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Abstract

Detecting symmetrical properties is a fundamental task
in 3D shape analysis. In the case of a 3D model with planar
symmetries, each point has a corresponding mirror point
w.r.t. a symmetry plane, and the correspondences remain in-
variant under any arbitrary Euclidean transformation. Our
proposed method, E3Sym, aims to detect planar reflective
symmetry in an unsupervised and end-to-end manner by
leveraging E(3) invariance. E3Sym establishes robust point
correspondences through the use of E(3) invariant features
extracted from a lightweight neural network, from which
the dense symmetry prediction is produced. We also intro-
duce a novel and efficient clustering algorithm to aggregate
the dense prediction and produce a detected symmetry set,
allowing for the detection of an arbitrary number of pla-
nar symmetries while ensuring the method remains differen-
tiable for end-to-end training. Our method also possesses
the ability to infer reasonable planar symmetries from in-
complete shapes, which remains challenging for existing
methods. Extensive experiments demonstrate that E3Sym
is both effective and robust, outperforming state-of-the-art
methods.

1. Introduction
Symmetry is a ubiquitous phenomenon in the real world,

from microscopic to macroscopic, from virtual to the nat-
ural world, from architecture to art. Over the last few
decades, considerable attention has been paid to symme-
try detection from 2D to 3D. As a valuable property in 3D
shape analysis, symmetry is employed in a wide range of
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tasks such as 3D reconstruction [26, 45, 47, 10], pose es-
timation [1], shape matching [17], etc. As a result, robust
and accurate symmetry detection is required for various ap-
plications. In this paper, we focus on detecting global planar
symmetry of 3D shapes.

Most of the early advances fall into one of the three cat-
egories: matching-based [27, 49, 46], sampling-based [43,
7, 31, 16, 20] and regression-based [15, 11, 42] methods.
Matching-based methods detect symmetries by matching
local shape signatures in pairs, generating potential sym-
metry planes, and optimizing them to obtain reasonable
solutions. Therefore, the key of matching-based methods
is to make the local shape signatures robust or invariant
w.r.t. Euclidean transformations. By sampling numerous
candidates in the transformation space and further verifica-
tion, the main issue of sampling-based methods is their high
computational complexity if exhaustive sampling is used, or
generating inaccurate candidates when heuristic sampling
is used, necessitating complicated optimization. With the
help of expressive power of deep neural networks and large
amounts of training data, regression-based methods detect
symmetries by regressing symmetry parameters or symme-
try point coordinates in a supervised [15, 42] or unsuper-
vised [11] fashion.

It is evident that if we can establish accurate symmet-
ric correspondences from the shape, it is straightforward to
find the planar symmetries. Generally, the symmetric cor-
respondences with similar appearances or geometric struc-
tures are in a way that is position and orientation invariant.
The correspondence matching is based on the fact that local
shape patterns of symmetric counterparts are invariant and
should not be sensitive to symmetry transformations. Al-
though this seems intuitive, how to establish the correspon-
dences accurately and robustly is still challenging, which
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is also the crucial requirement of matching-based methods.
It can be even more challenging for symmetry detection of
partial shapes where part of the otherwise globally symmet-
ric shape is missing.

In this paper, we introduce a novel approach to estimat-
ing 3D global planar symmetry, called E3Sym, in a fully
unsupervised fashion. Formally, for a given shape, we use a
point cloud as its representation for input. Specifically, for
each point in the point cloud, we retrieve its neighborhood
to discriminatively describe its local pattern. By extract-
ing E(3) invariant features (which are invariant under ro-
tation, reflection and translation transformations in the 3D
Euclidean space) of each local patch with an encoder net-
work, the local geometric patterns are invariant to Euclidean
transformations, from which we can easily and effectively
establish the dense symmetric point correspondences. Once
the dense symmetric correspondences are established, the
dense potential symmetry planes are deduced. To make our
method fully differentiable and trainable in an end-to-end
manner, we propose a novel and efficient clustering algo-
rithm to aggregate the dense prediction and produce the de-
tected symmetry set.

