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Abstract

LiDAR-based 3D detection has made great progress in

recent years. However, the performance of 3D detectors

is considerably limited when deployed in unseen environ-

ments, owing to the severe domain gap problem. Existing

domain adaptive 3D detection methods do not adequately

consider the problem of the distributional discrepancy in

feature space, thereby hindering generalization of detec-

tors across domains. In this work, we propose a novel

unsupervised domain adaptive 3D detection framework,

namely Geometry-aware Prototype Alignment (GPA-3D),

which explicitly leverages the intrinsic geometric relation-

ship from point cloud objects to reduce the feature discrep-

ancy, thus facilitating cross-domain transferring. Specifi-

cally, GPA-3D assigns a series of tailored and learnable

prototypes to point cloud objects with distinct geometric

structures. Each prototype aligns BEV (bird’s-eye-view)

features derived from corresponding point cloud objects

on source and target domains, reducing the distributional

discrepancy and achieving better adaptation. The evalu-

ation results obtained on various benchmarks, including

Waymo, nuScenes and KITTI, demonstrate the superiority

of our GPA-3D over the state-of-the-art approaches for dif-

ferent adaptation scenarios. The MindSpore version code

will be publicly available at https://github.com/

Liz66666/GPA3D.

1. Introduction

As a fundamental research in 3D scene understanding,

3D detection from point clouds has attracted increasing at-

tention due to its essential role in intelligent robotics, aug-

mented reality and autonomous driving [7, 21, 18, 8, 1]. De-

spite significant process, state-of-the-art 3D detectors still
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Figure 1. The performance comparison with previous works [33,

36, 37]. The detection architecture is SECOND-IoU [34, 36].

suffer from dramatic performance degradation when train-

ing data and test data are from different environments, i.e.,

domain shift problem [33]. Various factors, such as di-

verse weather conditions, object sizes, laser beams, and

scanning patterns, lead to substantial discrepancies across

different domains, hindering the transferability of existing

LiDAR-based 3D detectors. Intuitively, fine-tuning the de-

tectors with adequate data from the target domain could al-

leviate this issue. However, manually annotating a large

amount of point cloud scenes is a prohibitively expensive

task. Therefore, the research on unsupervised domain adap-

tation (UDA) for LiDAR-based 3D detection is essential.

Although many works have been proposed to deal with

the UDA for image-based detection [42, 11, 24, 17, 10,

14, 13, 25, 3], directly applying these methods to 3D point

cloud detection is insufficient for tackling the domain shifts.

These approaches mainly concentrate on the gaps of light-

ing and texture variations, which could not be obtained from

point clouds. While there is only a limited number of liter-

ature [33, 36, 26, 9, 39, 37, 20] dealing with the UDA on

LiDAR-based 3D detection. Prior work [33] utilizes the

statistics from target annotation to perform data-level nor-

malization. MLC-Net [20] designs a mean-teacher frame-

work to provide reliable pseudo-labels to facilitate transfer-

ring. ST3D [36] and ST3D++ [37] propose a self-training

pipeline with a memory bank to collect and refine pseudo-

labels. Despite their great success, these methods do not ad-

equately consider the problem of distributional discrepancy

in feature space, hampering the adaptation performance.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. (a) Point cloud scene on BEV (bird’s-eye-view). (b)

Distinct geometric structures of point cloud objects. (c-e) Illus-

tration of the distributional discrepancy. With explicit geometric

constraints, the features from different domains are better aligned.

To reduce this discrepancy in 2D UDA task, some ap-

proaches utilize the class-wise prototypes align features

from different domains [12, 31, 40, 19]. In these works, a

universal prototype is employed to enforce high representa-

tional similarity among features belonging to the same cat-

egory. However, in the case of 3D scenes, such as vehicles

on the road, diverse locations and directions can result in

distinct geometric structures, i.e., distributional patterns of

point clouds, as presented in Fig. 2 (a) and (b). If a uniform

prototype is applied to objects with completely different ge-

ometric structures, the efficacy of feature alignment might

be hindered, as illustrated in Fig. 2 (c-d). We argue that

adopting different prototypes to point cloud objects with

distinct geometric structures could deal with the problem of

distributional discrepancy, but more attention should also be

paid to model these geometric structures during adaptation.

