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Figure 1: (a) Current methods for human mesh recovery could be classified into two categories: AvgFeatReg [25, 32]
and JointFeatReg [10, 56, 72], which focus on improving 2D alignment by using average 2D features (feat.) for regression
and employing sampled 2D joint feature for regression, respectively. In contrast, our proposed novel techniques (i.e.,
FusionFeatReg), fuse 2D and 3D features for regression to enhance both 2D and 3D alignment. (b) Moreover, to provide
global supervision for the entire 3D space, we introduce a 3D joint contrastive learning method, which stands in contrast to
previous approaches that solely apply 3D joints as local supervision.

Abstract
In this study, we focus on the problem of 3D human mesh

recovery from a single image under obscured conditions.
Most state-of-the-art methods aim to improve 2D alignment
technologies, such as spatial averaging and 2D joint sam-
pling. However, they tend to neglect the crucial aspect of 3D
alignment by improving 3D representations. Furthermore,
recent methods struggle to separate the target human from
occlusion or background in crowded scenes as they optimize
the 3D space of target human with 3D joint coordinates as lo-
cal supervision. To address these issues, a desirable method
would involve a framework for fusing 2D and 3D features
and a strategy for optimizing the 3D space globally. There-
fore, this paper presents 3D JOint contrastive learning with
TRansformers (JOTR) framework for handling occluded 3D
human mesh recovery. Our method includes an encoder-
decoder transformer architecture to fuse 2D and 3D repre-
sentations for achieving 2D&3D aligned results in a coarse-
to-fine manner and a novel 3D joint contrastive learning
approach for adding explicitly global supervision for the 3D
† Jiahao Li worked on this at his Alibaba internship.
‡ Yi Yang is the corresponding author.

feature space. The contrastive learning approach includes
two contrastive losses: joint-to-joint contrast for enhancing
the similarity of semantically similar voxels (i.e., human
joints), and joint-to-non-joint contrast for ensuring discrimi-
nation from others (e.g., occlusions and background). Quali-
tative and quantitative analyses demonstrate that our method
outperforms state-of-the-art competitors on both occlusion-
specific and standard benchmarks, significantly improving
the reconstruction of occluded humans. Code is available at
https://github.com/xljh0520/JOTR.

1. Introduction
The estimation of 3D human meshes from single RGB

images is an active area of research in computer vision with
a broad range of applications in robotics, AR/VR, and hu-
man behavior analysis. In contrast to estimating the pose
of general objects [69], human mesh recovery is more chal-
lenging due to the complex and deformable structure of
the human body. Nevertheless, enhancing human-centric
tasks can be achieved by combining visual features and
prior knowledge about human anatomy through construct-
ing multi-knowledge representations [66]. Generally, the
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human mesh recovery task takes a single image as input and
regresses human model parameters such as SMPL [46] as
output.

Driven by deep neural networks, this task has achieved
rapid progress [10, 21, 25, 28, 31–33, 41, 42, 56, 57, 72,
76]. Recent studies have focused on regressing accurate
human meshes despite occlusions. To achieve this, most of
them employ 2D prior knowledge (e.g., UV maps [76], part
segmentation masks [31] and 2D human key points [28]) to
focus the model on visible human body parts for enhancing
the 2D alignment of the predicted mesh. Additionally, some
methods [10, 57] introduce 3D representations to locate 3D
joints and extract 2D features from the corresponding regions
of the 2D image.