To summarize, the main contributions of our work can
be summarized as follows:

• We propose leveraging E(3) invariance to detect 3D pla-
nar symmetries in an end-to-end and unsupervised man-
ner.

• Our approach is capable of handling shapes with an arbi-
trary number of planar symmetries and achieves state-of-
the-art performance in symmetry detection.

• Our proposed method exhibits the ability to identify
reasonable planar symmetries from incomplete shapes,
which has been a persistently challenging task for exist-
ing methods.

2. Related Work
Symmetries can be classified as global [16, 20, 24, 30,

56, 12] and partial [27, 35, 46, 54] symmetry, as well as
intrinsic [32, 54, 18, 23, 39, 53, 29] and extrinsic [56, 16,
35, 27, 24, 46, 20, 30, 12] symmetry. In this paper, we focus
on global extrinsic planar reflective symmetries.

Non-learning-based 3D Symmetry Detection. Some
methods deal with exact symmetries that map the shape
exactly to itself. Martinet et al. [24] examine the extrema
and spherical harmonic coefficients of the generalized mo-
ments to detect exact symmetries, but real-world objects
may only be partially or approximately symmetric. Rajen-
dra et al. [30] propose a manifold optimization method to
detect mirror symmetry of point clouds, but cannot han-
dle incomplete point clouds. The above methods can be

impractical due to their sensitivity to noise because they
only cope with exact symmetries. On the contrary, other
methods deal with certain level of approximate symme-
tries. Zabrodsky et al. [56] define the symmetry distance
of a shape to measure the approximate symmetries, which
has been adopted and extended by follow-up works. It de-
tects symmetries in O(n6) for a shape discretized by an
n×n×n grid, and takes extremely high computation times
with bigger n. Kazhadan et al. [16] introduce a more ef-
ficient reflective symmetry descriptor to detect symmetries
using a fast Fourier transform-like approach and performs
symmetry detection in O(n4). Podolak et al. [35] further
propose a planar reflective symmetry transform (PRST) to
capture the symmetries using a Monte Carlo sampling al-
gorithm so that partial symmetries can be captured. Mi-
tra et al. [27] introduce a algorithm by matching each point
through handcrafted local shape signatures, finding the cor-
responding symmetry points, and voting in the transforma-
tion space. Ivan et al. [46] detect symmetry of incomplete
3D mesh models in a similar way. Lipman et al. [22] in-
troduce new tools to analyze and represent symmetries in
a point set. Korman et al. [20] detect approximate sym-
metry using a designed bounded sampling algorithm per-
formed in the transform space and achieve fast detection
in O(kn3) compared to [16], where k ≪ n. Hruda et
al. [12] define a metric to measure the quality of the can-
didate symmetry planes, which are produced by brute force
matching, making their approach suffer from high compu-
tational complexity. These traditional matching-based and
sample-based methods are usually time-consuming due to
large samples and complex feature computation, and some
methods with several hyperparameters are sensitive for var-
ious inputs. Our method simply uses a Multi-Layer Percep-
tron (MLP) to extract features with fewer samples, so it is
more efficient than these methods.

Learning-based 3D Symmetry Detection. With the vig-
orous development of neural networks and deep learning in
recent years, some data-driven symmetry detection meth-
ods using deep learning have also been proposed. Sym-
Net [15] uses PointNet [37] to extract the features of the
point cloud, and predicts the points lying on the symme-
try plane, from which the reflective symmetry plane is rea-
soned afterwards. SymmetryNet [42] predicts point-wise
symmetrical positions and the foot points on the symmetry
plane (or symmetry axis), and performs clustering and fil-
tering on predicted symmetries during inference. However,
the above two methods require a large amount of annotated
data for supervised learning, which limits the development
and applications of such methods. PRS-Net [11] is the first
unsupervised symmetry detection approach, and can detect
reflective and rotational symmetry at the same time; how-
ever, the numbers of reflective planes and rotational axes are

14544



restricted, and the network parameters increases approxi-
mately linearly as the numbers of predicted reflective planes
and rotational axes grow.