Based on the considerations, we propose a novel

UDA framework for LiDAR-based 3D detectors, namely

Geometry-aware Prototype Alignment (GPA-3D). Con-

cretely, we first explore the potential relationships between

the geometric structures of point cloud objects. During

training, we randomly extract the BEV features of point

clouds from both the source and target domains, and sub-

sequently divide them into distinct groups based on their

geometric structures. In this process, BEV features derived

from point clouds with the similar geometric structures will

be classified into the same group. Each group is then as-

signed a unique prototype, which enforces high representa-

tional similarity among the BEV features within that group,

as illustrated in Fig. 2 (e). To this end, the soft contrast loss

is devised to pull the intra-group feature-prototype pairs

closer in the representational space and push the inter-group

pairs farther away. Additionally, we develop the frame-

work with two components, namely noise sample suppres-

sion (NSS) and instance replacement augmentation (IRA).

NSS utilizes the similarities between foreground areas and

the background prototype, to produce a mask for decreas-

ing the impact of noise. IRA displaces pseudo-labels with

high-quality samples that have similar geometric structures,

enriching the diversity on the target domain.

The main contributions of this paper include:

• We propose a novel UDA framework for LiDAR-

based 3D detectors, namely Geometry-aware Proto-

type Alignment (GPA-3D). It explicitly integrates geo-

metric associations into feature alignment, effectively

decreasing the distributional discrepancy and facilitat-

ing the adaptation of existing point cloud detectors.

• Noise sample suppression and instance replacement

augmentation are designed to enhance pseudo-labels

in terms of reliability and versatility, respectively.

• We conduct comprehensive experiments on Waymo,

nuScenes, and KITTI. The encouraging results demon-

strate the GPA-3D outperforms state-of-the-art meth-

ods in various adaptation scenarios. More importantly,

thanks to the architecture-agnostic design, GPA-3D is

flexible to be applied to point cloud detectors.

2. Related Work

LiDAR-based 3D Detection. Mainstream point cloud de-

tectors can be broadly divided into two categories: point-

based and grid-based. Point-based methods mainly adopt

the architectures of PointNet [22] and PointNet++ [23] to

extract features from raw point clouds. PointRCNN [28]

designs an encoder-decoder backbone to learn the point-

wise representation. 3DSSD [38] improves the point sam-

pling operator from the aspect of feature distance. IA-

SSD [41] utilizes the instance-aware downsampling to pre-

serve more foregrounds. On the other hand, grid-based

methods first divide point clouds into fixed-size voxels,

which are then processed via 2D/3D CNN. SECOND [34]

adopts sparse 3D convolution for efficient feature learning.

PointPillars [16] proposes a pillar encoding method and

achieves a good trade-off between speed and performance.

PV-RCNN [27] incorporates the voxel backbone with the

keypoint branch to learn the representative scene features.

Other approaches [35, 4, 30] project the point clouds into

certain kinds of 2D views, and employ 2D CNN to extract

the features. In this work, we conduct focused discussions

with SECOND [34] and PointPillars [16] as base detectors.

To demonstrate the generalization ability of our method, we

also provide the comparisons with PV-RCNN [27] detector.

Domain Adaptive Object Detection. A large amount of

literature has been presented in UDA for 2D-image de-

tection, which can be roughly classified into two groups:

distribution alignment and self-training. Alignment-based
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Figure 3. Overview of our proposed GPA-3D framework. It adopts a basic co-training manner to adapt the 3D detector with the point

clouds from source and target domains. The BEV features are processed via geometry-aware prototype alignment, which reduces the

distributional discrepancy and enables the learning of general representation across domains. To this end, the soft contrast loss is devised

for jointly optimizing the prototypes and network parameters. Besides, the noisy sample suppression is proposed to alleviate the impact of

noisy samples during training, and instance replacement augmentation is designed to enhance the diversity on the target domain.

methods [3, 25] leverage the adversarial training [5] to

learn aligned features across domains. Self-training ap-

proaches [13, 14] utilize a multi-phase strategy to gen-

erate pseudo-labels on unlabeled data. Besides, some

works [10, 17, 24, 11] adopt the CycleGAN [42] to generate

training samples with styles of source and target domains.