Even though the above methods have achieved signifi-
cant progress in occluded human mesh recovery, they still
remain constrained to these two aspects: the pursuit of 2D
alignment and local supervision for 3D joints. (i) As shown
in Fig. 1a, the above methods employing 2D prior knowl-
edge mainly focus on 2D alignment technologies, includ-
ing spatial averaging and 2D joint sampling. However, in
crowded or occluded scenarios, solely focusing on 2D align-
ment may acquire ambiguous features for the entire mesh
due to the lack of estimation of hidden parts. Accordingly,
the invisible human body parts would be aligned based on
prior knowledge of the standard SMPL template, resulting in
misalignment with visible parts and leading to inaccurate 3D
reconstructions. (ii) Furthermore, creating a comprehensive
and precise 3D representation from a single RGB image is
an ill-posed problem as the inherently limited information.
As illustrated in Fig. 1b, some methods that use 3D repre-
sentations rely on localized 3D joints as local supervision,
ignoring the rich semantic relations between voxels across
different scenes. These “local” contents (i.e., human joints)
occupy only a small portion of the 3D space, while most
voxels are often occupied by occlusions and background.
Consequently, the lack of explicit supervision for the entire
3D space makes it difficult to differentiate target humans
from other semantically similar voxels, resulting in ambigu-
ous 3D representations.

Therefore, to improve occluded human mesh recovery,
we consider investigating a fusion framework that integrates
2D and 3D features for 2D&3D alignment, along with a
global supervision strategy to obtain a semantically clear
3D feature space. By leveraging the complementary infor-
mation from both 2D and 3D representations, the network
could overcome the limitations of using only a single 2D rep-
resentation, enabling obscured human parts to be detected in
3D representations and achieving 2D&3D alignment. Given
a global supervision strategy, we could explicitly supervise
the entire 3D space to highlight the representation of tar-
get humans and distinguish them from other semantically
similar voxels, resulting in a semantically clear 3D feature

space.
Based on the above motivation, this paper proposes a

novel framework, 3D JOint contrastive learning with TRans-
formers (JOTR), for recovering occluded human mesh using
a fusion of multiple representations as shown in Fig. 1a.
Unlike existing methods such as 3DCrowdNet [10] and
BEV [57] that employ 3D-aware 2D sampling techniques,
JOTR integrates 2D and 3D features through transformers
[60] with attention mechanisms. Specifically, JOTR utilizes
an encoder-decoder transformer architecture to combine 3D
local features (i.e., sampled 3D joint features) and 2D global
features (i.e., flatten 2D features), enhancing both 2D and 3D
alignment. Besides, to obtain semantically clear 3D represen-
tations, the main objective is to strengthen and highlight the
human representation while minimizing the impact of irrele-
vant features (e.g., occlusions and background). Accordingly,
we propose a new approach, 3D joint contrastive learning
(in Fig. 1b), that provides global and explicit supervision for
3D space to improve the similarity of semantically similar
voxels (i.e., human joints), while maintaining discrimination
from other voxels (e.g., occlusions). By carefully designing
3D joint contrast for 3D representations, JOTR can mitigate
the effects of occlusion and acquire semantically meaning-
ful 3D representations, resulting in accurate localization of
3D human joints and acquisition of meaningful 3D joint
features.

We conduct extensive experiments on both standard
3DPW benchmark [61] and occlusion benchmarks such as
3DPW-PC [56, 61], 3DPW-OC [61, 76], 3DPW-Crowd [10,
61], 3DOH [76] and CMU Panoptic [22], and JOTR
achieves state-of-the-art performance on these datasets. Es-
pecially, JOTR outperforms the prior state-of-the-art method
3DCrowdNet [10] by 6.1 (PA-MPJPE), 4.9 (PA-MPJPE),
and 5.3 (MPJPE) on 3DPW-PC, 3DPW-OC, and 3DPW
respectively. Moreover, we carry out comprehensive ab-
lation experiments to demonstrate the effectiveness of our
framework and 3D joint contrastive learning strategy. Our
contributions are summarized as follows:

• We propose JOTR, a novel method for recovering
occluded human mesh using a fusion of 2D global
and 3D local features, which overcomes limitations
caused by person-person and person-object occlu-
sions and achieves 2D&3D aligned results. JOTR
achieves state-of-the-art results on both standard and
occluded datasets, including 3DPW, 3DPW-PC, 3DPW-
OC, 3DOH, CMU Panoptic, and 3DPW-Crowd.