Equivalent and Invariant Point Cloud Analysis. Learn-
ing based methods have been extensively studied for point
cloud analysis [37, 38, 48], which achieves amazing per-
formance in many tasks, especially in classification [51],
segmentation [25] and registration [50]. However, these
methods are built on the assumption that the point clouds
are pre-aligned, and their performance may drop when the
point clouds are with arbitrary poses. Recently, equiva-
lence and invariance are introduced in point cloud analy-
sis [14, 44, 36, 21, 6, 52, 40, 9, 4, 41] as an inductive bias,
aiming to make networks robust to rotation and/or transla-
tion.

3. Method
3.1. Background

The E(3) group consists of all rotations, reflections and
translations in three-dimensions. E(3) can be defined as

E(3) = O(3) ⋉R3, (1)

where O(3) is the orthogonal matrix group for three-
dimensions whose determinant is 1 or -1, which can be
viewed as rotation or reflection respectively. Formally, an
element g in E(3) can be written by a pair g = (R, t), where
R is an orthogonal matrix in R3×3 for rotation or reflection,
and t is a vector in R3 for translation.

We call a function ϕ, e.g. implemented as a neural net-
work, E(3)-invariant if the extracted feature is invariant no
matter which 3D Euclidean transformation g ∈ E(3) is ap-
plied to the input x.

ϕ(x) = ϕ(gx), ∀g ∈ E(3). (2)

Group invariance can be made simply by averaging over
the group [55, 28] G with respect to a general function φ:

ϕ(x) =
1

|G|
∑
g∈G

φ(g−1x), (3)

and the resulting ϕ(x) is G-invariant. But unfortunately,
for the continuous 3D Euclidean group G = E(3), whose
cardinality |G| is infinite, and it is impossible to enumer-
ate over the group. Instead of discretizing the continuous
group or sampling over the group densely, Frame Averag-
ing (FA) [36] proposed to construct a critical subset of the
group, which only depends on the input itself, to replace the
whole group G, making the group averaging efficient and
expressive.

For a given vector space X and a group G, a frame is
defined as a mapping F : X → 2G \ ∅, which is only

correlated with the input x ∈ X . Subsequently, the group
averaging is replaced by frame averaging:

ϕ(x) =
1

|F(x)|
∑

g∈F(x)

φ(g−1x). (4)

Frame can be defined in different fashions. FA de-
fines the frame of a point cloud by leveraging Principal
Component Analysis (PCA). Formally, given a point cloud
P ∈ RN×3 that consists of N points, the covariance ma-
trix Σ ∈ R3×3 is computed, from which the eigenvalues
(i.e., λ1, λ2, λ3, λ1 < λ2 < λ3, assuming eigenvalues are
unique; see more discussions later) with their corresponding
eigenvectors (i.e., e1, e2, e3) are decomposed:

Σ =
1

N

N∑
i=1

(pi − P)T (pi − P), (5)

where P is the barycenter of the point cloud and pi is the
i-th point. Then the frame is defined as :

F(P) = {([±e1,±e2,±e3],P)}. (6)

3.2. Unsupervised 3D Planar Symmetry Detection

In this section, we present the pipeline of our method, de-
picted in Figure 1. The pipeline begins with the extraction
of E(3) invariant features H from the input point cloud. To
establish correspondences and determine symmetry planes
S, we leverage the Differentiable Top-K method [5]. Then
we propose a novel differentiable plane grouping method,
named SymGroup. This method produces M clustered
planes T , where the number of clusters M is automatically
determined during the grouping process.

E(3) Invariant Features Extraction. For the input point
cloud P ∈ RN×3 with N points, we model the local patch
around the i-th point pi ∈ R3 as a spherical neighborhood
by ball query [38]. To make each patch have the same
number of points for network forwarding, we apply random
dropping or duplication. The neighborhood is denoted as
Bi = {pj ∈ P | ∥pi − pj∥ ≤ r}, where r is the radius of
the ball, and |Bi| = K indicates the cardinality of the lo-
cal point cloud patch. We would like to derive an inductive
representation from the local point cloud patch, aiming to
discriminatively encode the underlying geometry informa-
tion of point pi. Without loss of generality, we denote the
feature extraction network as φ. The E(3) invariant feature
hi ∈ H of pi is computed as:

hi =
1

|Fi|

|Fi|∑
k=1

A
(
φ(Fk

i Bi)
)
, (7)
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Figure 1: Overview of our method. Local patches Bi each with K points are extracted by ball query (with random dropping
or duplication) from the input point cloud P , and then E(3) invariant featureH is extracted by Frame Averaging [36] via the
encoder φ with channel size C. R is the number of frames. Then we perform 1-NN search within the feature space using
Differentiable Top-K method [5] to find the nearest neighbor, yielding correspondences to determine planes S, where each
plane si is parameterized in implicit form aix+biy+ciz+di = 0. Then we propose a differentiable plane grouping method,
named SymGroup, to output the M clustered planes T , where M is automatically determined during grouping. We train the
whole network using symmetry distance loss L in an unsupervised manner.

where Fk
i is the k-th element of the frames defined by

Eq. (6) taking as input Bi. A is a permutation invariant ag-
gregation function implemented as max-pooling on neigh-
bors. For the general encoding function φ, we choose to
use a shared MLP with final channel size C = 64, whose
architecture is similar to the representative PointNet [37] in
point cloud analysis.

Correspondence Establishment. When the E(3) invari-
ant features are extracted, we find the symmetrical point
for each point pi ∈ P in the feature space. As a result,
for pi, we perform 1-NN (nearest neighbor) search within
the feature space to find its nearest neighbor pj , yielding
a point pair (pi, pj), i.e, a correspondence. Since the
NN search is not differentiable, we utilize the Differen-
tiable Top-K method [5] instead. A plane can be uniquely
determined and parameterized by the point pair in the im-
plicit form: aijx + bijy + cijz + dij = 0. The parameters
(aij , bij , cij , dij) can be determined by:

nij =
pi − pj
∥pi − pj∥

, dij = −
nij · (pi + pj)

2
, (8)

where nij = (aij , bij , cij), which is of unit length. When
the correspondences in a point cloud P ∈ RN×3 are estab-
lished, we would get N point pairs, that is, N planes. Note
that if there are identical eigenvalues of covariance matrix of
Bi, the corresponding eigenvectors are not uniquely deter-
mined, so we discard hi in correspondence establishment.
As a planar symmetry is likely to be related to many corre-
sponding pairs, dropping pairs in such rare cases does not
affect the performance of our method.

Symmetry Grouping. Inevitably, repeating or approxi-
mate symmetry planes can be identified in N planes of the
point cloud P . Therefore, we aggregate the planes to get
a collection of candidate symmetry planes. We propose a
novel plane grouping method named SymGroup that em-

Algorithm 1: Symmetry plane clustering.
Input:

planes S = {s1, s2, . . . , sN} ∈ RN×4;
distance threshold τ and cluster size threshold ξ.

Output:
clustered planes: T = {t1, t2, . . . , tM} ∈ RM×4.

1: initialize graph G = (V← S,E← ∅)
2: for i← 1 to N do
3: initialize node weight wi = 0
4: for j ← 1 to N , i ̸= j do
5: if δij ≤ τ then
6: assign an edge eij = (si, sj) with weight

wij = 1− δij
7: wi ← wi + wij , E← E ∪ {eij}
8: end if
9: end for

10: end for
11: get connected components C by BFS algorithm
12: initialize clustered planes: T = ∅
13: for c ∈ C do
14: if |c| ≥ ξ then
15: get the node t with maximum weight
16: T ← T ∪ {t}
17: end if
18: end for
19: return T

ploys simple and effective graph clustering. The core idea
is depicted in Figure 2 and Algorithm 1.