Similarly, several recent works also aim to address the

domain bias for 3D point cloud detectors. Wang et al. [33]

investigate the domain bias of popular autonomous driving

3D datasets, and propose to alleviate the gaps via three tech-

niques, i.e., output transformation, statistical normalization

and few shot. SF-UDA3D [26] adopts a mature 3D tracker

to find the best scaling parameter, which is further used to

re-scale the target point clouds for producing high-quality

pseudo-labels. MLC-Net [20] designs a mean-teacher

paradigm to provide pseudo-labels for facilitating smooth

learning of the student model. ST3D [36] and ST3D++ [37]

build a self-training pipeline to produce pseudo-labels for

fine-tuning model and update pseudo-labels via memory

bank. 3D-CoCo [39] devises the domain-specific encoders

with a hard sample mining strategy to learn transferable rep-

resentations. Compared with previous works, our method

explicitly embraces the geometric relationship to reduce the

distributional discrepancy during adaptation.

3. The Proposed Method
In the following, we present GPA-3D to mitigate the do-

main gap for LiDAR-based detectors. Fig. 3 illustrates the

whole pipeline. Sec. 3.1 formulates the UDA task for point

cloud detectors. Sec. 3.2 introduces the detection architec-

ture in our method. In Sec. 3.3, we explain the details of the

geometry-aware prototype alignment, followed by the soft

contrast loss, which is discussed in Sec. 3.4. Finally, we

present the noise sample suppression and instance replace-

ment augmentation in Sec. 3.5 and Sec. 3.6, respectively.

3.1. Problem Statement
In this work, we focus on the problem of unsupervised

domain adaptation on 3D detection. Concretely, given the

labeled source domain point clouds D
s = {(P s

i , L
s
i )}

Ns

i=1,

as well as unlabeled target domain point clouds D
t =

{(P t
i )}

Nt

i=1, our goal is to train a 3D detector based on D
s

and D
t and maximize its performance on D

t. Here, N is the

total number of scenes, and Pi indicates the i-th point cloud

scene, where each point has the 3-dim spatial coordinates

and an extra intensity. The corresponding label Li repre-

sents a series of 3D bounding boxes, each of them can be

parameterized by the center location (cx, cy, cz), spatial di-

mension (h,w, l) and rotation r. Note that the superscripts

s and t stand for source and target domain respectively.

3.2. Detection Architecture

The input point cloud Pi is first sent to a backbone net-

work with 3D sparse convolutions or 2D convolutions to

extract the point cloud representation as following:

Fi = h1(Pi; θ1), (1)
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where h1 is the backbone with parameters θ1, and Fi indi-

cates the BEV features. After that, a detection head h2 with

parameters θ2 produces the final output, formulated as:

{b, s}i = h2(Fi; θ2), (2)

where b and s represent the predicted 3D boxes and scores

respectively. A co-training paradigm is applied to progres-

sively mitigate the domain shift. In each mini-batch, both

the source point clouds P s
i and target point clouds P t

i are

sent to the detector, and their outputs are supervised by the

corresponding ground truth and pseudo-labels, respectively.

3.3. Geometryaware Prototype Alignment

Extract. As mentioned in Sec. 3.2, for i-th point cloud

scenario Pi from the source or target domain, LiDAR-based

detector generates the BEV features Fi ∈ R
H×W×C , where

H , W , and C denote the height, width and channel num-

bers of the feature map. We first project the correspond-

ing ground truth Ls
i or pseudo-labels L̂t

i to the BEV feature

map, and then randomly extract the equal-length sequences

F+
i ∈ R

Mi×C and F−
i ∈ R

Mi×C . Here, Mi is the length

of the feature sequence, F+
i and F−

i represent the fore-

ground and background features from BEV, respectively.