• We develop a 3D joint contrastive learning strategy that
supervises the 3D space explicitly and globally to obtain
semantically clear 3D representations, minimizing the
impact of occlusions and adapting to more challenging
scenarios with the help of cross-image contrast.
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2. Related Work
Based on the incorporation of a human body model [46,

53], Deep Neural Network-based 3D Human Mesh Recovery
methods [9, 10, 12, 15, 21, 25, 28–33, 36, 41, 42, 50, 55–
57, 59, 72, 76] can be divided into two categories. The first,
SMPL-based approaches [21, 25, 30–32, 55–57, 72], maps
input pixels to SMPL parameters [46] such as pose and shape
and reconstructs meshes by SMPL models, while the second,
SMPL-free methods [33, 41, 42], directly maps raw pixels
to 3D mesh vertices without the assistance of SMPL models.
In this paper, we mainly consider the first method as the
implementation approach.
Human Mesh Recovery. Usually, human mesh recovery
methods estimate 3D human mesh of a single person within
a person bounding box, which is scaled to the same size.
This allows us to assume that the distance between each in-
dividual and the camera is roughly equivalent in the cropped
image patch. Early works [25, 32] employ spatial averaging
on CNN features for obtaining global features and utilize
Multi-Layer Perceptrons (MLPs) to regress SMPL parame-
ters. However, global pooling is not suitable for achieving
pixel-aligned results, leading to subpar performance in real-
world scenarios. PARE [31] proposes using part segmenta-
tion masks to enhance pixel alignments. Zhang et al. [76]
make use of occlusion segmentation masks to allow the
model to attend to the visible human body parts, which also
helps to reconstruct complete human mesh. OCHMR [28]
employs load-global center maps to make the model regress
the mesh of the referred person. While these methods make
progress in occluded human mesh recovery by enhancing
the ability to represent 2D information, they overlook the
3D structural information. 3DCrowdNet [10] and BEV [57]
introduce 3D representations to locate human joints in 3D
space. However, these approaches also have limitations
since they extract 2D CNN features in the corresponding
region of located 3D joints, thereby overlooking the full
potential of 3D representations. Therefore, we design a fu-
sion framework to integrate 2D and 3D features for mutual
complementation.
Multi-Modality Transformers. Following the success of
vision transformers in processing image [3, 6, 11, 45] or
video [2, 67, 68], multi-modality transformers [7, 24, 34, 37–
39, 73–75] are capable of processing input data from mul-
tiple modalities, such as text, image, audio, or video, in a
single model. The attention mechanism is a key component
of transformers, which enables them to selectively focus on
relevant parts of the input sequence when generating the
output. Returning to the present task, it is worth noting that
although there is only one visual modality, two distinct rep-
resentations (i.e., 2D and 3D representations) are available.
Thus, we propose using transformers with attention mecha-
nisms to integrate multi-representation features, rather than
relying on global average pooling or joint feature sampling

in CNN features.
Contrastive Learning. Contrastive learning [4, 5, 14, 17] is
a type of unsupervised learning that aims to learn a similarity
metric between data samples. The goal of contrastive learn-
ing is to bring similar examples closer together in feature
space while pushing dissimilar examples farther apart. With
regards to the current objective, in 3D space, human body
joints occupy a relatively small proportion, with the majority
of voxels in the space being occupied by other objects (e.g.,
another person’s body, background elements, and empty el-
ements). This poses a significant challenge in learning a
similarity metric between data samples in 3D space. To ad-
dress this issue, we propose a novel joint-based contrastive
learning strategy inspired by the recent success of pixel con-
trastive learning in semantic segmentation [1, 19, 62, 77],
which enables the network to learn a clear similarity metric
in 3D space.