Since the parameters of a plane are of ambiguity, that is,
(a, b, c, d) and (−a,−b,−c,−d) actually define the same
plane, given two planes u and v, parameterized by u =
(au, bu, cu, du) and v = (av, bv, cv, dv), we define the dis-
tance function between them as

δuv = min(∥u− v∥, ∥u+ v∥), (9)

where ∥ · ∥ is the L2 norm. Note that δuv = δvu, the
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distance function taking as input two planes is a symmet-
ric function. In particular, for each plane si ∈ S where
S is the set of candidate planes, we calculate the distance
δij between si and sj ,∀j ̸= i, and we assign an edge
eij = (si, sj) with weight wij = 1 − δij if δij < τ . And
wi =

∑
∀j ̸=i

wij is the weight of the plane si. After iter-

ating over all planes in S, we build a weighted undirected
graph, and the connected components C are found by BFS
(Breadth First Search) algorithm. Then the plane with the
maximum weight max

i∈cj
wi, is the cluster center of each com-

ponent cj ∈ C if |cj | ≥ ξ, which constitutes the detected re-
flective symmetry planes T . Formally, T = SymGroup(S).
To make the SymGroup differential, we define the partial
derivative of the output tj ∈ T with respect to the input
si ∈ S as:

∂tj
∂si

=

{
1 if si = tj
0 otherwise (10)

Network Training. To train the network unsupervisedly,
we use the loss L =

∑M
k=1 Lk similar as symmetry distance

loss in PRS-Net [11] to train the network. In particular, Lk

calculates the Chamfer Distance between input point cloud
P and the mirror points Qk w.r.t. the detected reflection
plane tk ∈ T . It can be expressed by the following:

Lk =
1

|Qk|
∑

qj∈Qk

min
pi∈P

∥qj−pi∥+
1

|P|
∑
pi∈P

min
qj∈Qk

∥pi−qj∥,

(11)

Qk = {pi − 2
pi · nk + dk
∥nk∥2

nk, pi ∈ P}, (12)

where tk: akx+bky+ckz+dk = 0, and nk = (ak, bk, ck).
Eq. 12 means applying the transformation to each point of
P w.r.t. tk to obtain the transformed point set Qk. Dur-
ing training, we set the batch size to be 32, learning rate
lr = 0.001, total epochs as 100, and use the ADAM [19]
optimizer to train our network. E3sym is implemented in
PyTorch 1 [34] and Jittor 2 [13].

3.3. Planar Symmetry Inference

Similar to PRS-Net [11], for two detected symmetry
planes, if the dihedral angle is less than π/6, we remove
the one with larger symmetry distance error. Also, we in-
troduce a simple validation method in the inference stage to
handle the issue that some approximate symmetries that are
not good enough may be detected. Different from PRS-
Net [11] that uses 0.0004 of symmetry distance error as
the threshold to drop imperfect symmetries, our validation
strategy depends on whether the input shape is expected to

1https://github.com/renwuli/e3sym
2https://github.com/renwuli/je3sym

be complete or incomplete. If the input shape is complete,
we use the same symmetry distance error threshold to fil-
ter out imperfect ones. When the input shape is incomplete
with large region missing, the symmetry distance error may
be large even when the detected symmetry plane is accurate
enough. So for each detected symmetry plane tk and for
each point pi ∈ P , we find the nearest neighbor p

′

i of its
symmetrical point qi ∈ Qk, if p

′

i and qi are close enough,
we consider pi to be an inlier. If the inlier ratio exceeds a
given threshold, we regard tk to be a valid symmetry.

4. Experiments

4.1. Datasets

ShapeNet. ShapeNet [2] offers a huge dataset containing
55 categories of man-made objects, 51300 objects in to-
tal. For training-test split, we follow the settings in PRS-
Net [11], i.e., 80% models as the training set and the rest
20% as testing set, and the ground truth of symmetries are
from PRS-Net [11] as well. For each shape in ShapeNet, we
sample 512 points on the surface as the input of our method,
which is randomly rotated during both training and testing.

MVP. Considering many scanned models are not per-
fectly complete in geometry, an experiment is performed
to evaluate our method handling incomplete shapes. The
incomplete point clouds are retrieved from MVP [33], a
large dataset focusing on tasks of point cloud completion
and partial-to-partial registration. MVP consists of 16 cat-
egories, and for each category, we randomly sample 100
point clouds for evaluation, 1600 point clouds in total. For
each point cloud in MVP, we sample 512 points as the input
of our method.