Group. For the extracted foreground features F+
i , we fur-

ther divide them into different groups according to their ge-

ometric structures on point clouds. Specifically, for j-th

foreground F+
i,j in the sequence (j ∈ [1,Mi]), we compute

its offset angle θoff
i,j as follows:

θoff
i,j = θobs

i,j − ri,j , (3)

where ri,j is the direction, θobs
i,j is the observation angle, as

presented in Fig. 4 (left). Note that the direction ri,j is pro-

vided from the labels Ls
i and L̂t

i, while the observation an-

gle θobs
i,j can be computed according to the central position

of 3D bounding box. Next, all foreground features are split

into K groups, and the group index Qi,j is formulated as:

Qi,j = ⌊norm(θoff
i,j)/δ⌋+ 1, (4)

where norm(·) is a normalization function that converting

the input angles into [0, 2π], and δ = 2π/K is the inter-

val of angles between groups. In this way, the foreground

features with similar offset angles θoff
i,j are assigned into the

same group, where their geometric structures are very sim-

ilar, as demonstrated in Fig. 4 (right). Additionally, the ex-

tracted backgrounds F−
i,j are sent into an individual group,

thus totally K + 1 groups are built.

Prototype Construction. At the beginning of training,

we randomly initialize a series of learnable prototypes G =
{gk}

K+1
k=1 ∈ R

(K+1)×C . During training, we extract the

BEV features Fi from both source and target domains,

and split them into corresponding groups via Eq. 4. In k-

th group, the foreground features F+
i,j are enforced to be

X

Z

Y

ego vehicle

direction

visible area

object center

rotation angle

observation angle

offset angle X

Z

Y

Figure 4. Left: Demonstration of the offset angle. Right: Objects

with same offset angle share similar geometric structures.

aligned with the foreground prototype gk(k∈[1,K]). Sim-

ilarly, the background features F−
i,j in the last group are

aligned with the background prototype gK+1.

3.4. Soft Contrast Loss

Given a point cloud Pi, our goal is to align its

fore/background features F+
i and F−

i with the correspond-

ing prototypes in G.

Intra-group Attract. For the foreground features F+
i ,

we pull them closer with the corresponding prototype in G,

which can be formulated as:

L+
att =

K∑

k=1

N∑

i=1

Mi∑

j=1

(1− sim(F+
i,j , gk))✶[Qi,j = k], (5)

where sim(a, b) = a·b
||a|| ||b|| is the cosine similarity,

✶[Qi,j = k] is an indicator function that equals to 1 if

Qi,j = k and 0 otherwise. Similarly, the background fea-

tures F−
i are also required to be pulled to the background

prototype gK+1, which can be calculated as:

L−
att =

N∑

i=1

Mi∑

j=1

(1− sim(F−
i,j , gK+1)). (6)

Inter-group Repel. To enhance the discriminative capac-

ity, we need to push the features away from all prototypes

belonging to other groups. For example, the distances be-

tween background features F−
i and all foreground proto-

types are minimized via:

L−
rep =

K∑

k=1

N∑

i=1

Mi∑

j=1

max(0, sim(F−
i,j , gk)). (7)

For foreground features within adjacent groups, their corre-

sponding geometric structures are relatively more similar.

Repelling these features away is not very necessary, and

might even make the training process unstable. Hence, we

adopt a more relaxed constraints as follows:

L
+adj
rep =

N∑

i=1

Mi∑

j=1

∑

k∈Ai,j

max(0, sim(F+
i,j , gk)−m),

L+other
rep =

N∑

i=1

Mi∑

j=1

∑

k/∈Ai,j ,k ̸=Qi,j

max(0, sim(F+
i,j , gk)),

(8)
where m indicates the margin which is set to 0.5 in our ex-

periments, Ai,j is the index of the groups adjacent to Qi,j ,
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Left: IRA leverages a group mechanism to displace the original in-

stances with high-quality candidates. Right: Compared with ran-

dom replacing, our group mechanism does not interfere the spatial

context of the point cloud scene.

i.e., Ai,j = Qi,j ± 1. The overall soft contrast loss Lcontra

can be formulated as:

Lcontra = L+
att + L−

att + β1L
+adj
rep + β2L

+other
rep + β3L

−
rep,
(9)

where β1, β2 and β3 are the balance coefficients.

