching
in DETR to a one-to-many matching, which improves both

the training efficiency and detection performance.

3. Method

For the open-vocabulary object detection task, the model
is designated to detect objects of an arbitrary category.
Following prior works [11, 36], categories of an off-the-
shelf object detection dataset are divided into two subsets,
namely base categories Cbase and novel categories Cnovel,
in which only base categories are used for training.

In this section, we introduce four main components: as-
sembling DETR-based detector with text embeddings, aux-
iliary knowledge distillation branch, semantic knowledge
distillation and relational knowledge distillation, as shown
in Figure 2.

3.1. Overall Architecture

We build our open-vocabulary detection framework on
Deformable DETR [45] detector. Given an image I , the
encoder outputs refined multi-scale feature tokens as mem-
ory features. These feature tokens denoting potential ob-
jects are fed into a classification head and a regression
head to generate objectness confidence scores and coarse
bounding boxes. We select top-N tokens according to
their confidence scores and choose corresponding bound-
ing boxes B = {b1,b2, . . . ,bN} as initial anchor boxes.
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Through a sinusoidal encoding [34] and a projection layer,
these anchor boxes are used to produce content queries
Qobj = {qobj

1 ,qobj
2 , . . . ,qobj

N } ∈ RN×D (also known as
object queries in DETR [2]) and positional embeddings for
the following decoder. N content queries along with po-
sitional embeddings and memory features are fed into six
decoder layers to get N object embeddings F obj ∈ RN×D

representing object features of N potential objects in im-
age I . Then F obj are fed into a text-based classifier (Sec-
tion 3.2) to produce classification scores that correspond to
Cbase for training, or Cbase ∪ Cnovel for inference. In par-
ticular, a projection layer is employed to object features to
align with the text embedding dimension. For clarity, the
pipeline from object queries Qobj to classification scores is
called the detection branch in our method.

Additionally, to explore the rich knowledge in the pre-
trained vision-language model (VLM), we introduce an
auxiliary knowledge distillation (KD) branch (Section 3.3)
and propose two ingenious knowledge distillation schemes,
namely semantic knowledge distillation (Section 3.4) and
relational knowledge distillation (Section 3.5). Note that
the distillation branch is only used for the training stage,
which does not introduce any extra computational cost dur-
ing inference.

3.2. Text-based Classifier

Original Deformable DETR maps semantic categories to
discrete integral labels to perform category classification.
However, for novel categories beyond the integral-label set,
such a detector is incapable of classifying them. Inspired by
the pre-trained vision-language model CLIP [24], we pro-
pose to define the label space by the category name itself.
Specifically, given a category and its name, we first feed the
name into a human-designed language template such as “a
photo of a [CLASS]” to form a sentence. Then the
sentence is fed into the VLM text encoder T (·) to extract
the category-conditioned text embedding t. Next, the text
embedding t is used to compute a cosine similarity with the
visual feature f of an object, namely

cos(f , t) =
f · t

||f || · ||t||
, (1)

to measure the correlation between them, where || · || de-
notes the L2 normalization, and cos(·) denotes the cosine
similarity. Finally, the confidence score is calculated as

s = σ(cos(f , t)/τ), (2)

where σ(·) denotes the sigmoid function and τ is a temper-
ature.

Given a novel category with its linguistic category name,
Deformable DETR can be readily assembled with the text-
based classifier to perform OVOD task. And the modified
detector is served as an open-vocabulary object detection
baseline in this paper.

3.3. Auxiliary Distillation Branch

When the baseline detector generalizes to novel cate-
gories directly, the detection performance is unsatisfying
because of annotation absence. We propose to distill the
knowledge from the VLM image encoder V(·), which has
seen a large number of images of different categories dur-
ing text-image pre-training, to our detector. A naive imple-
mentation of KD as in ViLD [11] is to align object features
from the detector to VLM visual embeddings of these ob-
jects. Given coarse bounding boxes B of these objects gen-
erated by the detector encoder, we can crop regions from
the image I and feed them into the VLM image encoder
V(·) to extract visual embeddings V = V(crop(I,B)).
However, training objectives of the VLM and the detec-
tor are inconsistent, so this naive knowledge distillation
would introduce interference to disturb detector features. In
this paper, a group of auxiliary learnable embeddings is in-
troduced in the distillation branch to serve as KD queries
Qkd = {qkd

1 ,qkd
2 , . . . ,qkd

N } ∈ RN×D as shown in Fig-
ure 2. Qkd, corresponding to Qobj , shares the same posi-
tional embeddings. The distillation branch and the detec-
tion branch share the same network weights. Fed with KD
queries and positional embeddings, the decoder produces
KD features F kd ∈ RN×D for the following distillation.
Note that attention masks from KD queries Qobj to object
queries Qkd in self-attention modules are blocked to avoid
object features being influenced.