4.2. Metrics

Symmetry Distance Error. Following PRS-Net [11], we
use Symmetry Distance Error (SDE) to measure how close
the 3D shape is to its symmetrical copy with respect to a
certain planar symmetry plane. And the SDE is defined as:

SDE(O, ti) =
1

|O|
∑
o∈O

min
ô∈ti(O)

∥o− ô∥22. (13)

O is the input 3D shape and ti is a detected symmetry plane,
ti(O) is the symmetrical copy of O. Eq. 13 is equivalent to
the original SDE in PRS-Net [11] for meshes in ShapeNet,
and equivalent to the Chamfer Distance [8] for point clouds
in MVP.

F-score. To measure the effectiveness of correctly detect-
ing symmetry planes, F-score is used as a metric. Given a
detected symmetry plane t, if we can find a symmetry plane
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clustered planesbuild graph connected components find cluster center

Figure 2: We presents a novel and effective planar symmetry grouping algorithm. We consider each plane established from
point correspondences as a node and construct a weighted undirected graph by assigning edges between planes that are close
to each other, with weights decreasing as the distances between planes increase. The weight of a node is defined as the sum
of its adjacency edges. Using this graph representation, we identify connected components and treat each as a cluster. We
extract the cluster centers by selecting nodes with the maximum weight and derive the corresponding clustered planes as
detected symmetry planes.

Figure 3: Qualitative results for reflective symmetry detection on the test set of ShapeNet [2]. From left to right, top to down
are of the categories: bag, water tap, earphone, chair, boat, rifle, airplane, skateboard, motorcycle, table, bathtub and bench.
4 instances are displayed for each category. Our method is able to detect multiple symmetry planes accurately. For better
visualization, we paint the shapes with gradient color.

Method PCA OBB [3] RSD [16] ADS [24] PASD [27] PRST [35] PRST with
GEDT [35]

PAS [20] PRS-
Net [11]

Ours

SDE (×10−4) 3.32 1.25 0.90 3.95 14.2 1.78 1.60 1.75 0.86 0.46
F-score 0.692 0.740 0.684 0.694 0.322 0.619 0.646 0.678 0.712 0.753

Table 1: The SDE (×10−4) and Recall(%) measured with different methods on ShapeNet [2].
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t̂ among ground-truth symmetry plane set, such that the dis-
tance between them is small enough, we treat t as a true
positive (TP ), otherwise false positive (FP ), if no detected
symmetry plane is close to a ground-truth symmetry t̂, we
treat t̂ as a false negative (FN ). The distance function be-
tween two distinct planes is defined the same as Eq. 9. For a
given plane distance threshold, the precision and recall are
defined as PR = TP

TP+FP and RE = TP
TP+FN respectively,

and F-score is computed by 2PR×RE
PR+RE . After iterating over

all thresholds in the range of [0, 0.2], we use the average
F-score as the measurement.

4.3. Evaluation on Complete Shapes

Symmetry detection on ShapeNet. We take PCA,
OBB [3], PSD. [16], ADS [24], PASD [27], PRST [35],
PRST with GEDT (Gaussian Euclidean Distance Trans-
form), PAS [20] and PRS-Net [11] as baselines. Our
method is qualitatively evaluated in ShapeNet [2] with SDE
against these baselines. Since models in ShapeNet are pre-
aligned and share the common symmetry planes as a prior,
we apply a random rotation to each model to demonstrate
the effectiveness of our method more convincingly. Com-
parison results are shown in Table 1, from which we can
observe that our method outperforms other methods. Qual-
itative results conducted on ShapeNet are also provided in
Figure 3 for better comprehension, which displays 4 shapes
in each category and 12 different categories in total. Our
method is able to detect reasonable and accurate reflective
symmetry planes. Although it is challenging to detect ac-
curate symmetries for the rifles and motorcycles with thin
structures, our method produces decent results as well. Fig-
ure 4 shows the visualization results compared with base-
lines, obviously, 4 distinct reflective symmetries are present
in the challenging shape. The baseline methods detect sym-
metries either wrongly or inaccurately. Since PRS-Net [11]
restricts the number of predictions, 2 valid and 1 invalid
symmetries are detected, and our method is able to detect all
the valid symmetries. This is also evidenced by our highest
F-score when compared with existing methods.