3.5. Noise Sample Suppression

The pseudo-labels used on the target domain are noisy

and can lead to the accumulation of errors. To mitigate

the impact of noise, we propose the noise sample suppres-

sion (NSS) approach, which generates a noise mask to sup-

press the magnitude of the gradient descent for the fore-

ground areas that might be underlying noise. The noise

mask can be represented as S ∈ {α, 1.0}H×W , where

α (α < 1.0) is the suppression factor to decrease the con-

tribution of low-quality samples. In S, the foreground areas

that have high similarities with the background prototype,

i.e., sim(F+
i,j , gK+1) > 0.3, are assigned to α, while rest

foreground and background areas are assigned to 1.0.

During training, the noise mask S is multiplied to the

co-training loss Lco-train, elaborated in Sec. 3.7. With the

progress of training, prototypes will be optimized with bet-

ter representative capability, which enables NSS to suppress

the noise more reliably and facilitate the training procedure.

3.6. Instance Replacement Augmentation

Those uncertain pseudo-labels (with scores of 0.2∼ 0.5)

are usually ignored in training. Despite inaccurate, they

might provide partial localization information. To this end,

we devise the instance replacement augmentation (IRA)

module. As shown in Fig. 5 (left), we first pick the pseudo-

labels with scores over 0.5 to construct a high-quality

database, which utilizes the group mechanism as Eq. 4 to

divide the picked instances into groups belonging to differ-

ent geometric structures. During training, we calculate the

group indexes for the uncertain pseudo-labels, and replace

them with instances having same group indexes from the

Algorithm 1: The learning procedure of GPA-3D

input : labeled source domain D
s, unlabeled target domain D

t,

3D detector θ, total epochs T , steps per epoch N , and

list of update epochs U

output: adapted 3D detector θt

1 Pre-train the network θs
← D

s according to Eq. (10);

2 Initialize θ ← θs;

3 Generate pseudo-labels and database (L̂t, D̂t)← (θ,Dt);
4 for epoch← 1 to T do

5 for step← 1 to N do

6 Sample mini-batches (βs, βt)← (Ds,Dt);

7 Instance replacement βt

aug ← IRA(βt, D̂t) ;

8 update θ ← (βs, βt

aug) according to Eq. (12);

9 if epoch ∈ U then

10 Update pseudo-labels L̂t
← (θ,Dt);

11 θt
← θ;

database. In this procedure, a parameter pIRA is adopted to

regulate the probability of the replacement operation.

There are two main merits of IRA. First, the quantity of

target data is maintained and the diversity is also enhanced.

Second, benefiting from the group mechanism, the spatial

contexts around the replaced instances are unchanged and

no ambiguous or unreasonable case is introduced, as de-

vised in Fig. 5 (right).

3.7. Overall Training Procedure

The overall training procedure of GPA-3D is illustrated

in Alg. 1. Following previous works [36, 37], the 3D de-

tector is first trained on the labeled source domain D
s via

minimizing the detection loss Ls
det as:

Ls
det = Ls

reg + Ls
cls, (10)

where the Ls
reg and Ls

cls indicate the regression and classi-

fication errors respectively. Next, we use the pre-trained de-

tector to generate pseudo-labels L̂t
i and the database of IRA

on the unlabeled target domain D
t. Finally, the co-training

paradigm is employed to further fine-tune the model as:

Lco-train = Ls
det + Lt

det, (11)

where Lt
det is the detection loss on target data, same as in

Eq. 10. The overall adaptation loss Ladapt is calculated via:

Ladapt = β · Lcontra + S · Lco-train, (12)

where β is the total weight of the soft contrast loss, and S
is the noise mask of NSS. For more details of the training

procedure, please refer to the supplements.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate the GPA-3D on widely used au-

tonomous driving benchmarks including Waymo [29],

nuScenes [2], and KITTI [6]. These datasets exhibit signif-

icant diversities in foreground patterns and LiDAR beams,
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Table 1. Comparison with the state-of-the-art methods on the Waymo → KITTI adaptation scenario, with BEV and 3D average precisions

of 40 recall positions. In addition, we also report the Closed Gap from ST3D[36], which is defined as
APmodel−APsource

APoracle−APsource
× 100%. For fair

comparison, the results with the detector of SECOND-IoU are obtained from the original paper of ST3D++ [37], while the performances

with PointPillars are cited from 3D-CoCo [39]. The best result is indicated by bold.