3.4. Semantic Knowledge Distillation

Semantic knowledge distillation (SKD) aims to directly
distill knowledge from the VLM image encoder V(·) into
the detector. A straightforward loss to perform the align-
ment between two kinds of features is L1 loss as in ViLD.
However, L1 loss only aligns features in a one-to-one man-
ner, which does not exploit sufficient information in the
VLM. And the strict alignment also increases the training
difficulty.

Supervised by L1 loss, formulated as

L1(F
kd, V ) =

1

N

∑
i

|F kd
i,: − Vi,:|, (3)

all the elements of a single feature vector F kd
i,: should be

exactly same with Vi,:. However, to transfer the knowl-
edge from the VLM image encoder to our detector, we only
need to maximize the similarity between two features from
the same object. In this paper, we reformulate the regres-
sion problem in vanilla knowledge distillation as a pseudo-
classification problem. As shown in Figure 3, a pair of KD
feature and VLM visual embeddings of an identical object
are regarded as a positive pair, otherwise a negative pair.
The cosine similarity is regarded as the classification score.
The binary-cross-entropy (BCE) loss is adopted to punish
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Figure 3. Semantic Knowledge Distillation. Instead of distill-
ing two groups of features in a one-to-one manner, we cast the
alignment between KD features and VLM visual embeddings into
a pseudo-classification problem. Two kinds of features from the
same object are regarded as a positive pair, otherwise a negative
pair.

positive samples with label 1, and negative samples with
label 0. Specifically, the BCE-based loss is formulated as

Lskd =− 1

N

∑
i

log(σ(
cos(F kd

i,: , Vi,:)

τs
))

− 1

N

∑
i,j
i ̸=j

log(1− σ(
cos(F kd

i,: , Vj,:)

τs
)),

(4)

where cos(·) denotes the cosine similarity as in Equation
1 and τs is a temperature. Compared with L1 loss as in
Equation 3, the BCE-based semantic knowledge distillation
has two advantages. On the one hand, the loss in Equation 4
does not punish features output by the distillation branch to
be exactly the same as the corresponding visual embeddings
from the VLM image encoder V(·), and this would reduce
training difficulty. On the other hand, L1 loss only pulls two
kinds of features from an identical object close, while our
SKD loss pushes the features from different objects far away,
and this would exploit some implicit relational information.
Furthermore, we propose to explicitly explore the relational
information in the next subsection.

3.5. Relational Knowledge Distillation

Semantic knowledge distillation exploits knowledge by
aligning semantic features of the distillation branch to vi-
sual embeddings of the VLM image encoder. Apart from
such direct feature alignment, we propose to explore hidden
knowledge contained in the VLM from another dimension.
The relation between two objects reflects their correspon-
dence, and it is valuable for open-vocabulary recognition.
For example, a tiger may be closer to a cat than a dog in the
VLM embedding space. If we distill such knowledge to our
detector, it can help the detector to avoid recognizing a tiger
as a dog during inference.
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Figure 4. Relational Knowledge Distillation. Through calculat-
ing the cosine similarity, pair-wise object relationships within each
of the VLM features and KD features are modeled to produce a
VLM relation map and a KD relation map, respectively. We guide
the KD relation map to align with the VLM relation map.

Relational knowledge distillation aims to model and dis-
till the relationship between individual objects in image
I . Specifically, as shown in Figure 4, given VLM visual
embeddings V and KD features F kd, the relationship rep-
resented by a pair-wise similarity matrix is calculated for
VLM features and KD features, respectively. Relationships
are denoted by a VLM relation map Rv = F̄ F̄T ∈ RN×N

and a KD relation map Rkd = V̄ V̄ T ∈ RN×N , where F̄ is
L2-normalized F kd, and V̄ is L2-normalized V . These two
similarity matrices capture the pair-wise correlations among
objects, and we guide the matrix Rkd from the distillation
branch to align with RV from the VLM image encoder. The
distillation process is formulated as

Lrkd = − 1

N

N∑
i=1

KL(σ(
Rkd

i,:

τr
)||σ(

Rv
i,:

τr
)), (5)

where τr is a temperature, and KL(·) stands for Kullback-
Leibler divergence. It should be noticed that the relationship
between objects in a single image is just one kind of corre-
lations we can capture. There are other relationships that
can assist our model as well, such as the relationship be-
tween objects from different images, which will be further
discussed in ablation experiments.