4.4. Robustness on Incomplete Shapes

Although it is challenging, our method can also reveal
reasonable planar symmetries from incomplete shapes. To
evaluate the robustness on incomplete shapes, we conduct
experiments on Partial ShapeNet and MVP that are com-
posed of incomplete shapes, and the results are produced
by the model pretrained on ShapeNet in Section 4.3. In
order to validate the detected symmetry planes from incom-
plete shapes, we use inlier ratio introduced in Section 3.3.
The inlier ratio should be lower (resp. higher) if the shape
is with larger (resp. smaller) parts missing. We choose the
values to be 0.9 and 0.8 for Partial ShapeNet and MVP re-
spectively.

(a) OBB (b) RSD [16] (c) ADS [24] (d) PRS-Net [11]

(e) PRST [35] (f) PAS [20] (g) PASD [27] (h) Ours

Figure 4: Qualitative reflective symmetry detection results
compared with different methods.

Evaluation on Partial ShapeNet. In order to further test
the robustness for incomplete shapes, following the set-
ting in PRS-Net [11], we evaluate our method on Partial
ShapeNet, in which a randomly chosen contiguous region
is removed for each shape in ShapeNet. Quantitative results
are illustrated in Table 2, in which our method achieves the
lowest SDE, which illustrates that our method can handle
incomplete shapes well.

Figure 5: Qualitative results for reflective symmetry detec-
tion on MVP. Though the input shape is incomplete, our
method can still detect symmetries robustly and accurately.

Evaluation on MVP. In Partial ShapeNet from PRS-Net,
a randomly selected contiguous region is removed from the
surface, which typically has a limited impact on the pri-
mary geometric structure. However, the challenging MVP
point clouds are generated from single-view depth maps,
which are often sparse, with large portions of missing data.
Consequently, the MVP dataset poses greater difficulty and
presents more significant challenges. As shown in Figure 5,
although the input shapes are incomplete to a varying de-
gree, multiple symmetry planes are detected accurately and
robustly by our method, which verifies that the proposed
method can deal well with incomplete shapes with large
parts missing. Because the corresponding complete shapes
in MVP are available, symmetry distance errors (SDE) are
computed based on them to compare with the baseline
methods. Since PSD [16], ADS [24] and PASD [27] are not
applicable to point clouds, we do not compare with them on

14549



Method PCA OBB [3] ADS [24] PASD [27] PAS [20] PRST [35] PRST with
GEDT [35]

PRS-
Net [11]

Ours

SDE (×10−4) 6.67 2.40 7.58 28.72 4.34 4.61 3.77 1.54 1.16

Table 2: The symmetry distance error (×10−4) measured with different methods on partial shape set of ShapeNet [2].

MethodPCA OBB [3] PAS [20] PRST [35] PRS-Net [11] Ours

SDE 57.21 49.05 12.06 46.30 34.10 8.50
SDE⋆ 57.21 49.05 32.56 89.61 46.13 9.50

Table 3: The SDE (×10−4) measured with different meth-
ods on MVP [33]. SDE⋆ measures the performance when
the incomplete shape is randomly rotated.

MVP. The numerical results are listed in Table 3, the SDE
measures the performance for aligned shapes and SDE⋆ for
the randomly rotated version. It reveals that the proposed
method is robust with incomplete shapes and outperforms
other methods. PCA and OBB [3] are independent to ro-
tation transforms and get the same SDEs for aligned and
rotated shapes. PAS [20] and PRST [35] detect symmetries
for a shape by discretizing it to a grid, which is sensitive to
rotation transforms. Because PRS-Net [11] uses the rotation
augmentation for training, it is more robust than [20, 35]
even though it takes voxels as input.