Methods
SECOND-IoU PointPillars

APBEV Closed Gap AP3D Closed Gap APBEV Closed Gap AP3D Closed Gap

Source Only 67.64 - 27.48 - 47.8 - 11.5 -

SN [33] 78.96 +72.33% 59.20 +69.00% 27.4 −55.14% 6.4 −8.49%
UMT [9] 77.79 +64.86% 64.56 +80.66% - - - -

3D-CoCo [39] - - - - 76.1 +76.49% 42.9 +52.25%
ST3D [36] 82.19 +92.97% 61.83 +74.72% 58.1 +27.84% 23.2 +19.47%

ST3D++ [37] 80.78 +83.96% 65.64 +83.01% - - - -

GPA-3D (ours) 83.79 +103.19% 70.88 +94.41% 77.29 +79.70% 50.84 +65.46%
Improvement +1.6 +10.22% +5.24 +11.4% +1.19 +3.21% +7.94 +13.21%

Oracle 83.29 - 73.45 - 84.8 - 71.6 -

Table 2. Adaptation performance on the Waymo → nuScenes in comparison with different base detectors and state-of-the-art approaches.

Methods
SECOND-IoU PointPillars

APBEV Closed Gap AP3D Closed Gap APBEV Closed Gap AP3D Closed Gap

Source Only 32.91 - 17.24 - 27.8 - 12.1 -

SN [33] 33.23 +1.69% 18.57 +7.54% 28.31 +2.41% 12.98 +4.58%
UMT [9] 35.10 +11.54% 21.05 +21.61% - - - -

3D-CoCo [39] - - - - 33.1 +25.00% 20.7 +44.79%
ST3D [36] 35.92 +15.87% 20.19 +16.73% 30.6 +13.21% 15.6 +18.23%

ST3D++ [37] 35.73 +14.87% 20.90 +20.76% - - - -

GPA-3D (ours) 37.25 +22.88% 22.54 +30.06% 35.47 +36.18% 21.01 +46.41%
Improvement +1.33 +7.01% +1.49 +8.45% +2.37 +11.18% +0.31 +1.62%

Oracle 51.88 - 34.87 - 49.0 - 31.3 -

which can lead to severe domain bias when transferring 3D

detectors from one dataset to another. Detailed information

about datasets is available in the supplementary material.

Implementation Details. We verify the GPA-3D with

two popular LiDAR-based detectors, namely SECOND-

IoU [36] and PointPillars [16]. All the parameter set-

tings for network architecture are set the same with Open-

PCDet [32] and ST3D [36]. We perform all experiments us-

ing 8 NVIDIA V100 GPU cards. For the pre-training step,

the model is trained for 30 epochs using the ADAM [15] op-

timizer and the total batch size of 32 on the source domain.

Next, we utilize the pre-trained model to generate pseudo-

labels on the target domain with a score threshold of 0.2.

Note that instances with scores over 0.5 are retained and

subsequently utilized to establish the high-quality pseudo-

label database for IRA. Finally, we further fine-tune the

model with our proposed approach for 30 epochs. To avoid

local minima, we employ the cosine annealing strategy to

adjust the learning rate, which was set to 0.003 for pre-

training and 0.0015 for fine-tuning. Please refer to the sup-

plements for more implementation details.

Compared Methods. As shown in Tab. 2, GPA-3D is first

compared with the Source Only method, which trains the

model on the source domain and evaluates it on the target

domain without any adaptation. Next, 5 existing works are

included in the comparison, namely, SN [33], UMT [9],

3D-CoCo [39], ST3D [36], and ST3D++ [37]. SN uti-

lizes the statistics from target annotations to normalize the

foreground objects on the source domain. UMT employs a

mean-teacher framework to filter inaccurate pseudo-labels.

3D-CoCo learns the instance-level transferable features for

better generalization. ST3D and ST3D++ adopt a memory

bank to produce high-quality pseudo-labels. Additionally,

we also compare GPA-3D with the Oracle method, which

trains the model on the labeled target data, serving as an

upper bound for performance.