3.6. Loss Functions

Apart from the semantic KD loss and the relational KD
loss mentioned above, we use a classification loss function
Lcls for our text-based classifier as in Deformable DETR
[45], and classification scores are calculated as in Equation
2. Besides, both L1 loss (denoted as Lbox) and generalized
IoU loss [29] Liou are adopted for bounding box regression
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as in DETR [2]. Formally, the overall loss function of our
DK-DETR can be formulated as:

L = λclsLcls + λboxLbox + λiouLiou

+λskdLskd + λrkdLrkd,
(6)

where λcls, λbox, λiou, λskd and λrkd are the loss weights,
respectively.

4. Experiments
4.1. Dataset

We conduct experiments on LVIS v1 [12] and COCO
[21] datasets, which are commonly used in open-vocabulary
object detection, to evaluate the performance of our method.
Besides, to imitate open-vocabulary applications in the real
world, we also demonstrate the generalization ability of our
DK-DETR on COCO validation set, Objects365 [31] vali-
dation set and Pascal VOC [6] test set by the model trained
on LVIS.

LVIS. LVIS dataset is annotated with object detection
and instance segmentation labels, and it contains ∼120k
images over 1203 categories with a long-tail distribution.
The categories are divided into “frequent”, “common” and
“rare” according to the appearing frequency in the training
set. For the open-vocabulary setting, we follow ViLD [11]
to use frequent and common categories (including 886 cat-
egories) as the base categories Cbase, and hold out rare cat-
egories (including 337 categories) as the novel categories
Cnovel. As for validating, we evaluate all of 1203 classes
on the validation set.

COCO. COCO 2017 is a common benchmark for gen-
eral object detection. There are 80 categories and ∼118k
images in COCO. We follow [1] to divide it into 48 base
categories and 17 novel categories and keep the remaining
15 categories unused. As for generalization evaluation by
the model trained on LVIS, we use all 80 categories.

Objects365. Objects365 is a brand new dataset for ob-
ject detection research, and it has 365 categories.

Pascal VOC. Pascal VOC is an earlier object detection
benchmark that contains only 20 categories.

4.2. Implementation Details

We use Deformable DETR [45] as the base detector of
our method, and utilize SOIT head [38] to predict mask re-
sults for instance segmentation evaluation. ResNet-50 [14]
is selected as the backbone to compare with state-of-the-art
methods fairly.

We augment the input image with large-scale jittering [8]
of image side range [102, 2048] and random horizontal flip-
ping. Then the image is padded to 1024× 1024. We use 16
NVIDIA Tesla V100 GPUs to train models for 70 epochs
with a total batch size of 128. Note that SKD and RKD are
not used in the first 40 epochs which can be regarded as

a burn-in stage. AdamW [17] optimizer with base learning
rate of 8×10−4, momentum of 0.9 and weight decay of 0.05
is adopted. The learning rate is decayed at the 55th epoch.
Parameters of the ResNet-50 backbone are initialized with
models pre-trained on ImageNet dataset [4]. Classifier tem-
perature τ , SKD temperature τs, RKD temperature τr are set
to 0.05, 0.05 and 0.2 respectively. Loss weights used in SKD

and RKD are set to λskd = 0.1 and λrkd = 2 respectively.
The query number is set to N = 300 as in Deformable
DETR [45].

Although we can align N KD features to VLM visual
embeddings for distillation, it should be noticed that our tar-
get of distillation is to exploit the information about poten-
tial novel objects. Consequently, after bipartite matching in
the detection branch, we exclude objects belonging to base
categories Cbase, and sample queries with high objectness
confidence scores which are more likely to contain fore-
ground objects. In our experiments, we select 20 queries
with the highest confidence scores for distillation.

4.3. Main Results

Open-vocabulary LVIS benchmark. We firstly make
comparisons with state-of-the-art methods on LVIS [12]
dataset, as shown in Table 2. Without any bells and whis-
tles, using the same ResNet-50 as the backbone, our DK-
DETR achieves 20.5 APr scores for segmentation. It im-
proves the baseline (i.e. DK-DETRw/o KD) by 4.1 points and
significantly outperforms other methods under the setting
that only the base-category supervision is available.

Compared with VL-PLM [42], Detic [44] and Prompt-
Det [7], we do not need extra data or labels for training.
Compared with ViLD [11], we both use distillation tech-
nology but ViLD just mines superficial knowledge by the
vanilla distillation as shown in Figure 1 (a). Note that our
method has no negative effects on the performance of base
categories (APc and APf ) because we introduce a group of
auxiliary queries for distillation. Although both frameworks
use Deformable DETR as the base detector, our DK-DETR
outperforms OV-DETR [39] by a large margin. Our method
can generate predictions of all categories at once. In con-
trast, OV-DETR only produces the output for one category
at one inference forward, which is quite inefficient and can
not be deployed to real-world applications.