4.5. Ablation Studies and Visualization

Ablation study of SymGroup. To demonstrate the effi-
cacy of our proposed SymGroup, we conduct experiments
that replace our SymGroup with DBSCAN and Mean-Shift,
which are implemented similar to SymGroup to make the
gradients able to be back-propagated. Additionally, we also
perform robustness testing to see the effects of parameters
of the three clustering methods in Figure 6. For the clus-
tering algorithm SymGroup, we set τ in the range of [0.02,
0.07] and ξ in the range of [8, 96], we evaluate the perfor-
mance by SDE and F-score on ShapeNet and the results are
visualized in Figure 6, from which (72, 0.05) reach the high-
est F-score and low SDE, while the difference for settings
close to it is minimal, which proves the robustness of our
proposed SymGroup. For DBSCAN and Mean-Shift, we
apply similar settings that give them different parameters.
We can clearly see that Mean-Shift is sensitive to the pa-
rameters and have significantly inferior performance com-
pared with SymGroup. DBSCAN reaches higher F-score
and lower SDE compared with Mean-Shift, and is more ro-
bust against parameters. Nonetheless, our proposed Sym-
Group algorithm surpasses DBSCAN in terms of both per-
formance and robustness.
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Figure 6: Robustness of different clustering methods evalu-
ated by both SDE(×10−4) and F-score. Please zoom in for
better visualization.

Figure 7: E(3) invariant feature visualization. Points lying
in various positions and orientations but share similar ge-
ometry structures have a high degree of similarity.

Figure 8: Left half: feature with frame averaging; right half:
feature without frame averaing.

E(3) invariant feature visualization. In order to demon-
strate the effectiveness of the introduced E(3) invariant fea-
tures more intuitively, as displayed in Figure 7, we visualize
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the E(3) invariant features extracted by φ. From left to right
and top to bottom: airplane, earphone, bench and basket
are shown respectively. The color of each point is reduced
from the feature to 3D by PCA and linearly mapped to [0, 1]
(Min-Max Scaling). It can be clearly seen that, for points
lying in various positions and orientations but share similar
geometry structures, they have a high degree of similarity,
implying symmetric correspondences can be reasoned from
the extracted E(3) invariant features. In Figure 8, we ran-
domly rotate a typical shape and present the E(3) invariant
feature visualization results with and without frame aver-
aging from 3 different viewpoints, which clearly shows the
effects of frame averaging.

4.6. Computation Efficiency

We evaluated the proposed method’s computational effi-
ciency against several baseline methods using the same set-
tings as PRS-Net [11]. Specifically, we evaluated the per-
formance of RSD [16], ADS [24], PASD [27], PRST [35],
PRST with GEDT [35], and PAS [20] on a typical model
consisting of 1052 vertices and 4532 faces. We observed
that the aforementioned methods take 0.51, 2.82, 3.40, 5.00,
0.97, and 0.42 seconds, respectively. OBB and PCA meth-
ods, which use simple geometry processing, are much faster
at 0.02 seconds and 1.9 ms, respectively, but less robust. In
contrast, our proposed method takes 0.027 seconds. As a
method that also utilizes neural networks, PRS-Net [11] ex-
hibits a low latency of 1.81 ms due to its simple network
architecture composed of several convolutional layers and
lightweight fully connected layers that can be efficiently
parallelized. Despite being slower than the previous state of
the art, PRS-Net [11], our approach is fast enough for real-
time processing (27 ms, 37 FPS) and achieves the best accu-
racy compared to other baselines. Notably, our model con-
tains significantly fewer trainable parameters (2.25k) than
PRS-Net (79.8k), which provides further evidence for the
efficiency of our proposed approach.

5. Conclusion

(a) (b)

Figure 9: Two examples of failure cases. Our method fails
to handle shapes with extremely thin and flat structures.

We present E3Sym, a novel approach to detect 3D global
planar symmetry that is end-to-end unsupervised and does
not require any labeled data. By extracting E(3) invariant
features, the symmetric correspondences can be established

efficiently and robustly, from which the dense global pla-
nar symmetries are determined. By applying SymGroup
which produces clustered symmetry planes, the network can
be trained using symmetry distance loss in an unsupervised
manner. However, as shown in Figure 9, the correspon-
dences for shapes like knives with very thin and flat struc-
tures are extremely hard to handle, and the reflective sym-
metry planes parallel to the paper are not successfully de-
tected. We will address such difficult cases in future work.
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