4.2. Comparison with Stateoftheart Methods

Waymo → KITTI Adaptation. To validate the effec-

tiveness to the domain shift about object size, we con-
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Figure 6. Qualitative results of GPA-3D on Waymo → KITTI. For each box, we use the X to specify the orientation. The predicted results

and ground truths are painted in blue and green, respectively.

Table 3. Component ablation studies in GPA-3D. Proto indicates

the geometry-aware prototype alignment. Soft is the soft contrast

loss. NSS means the noise sample filtering. IRA represents the

instance replacement augmentation.

Setting Proto Soft NSS IRA APBEV AP3D

(a) 77.87 60.36

(b) ✓ 80.49 66.28

(c) ✓ ✓ 80.51 67.34

(d) ✓ ✓ ✓ 83.07 69.45

(e) ✓ ✓ ✓ 81.94 67.79

(f) ✓ ✓ ✓ ✓ 83.79 70.88

duct a comprehensive comparison on Waymo → KITTI.

As demonstrated in Tab. 1, with the 3D detector SECOND-

IoU, our proposed GPA-3D outperforms ST3D++ [37] with

a large margin, and significant performance gains are ob-

tained compared with previous best results, i.e., 5.24% of

AP3D and 1.6% of APBEV. Note that the APBEV of GPA-3D

is also higher than Oracle method, indicating the effective-

ness of incorporating the geometric structure information

into UDA on 3D detection task. Even switching the base

detector to PointPillars, our method still exceeds previous

SOTA 3D-CoCo [39] by 7.94% and 1.19% in terms of AP3D

and APBEV, respectively.

Waymo → nuScenes Adaptation. For the domain gap

of LiDAR beams, we select Waymo → nuScenes as rep-

resentatives due to their different LiDAR sensors, i.e., 64-

beam vs 32-beam. As shown in Tab. 2, GPA-3D improves

the adaptation performances to 37.25% APBEV and 22.54%

AP3D with the SECOND-IoU detector, surpassing previous

SOTA methods. Compared with ST3D++ [37], 1.52% and

1.64% gains separately in terms of APBEV and AP3D are

achieved. Based on PointPillars, our approach exceeds the

best method 3D-CoCo [39] by 2.37% in APBEV, and out-

performs ST3D [36] with 4.87% and 5.41% respectively in

terms of APBEV and AP3D. These improvements demon-

strate the advancement of our GPA-3D to mitigate the more

challenging domain shift of cross-beam scenarios.

4.3. Ablation Studies

All ablation studies are conducted on Waymo → KITTI

with SECOND-IoU as the base detector.
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Figure 7. Ablations on the geometry-aware prototype alignment.

Baseline is the co-training method without any feature align-

ment. V-Proto refers to the vanilla alignment with a pair of

fore/background prototypes. G-Proto[n] indicates that n proto-

types are employed in GPA-3D.

Component Analysis in GPA-3D. We assess the effec-

tiveness of each component in GPA-3D, as presented in

Tab. 3. Baseline (a) represents self-training via pseudo-

labels on the target domain. The application of geometry-

aware prototype alignment provides 5.92% and 2.62% gains

separately in terms of AP3D and APBEV, and the soft con-

trast loss brings an improvement of 1.06% on AP3D. The

improvements demonstrate that incorporating the geometric

relationship into domain adaptation is feasible and effective.

In addition, NSS and IRA boost the performance by around

2.5% and 1.5% respectively, which indicates the efficacy of

enhancing the quality of supervision on target data.

Effectiveness of Geometry-aware Prototype Alignment.

We further investigate the effects of the geometry-aware

prototype alignment. As illustrated in Fig. 7, the vanilla

alignment with one pair of fore/background prototypes per-

forms better than the co-training baseline, implying that

the misalignment of features distribution affects the perfor-

mance. Applying two prototypes yields 3.57% and 5.05%

gains of APBEV and AP3D respectively, compared to the

co-training baseline. The performance reaches to the peak

of 84.44% APBEV when 4 foreground prototypes are em-

ployed, indicating the advancement of combining geometric

information with feature alignment. However, we observe

minor performance degradation when too many prototypes

are used, which we attribute to redundant prototypes leading
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Table 4. Ablations on noise sample suppression. The symbols -T/-

S denote that NSS is applied solely on the target/source domain,

while -TS performs NSS on both target and source domains. -TSH

additionally adopts a hard truncated factor, i.e., α = 0.