Open-Vocabulary COCO benchmark. Table 3 shows
the open-vocabulary detection performance of our DK-
DETR as well as many other state-of-the-art methods on
COCO [21]. Following ViLD, we only use bounding box
annotations without instance segmentation masks to train
the detector, and report detection results only. DK-DETR
achieves 32.3 APnovel scores and outperforms all state-
of-the-art methods except VL-PLM [42] which generates
pseudo labels for novel categories. DK-DETR improves
our baseline by 23.3 APnovel scores, and the performance
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Method Base Detector Segmentation Detection
APr APc / APf / AP APr APc / APf / AP

w/ novel-category supervision∗

VL-PLM [42]
Faster R-CNN [19]

17.2 23.7 / 35.1 / 27.0 - - / - / -
Detic [44] 17.8 26.3 / 31.6 / 26.8 - - / - / -
PromptDet† [7] 21.4 23.3 / 29.3 / 25.3 21.8 24.3 / 32.4 / 27.1

w/o novel-category supervision

ViLD [11]
Faster R-CNN [19]

16.6 24.6 / 30.3 / 25.5 16.7 26.5 / 34.2 / 27.8
RegionCLIP [43] - - / - / - 17.1 27.4 / 34.0 / 28.2
DetPro† [5] 19.8 25.6 / 28.9 / 25.9 20.8 27.8 / 32.4 / 28.4

OV-DETR [39]
Deformable DETR [45]

17.4 25.0 / 32.5 / 26.6 - - / - / -
DK-DETRw/o KD 16.4 28.9 / 35.3 / 29.3 17.3 32.0 / 40.0 / 32.9
DK-DETR 20.5 28.9 / 35.4 / 30.0 22.2 32.0 / 40.2 / 33.5

Table 2. Comparison on LVIS dataset. APr is the main metric for evaluation. Rare categories are held out as novel categories for testing.
Common and frequent categories serve as base categories for training. All methods are trained with ResNet-50 backbone. ∗: VL-PLM
uses pseudo-label of novel categories; Detic uses the external ImageNet-21K for joint training; PromptDet uses an extra LAION-400M
[30] dataset. †: specific text prompt tuning for the VLM text encoder.

Method Base Dec. APnovel APbase

w/ novel-category supervision

Detic[44]
Faster

R-CNN [19]

24.1 44.7
PromptDet[7] 26.6 50.6
VL-PLM[42] 34.4 60.2

w/o novel-category supervision

ZSD-YOLO[36] YOLO [26] 13.6 31.7

HierKD[22] ATSS [41] 20.3 51.3

ViLD[11] Faster
R-CNN [19]

27.6 59.5
RegionCLIP[43] 31.4 57.1

OV-DETR[39]
Deformable
DETR [45]

29.4 61.0
DK-DETRw/o KD 9.0 61.2
DK-DETR 32.3 61.1

Table 3. Comparison on COCO open-vocabulary object detec-
tion dataset. APnovel is the main metric for evaluation. All meth-
ods are trained with ResNet-50 backbone. “Base Dec.” denotes
the base detector.

of base categories is barely influenced.
Generalization Ability. To demonstrate the general-

ization ability [37] of the open-vocabulary object detection
model, following ViLD [11], we directly evaluate the LVIS-
trained model on COCO, Objects365 [31] and Pascal VOC
[6] datasets by just replacing the classifier with text embed-
dings, which is produced by feeding categories names of
those datasets into the VLM text encoder. As in Table 4,
our DK-DETR shows convincing performance and robust

generalization ability.

4.4. Ablation Study

In this subsection, we perform a number of ablation
experiments to analyze the components of the proposed
method. In consideration of efficiency, we carry out all ab-
lation experiments on LVIS [12] dataset based on ResNet-
50 [14] backbone without segmentation mask annotations.
A Deformable DETR detector assembling with a text-based
classifier serves as our baseline for the open-vocabulary ob-
ject detection. All models are trained for 36 epochs.

Effectiveness of SKD, RKD and Auxiliary Queries.
We propose two kinds of knowledge distillation methods
in this paper, namely semantic knowledge distillation (SKD)
and relational knowledge distillation (RKD), based on a
group of auxiliary queries. SKD enforces features from the
detector to be consistent with those of the VLM, while RKD
helps the detector to imitate the relationship between indi-
vidual objects in the VLM. As shown in Table 5, SKD im-
proves APr by 3.0 points and RKD improves APr by 2.8
points. When combining both SKD and RKD, our method sig-
nificantly outperforms the baseline by 3.4 points for APr.
Note that if we implement SKD and RKD without auxiliary
queries (the fourth row in Table 5), base-category perfor-
mance APc and APf drop noticeably. This indicates that
auxiliary queries are important for our method to avoid de-
tection features being disturbed.