3. Method
Human Body Model. SMPL [46] represents a 3D human
mesh by 3 low-dimensional vectors (i.e., pose θ ∈ R72,
shape β ∈ R10 and camera parameters π ∈ R3). Following
previous methods [10, 25, 31, 32, 56], we use the gender-
neutral shape model. The SMPL model generates a 3D
mesh M(θ, β) ∈ R6890×3 through a differentiable function.
By applying a pretrained linear regressor W ∈ RN×6890,
we obtain the 3D joint coordinates J3D = WM ∈ RN×3,
where N = 17, conveniently. Additionally, we obtain the
2D joints J2D = Π(J3D, π) ∈ RN×2 by projection.
Overview. We propose a method called JOTR, which uti-
lizes transformers to fuse 2D and 3D features for 2D&3D
alignment and a novel contrastive learning strategy to glob-
ally supervise the 3D space for target humans. Our pipeline
is depicted in Fig. 2a and explained in Sec. 3.1, where JOTR
regresses SMPL parameters by fusing 2D and 3D features ob-
tained from a cropped image patch. The proposed 3D joint
contrastive learning is illustrated in Fig. 3 and explained
in Sec. 3.2, including two contrastive losses: joint-to-non-
joint contrast and joint-to-joint contrast.

3.1. Fusing 2D and 3D Features with Transformers

As analyzed in Sec. 1, relying solely on 2D features for
achieving 2D alignment to reconstruct the human mesh in
occluded scenarios may result in suboptimal performance.
To overcome this limitation, we propose integrating both
2D and 3D features with transformers in the reconstruction
process. Drawing inspiration from the success of transformer
models in multi-modality fusion [24, 34], we propose an
encoder-decoder transformer architecture that enables the
mutual complementation of 2D and 3D features for 2D&3D
alignment.
Lifting Module. Unlike previous method [10] that lifts
2D features to 3D features via MLPs without integrating
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Figure 2: (a) The overview of our method. JOTR achieves 2D and 3D features from a cropped image patch and fuses them with
a fusion transformer for 2D and 3D alignment. (b) The detail of the lifting module, which is responsible for lifting pose-guided
2D features to space-aware 3D features. (c) The fusion transformer is applied for fusing 2D and 3D features with attention
mechanisms. (d) The refining layer combine sampled 3D joint features and 2D global features to refine the regression.

inductive bias or prior knowledge, we draw inspiration from
bird’s eye view representations [8, 40, 54, 57, 63, 65] in
3D space. As analyzed in BEV [57], the farther a voxel
is from the camera, the less information it carries. To put
this hypothesis into practice, BEV employs pre-defined 3D
camera anchor maps to impact the 3D feature. Similar to
BEV, we design learnable Rescaled Relative 3D Coordinates
(RRC) C3D ∈ RD×H×W×3 in range (0, 1) to provide 3D
spatial prior knowledge. In this representation, Cijk ∈ R3

represents the relative location of voxel (xk, yj , zi) and the
x and y coordinates are uniformly distributed with equal
intervals. For Z axis, we utilize a monotonically increasing
convex function ψ to rescale z coordinates unevenly as z′ =
ψ(z). In practice, we employ ψ(z) = zλ, λ > 1 as rescaling
function and λ is a learnable parameter with initial value of
3.0. The whole pipeline can be written as:

ˆF3D = MLP (F2D),

˜F3D = CNN(Concat( ˆF3D , C3D)),

H3D = TransformerEncoder( ˜F3D).

JOTR first lifts pose-guided 2D feature F2D ∈ RH×W×C

which is obtained from image and joint heatmap through
CNN encoder to coarse 3D feature ˆF3D ∈ RD×H×W×C via
MLPs without any inductive bias or prior knowledge. Then,
JOTR concatenates ˆF3D andC3D in channel dimension. Fol-
lowing CoordConv [44], we apply a convolutional block to
refine the concatenated feature to achieve space-aware 3D
feature ˜F3D ∈ RD×H×W×C . Finally, we utilize a trans-
former encoder (i.e., 3D transformer encoder in Fig. 2a) to
enhance the global interaction of 3D space via self-attention
mechanism,