Methods Filter Domain α APBEV AP3D

GPA-3D (w/o NSS) - - 81.94 67.79

GPA-3D (w/ NSS-T) Target 0.5 83.37 68.24

GPA-3D (w/ NSS-S) Source 0.5 82.33 67.93

GPA-3D (w/ NSS-TS) Target + Source 0.5 83.45 69.77

GPA-3D (w/ NSS-TSH) Target + Source 0.0 83.79 70.88

Table 5. Effects of the instance replacement augmentation. Ran-

dRep discards the group mechanism in IRA.

Method w/o IRA RandRep w/ IRA

APBEV / AP3D 83.07 / 69.45 82.99 / 69.59 83.79 / 70.88

Table 6. Comparison with different adaptation frameworks.

Source refers to the Source Only method. Self-T. is the self-

training framework. Co-T. symbolizes the co-training pipeline.

Mean T. represents the mean teacher paradigm.

Framework Source Self-T. Co-T. Mean T. GPA-3D

APBEV / AP3D 67.64 / 27.48 77.87 / 60.36 80.06 / 61.67 80.01 / 64.62 83.79 / 70.88

to indistinguishable features in the representational space.

Effectiveness of Noise Sample Suppression. We con-

duct ablations on the noise sample filter (NSS) with various

settings. As shown in Tab. 4, the detection performance

drops to 67.79% AP3D, when we remove the NSS from

GPA-3D. Only applying the NSS on target domain achieves

the gains of 1.43% and 0.45% on APBEV and AP3D, respec-

tively. We could see that using NSS on the source domain

could also bring improvements. We think this is due to the

fact that NSS suppresses those source samples with only a

few points, which are very similar to the background noise.

When the hard truncated α is adopted, AP3D is further im-

proved to 70.88%, indicating the effectiveness of NSS.

Effectiveness of Instance Replacement Augmentation.

Also, we compare different policies in instance replace-

ment augmentation (IRA). We can see from Tab. 5 that our

proposed IRA attains 0.72% and 1.43% gains in terms of

APBEV and AP3D, respectively. Without the group mecha-

nism in IRA, i.e., randomly replacing pseudo-labels with

instances the database, only marginal gains are obtained

in AP3D, and even degradation in APBEV. This highlights

the significance of maintaining the consistency between in-

stances and their contextual environments.

Domain Adaptation Frameworks. We compare our pro-

posed GPA-3D with several adaptation frameworks, as pre-

sented in Tab. 6. The results confirm the effectiveness

of GPA-3D, which leverages the geometric association to
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Figure 8. Comparisons of self-training baseline and our GPA-3D.
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Figure 9. The t-SNE visualization of BEV features. The feature

points are obtained by SECOND-IoU on Waymo → nuScenes.

transfer 3D detectors across different domains. Fig. 8 fur-

ther illustrates that, despite all models fluctuate at early

epochs, our GPA-3D steadily and consistently enhances the

detection performance in later training stages.

Visualization. We exhibit some qualitative results of

cross-domain adaptation in Fig. 6. Additionally, in Fig. 9,

we visualize the distribution of BEV features. It is obvious

that GPA-3D aggregates foreground samples into different

prototypes, and separates them from the backgrounds. Fur-

ther visualizations can be found in the supplements.

5. Conclusion

This paper presents a novel framework for unsupervised

domain adaptive 3D detection. Our proposed GPA-3D

leverages the underlying geometric relationship to reduce

the distributional discrepancy in the feature space, thus mit-

igating the domain shift problems. Comprehensive experi-

ments demonstrate that our method is effective and can be

easily incorporated into mainstream LiDAR-based 3D de-

tectors. For future work, we plan to extend GPA-3D to sup-

port multi-modal 3D detectors. This requires a more effi-

cient alignment mechanism to process feature streams from

both point clouds and images.
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