Loss type of SKD. Table 6 shows the influence of SKD
loss type. With a group of auxiliary queries, using L1 loss
for distillation could improve the detection performance of
novel categories by 1.9 points, and there is no performance
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Method Base Detector COCO Objects365 Pascal VOC
AP AP50 AP75 AP AP50 AP75 AP50 AP75

ViLD [11] Faster R-CNN [19] 36.6 55.6 39.8 11.8 18.2 12.6 72.2 56.7
DetPro [5] 34.9 53.8 37.4 12.1 18.8 12.9 74.6 57.9

OV-DETR [39] Deformable DETR [45] 38.1 58.4 41.1 - - - 76.1 59.3
DK-DETR 39.4 54.3 43.0 12.4 17.3 13.4 71.3 60.9

Table 4. Generalization ability on other datasets. Following the experimental setting in ViLD [11], we evaluate the LVIS-trained model
on COCO validation set, Objects365 validation set and Pascal VOC 2007 test set for comparisons of generalization performance. All
methods are trained with ResNet-50 backbone.

SKD RKD Aux.Q APr APc / APf / AP

17.0 30.0 / 36.9 / 30.5
✓ ✓ 20.0 (+3.0) 30.8 / 37.4 / 31.5

✓ ✓ 19.8 (+2.8) 30.9 / 37.6 / 31.5
✓ ✓ 19.7 (+2.7) 27.3 / 35.6 / 29.2
✓ ✓ ✓ 20.4 (+3.4) 30.9 / 37.6 / 31.7

Table 5. Ablation experiments: effectiveness of proposed two
types of distillations and auxiliary queries. Aux.Q denotes auxil-
iary queries. The first row serves as a baseline that only assembles
Deformable DETR with a text-based classifier to perform open-
vocabulary object detection.

SKD Loss APr APc / APf / AP

- 17.0 30.0 / 36.9 / 30.5
L1 18.9 (+1.9) 30.8 / 37.3 / 31.4

BCE 20.0 (+3.0) 30.8 / 37.4 / 31.5

Table 6. Ablation experiments: impact of semantic distillation
loss type. The first row serves as the baseline. Auxiliary queries
are used for distillation.

drop for base categories. If we replace the L1 loss with
BCE-based distillation loss, the performance can be further
improved by 1.1 points. This validates the effectiveness of
our SKD implementation, which not only pulls together fea-
tures belonging to the same object, but also pushes away
features from different objects.

Implementation of RKD. Relational knowledge distil-
lation aims to model and imitate the relationship between
individual objects from the input image. Rather than SKD

that directly transfers the knowledge from the VLM image
encoder, RKD carries out another way to exploit the infor-
mation of novel categories. A simple relationship between
objects can be formulated as the cosine similarity between
any pair of objects within the same input image, which we
call “image”. As mini-batch input is commonly used for
model training, we can also model the relationship between
two objects that come from different images in a mini-batch,
which is denoted as “batch”. Furthermore, we can combine

Relation type APr APc / APf / AP

- 17.0 30.0 / 36.9 / 30.5
image 19.5 (+2.5) 30.8 / 37.4 / 31.3
batch 19.2 (+2.2) 31.2 / 37.6 / 31.6

image+batch 19.8 (+2.8) 30.9 / 37.6 / 31.5

Table 7. Ablation experiments: impact of the relational type for
RKD. The first row serves as the baseline. “image” denotes dis-
tilling relationships between objects from the same input image,
and “batch” indicates that objects come from different images in a
batch for training.

these two types of RKD. As shown in Table 7, both two types
of RKD could effectively improve APr scores and there is
merely slight performance difference between “image” and
“batch”. Combining two types of RKD leads to a little more
performance boost for novel categories, so we use this com-
bined variant for RKD by default.

5. Conclusion

This paper presents a simple yet effective distilling
framework for the end-to-end open-vocabulary object de-
tector, termed DK-DETR. With a group of auxiliary queries,
we propose two ingenious knowledge distillation schemes
based on a DETR-like detector, and effectively transfers the
knowledge from the VLM to the detector. The distillation
branch in DK-DETR is only used for training, and would
not introduce any cost during inference. DK-DETR sur-
passes existing OVOD methods under the setting that the
base-category supervision is solely available.
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