Attention(Q,K, V ) = softmax

(
QK√
C

)
V, (1)

achieving the hidden state H3D ∈ RD×H×W×C . For the
sake of simplicity, we omit the positional encoding and rear-
rangement of tensor in Eq. (1).
Fusion Transformer. In contrast to prior 2D alignment
technologies such as spatial averaging and 2D joint feature
sampling, we propose the use of attention mechanisms to
selectively focus on semantically distinct areas (i.e., visible
human parts). Moreover, to estimate hidden information for
achieving 3D alignment, we extend 2D features with 3D joint
feature sampling. Drawing inspiration from the successful
fusion of image and text representations in MDETR [24]
and Moment-DETR [34], we design a transformer decoder-
based fusion transformer to integrate 2D and 3D features and
regress SMPL parameters in a coarse-to-fine manner leading
to 2D & 3D alignment.
SMPL/Joint Query. Instead of concatenating or pooling
on 2D and 3D features, JOTR decouples the SMPL param-
eters and 2D/3D joint features into separate query tokens,
Query ∈ RNq×C , comprising two distinct parts. The Ns

tokens belong to SMPL token, where Ns = 3, and are re-
sponsible for regressing pose, shape and camera parameters
{θ, β, π} respectively. The remaining Nj = Nq − Ns to-
kens are responsible for locating 3D joints of the human and
extracting corresponding 3D joint features, which refine the
SMPL parameters and provide auxiliary supervision for the
3D space.
2D-Based Initial Regression. As shown in Fig. 2c, we
initially have no prior knowledge about the 3D joint loca-
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tions. We regress the SMPL parameters and initial 3D joints
with a transformer decoder reasoning in 2D hidden state
H2D ∈ RH×W×C which is obtained by a transformer en-
coder (i.e., 2D transformer encoder in Fig. 2a) working on
F2D. H2D is set as K and V , and Query tokens are treated
as Q in Eq. (1). Subsequently, we obtain initial predictions
for pose, shape, camera parameters, and 3D joint coordinates
via MLPs working on the output of transformer decoder.
Refining with 3D Features. To conserve computing re-
sources, we avoid directly concatenating the hidden states
(i.e., H2D and H3D). Instead, we use the initial prediction
of 3D joints J ′

3D ∈ RNj×3 as reference points to sample
“local” 3D joint features HJ3D

= F (H3D, J
′
3D) ∈ RNj×C

like [78] in Fig. 2d, where F(·) denotes feature sampling and
trilinear interpolation. We then concatenate H2D with HJ3D

and feed them into another transformer decoder (i.e., a stack
of refining layers in Fig. 2c) as K and V in Eq. (1). Note
that Z axis is not uniform in our 3D space. When sampling
“local” 3D joint features, we also apply ψ to rescale z in J ′

3D

as mentioned earlier. Since the refining process consists of
several identical transformer decoder layers, we naturally
consider utilizing the outputs of each layer Hd ∈ RL×N×C

as a cascade refinement,
βl+1 = βl +MLP

(
βl, Hl

d

)
, (2)

where l denotes the l-th refining layer and MLP
(
βl, H l

d

)
is responsible for learning the residual for correcting param-
eters via MLPs. Besides, we also regress and J ′

3D and the
input of Vposer [53] with cascaded refinement as shown
above.

3.2. 3D Joint Contrastive Learning

As analyzed in Sec. 1, due to the lack of explicit “global”
supervision for 3D representations, the “local” 3D joint coor-
dinates may not provide accurate enough supervision for the
3D features. Especially when the target person is obstructed
by other individuals, similarities in their semantic appear-
ances could result in confusion. To address this challenge,
we propose a 3D joint contrastive learning strategy inspired

by the success of pixel contrastive learning in semantic seg-
mentation [62]. This approach enhances the representation
of the target person while distinguishing them from other
objects (e.g., other people, occlusions, and background).
Vanilla Contrastive Learning. In computer vision, con-
trastive learning was originally applied for unsupervised
representation learning, where the goal is to minimize the
distance between similar images (i.e., an image with its aug-
mented version) while maximizing the distance between
dissimilar images (i.e., an image with another image in train-
ing set) in an embedding space. Usually, InfoNCE [16, 51]
is used as the loss function for contrastive learning,

LNCE
I =− log

exp(i·i+/τ)
exp(i·i+/τ)+

∑
i−∈NI

exp(i·i−/τ) , (3)

where I is the anchor image, i ∈ RC is the representation
embedding of I , i+ is an embedding of a positive for I ,
NI contains embeddings of negatives, ‘·’ denotes the inner
(dot) product, and τ > 0 is a temperature hyper-parameter.
Note that all the embeddings in the loss function are ℓ2-
normalized.
Joint-to-Non-Joint Contrast. As shown in Fig. 3a, to better
distinguish occlusion cases, we consider joint-to-non-joint
contrast between the n-th round predicted joints (in Fig. 2c)
and the entire 3D space, as there are many voxels outside the
joints. We augment Eq. (3) in our joint-to-non-joint contrast
setting. Since we employ trilinear interpolation to acquire
the joint embedding from H3D, the joint embedding is a
weighted sum of the 8 voxel embeddings in the 3D space.
As a result, for an anchor joint j, the positive samples are
other predicted joints (not restricted to belonging to the same
class), and the negative samples are the voxels that have no
contribution to any joint embeddings. The joint-to-non-joint
contrastive loss is defined as:

LNCE
j2n =

1

|Pj |
∑

j+∈Pj

−log
exp(j ·j+/τ)

exp(j ·j+/τ) +
∑

n−∈Nn
exp(j ·n−/τ)

,

(4)
where Pj is joint embedding collections of positive samples
and Nn denote non-joint voxel embedding collections of
negative samples, for joint j.
Joint-to-Joint Contrast. As shown in Fig. 3b, to strengthen
the internal connections among joints of the same category,
we consider joint-to-joint contrast among human joints. We
extend Eq. (3) for applying to our joint-to-joint contrast
setting. Essentially, the data samples in our contrastive loss
computation are the n-th round predicted joints (in Fig. 2c)
and ground truth 3D joints. For an anchor joint j from
predicted joints with its corresponding semantic label c̄ (e.g.,
head, right hand, and neck), the positive samples are ground
truth joints that also belong to the class c̄, and the negative
samples are the n-th round predicted joints belonging to
the other classes C \ {cj}. As a result, the joint-to-joint
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Method 3DPW-OC 3DOH 3DPW-PC 3DPW-Crowd
MPJPE↓PA-MPJPE↓ PVE↓ MPJPE↓PA-MPJPE↓ PVE↓ MPJPE↓PA-MPJPE↓ PVE↓ MPJPE↓PA-MPJPE↓ PVE↓

I2L-MeshNet [50] 92.0 61.4 129.5 - - - 117.3 80.0 160.2 115.7 73.5 162.0
SPIN [32] 95.5 60.7 121.4 110.5 71.6 124.2 122.1 77.5 159.8 121.2 69.9 144.1
PyMAF [72] 89.6 59.1 113.7 101.6 67.7 116.6 117.5 74.5 154.6 115.7 66.4 147.5
ROMP [56] 91.0 62.0 - - - - 98.7 69.0 - 104.8 63.9 127.8
OCHMR [28] 112.2 75.2 145.9 - - - - - - - - -
PARE* [31] 83.5 57.0 101.5 109.0 63.8 117.4 96.8 64.5 122.4 94.9 57.5 117.6
3DCrowdNet [10] 83.5 57.1 101.5 102.8 61.6 111.8 90.9 64.4 114.8 85.8 55.8 108.5
Ours 75.7 52.2 92.6 98.7 59.3 104.8 86.5 58.3 109.7 82.4 52.0 103.4

Table 1: Comparisons to the state-of-the-art methods under severe occlusion. The units for mean joint and vertex errors are in
mm. PARE* use a HRNet-32 backbone, others are with ResNet-50.

contrastive loss is defined as:

LNCE
j2j =

1

|Pj |
∑

j+∈Pj

−log
exp(j ·j+/τ)

exp(j ·j+/τ) +
∑

j−∈Nj
exp(j ·j−/τ)

,

(5)
where Pj and Nj denote joint embedding collections of the
positive and negative samples, respectively, for joint j.

Note that the positive and negative samples, as well as
the anchor joint j in both joint-to-non-joint and joint-to-joint
contrast are not necessarily limited to the same 3D space.
The joint-to-non-joint contrastive loss in Eq. (4) and joint-to-
joint contrastive loss in Eq. (5) are complementary to each
other; the former enables the network to learn discriminative
joint features that are distinctly different from those of other
non-joint voxels (e.g., occlusions), while the latter helps to
regularize the joint embedding space by improving intra-
class compactness and inter-class separability.

3.3. Loss Function.

Finally, we obtain refined SMPL parameters {θ, β, π}.
We can achieve mesh vertices M = M(θ, β) ∈ R6890×3

and 3D joints from mesh J3D = WM ∈ RN×3 accord-
ingly. We follow common practices [10, 25, 32] to project
3D joints on 2D space J2D = Π(J3D, π) ∈ RN×2 and
add supervisions with 2D keypoints. Meanwhile, when 3D
annotations are available, we also add 3D supervision on
SMPL parameters and 3D joint coordinates. Overall, the
loss function can be written as follows:

L =λ3DL3D + λ2DL2D + λSMPLLSMPL

+ λj2n

∑
j
LNCE

j2n + λj2j

∑
j
LNCE

j2j ,
(6)

where j is the sampled anchor joints and the first three is
calculated as:

L3D = ∥J3D − ˆJ3D∥,

L2D = ∥J2D − ˆJ2D∥,

LSMPL = ∥θ − θ̂∥+ ∥β − β̂∥,

where ∥ · ∥ denotes L1 norm. ˆJ2D, ˆJ3D, θ̂, and β̂ denote the
ground truth 2D keypoints, 3D joints, pose parameters and
shape parameters, respectively.

4. Experiments

Implementation Detail. This proposed JOTR is validated
on the ResNet-50 [18] backbone. Following 3DCrowd-
Net [10], we initialize ResNet from Xiao et al. [64] for
fast convergence. We use AdamW optimizer [47] with a
batch size of 256 and weight decay of 10−4. The initial
learning rate is 10−4. The ResNet-50 backbone takes a
256× 256 image as input and produces image features with
size of 2048× 8× 8. We build the 3D features with size of
256× 8× 8× 8 and 2D features with size of 256× 8× 8.
As for weights for multiple different losses, we follow [27]
to adjust them dynamically using learnable parameters. For
joint-to-non-joint contrast, we sample 100 anchor joints per
GPU in each mini-batch, which are paired with 1024 positive
and 2048 and negative samples. For joint-to-joint contrast,
we sample 100 anchor joints per GPU in each mini-batch,
which are paired with 128 positive and 256 and negative
samples. Both contrastive losses are set to a temperature
of 0.07. More details can be found in the supplementary
material.
Training. Following the settings of previous work [10, 25,
32], our approach is trained on a mixture of data from sev-
eral datasets with 3D and 2D annotations, including Hu-
man3.6M [20], MuCo-3DHP [48], MSCOCO [43], and
CrowdPose [35]. Only the training sets are used, follow-
ing the standard split protocols. For the 2D datasets, we also
utilize their pseudo ground-truth SMPL parameters [49] for
training.
Evaluation. The 3DPW [61] test split, 3DOH [76] test
split, 3DPW-PC [56, 61], 3DPW-OC [61, 76], 3DPW-
Crowd [10, 61] and CMU-Panoptic [22] datasets are used
for evaluation. 3DPW-PC and 3DPW-Crowd are the person-
person occlusion subset of 3DPW, 3DPW-OC is the person-
object occlusion subset of 3DPW and 3DOH is another
person-object occlusion specific dataset. We adopt per-
vertex error (PVE) in mm to evaluate the 3D mesh error.
We employ Procrustes-aligned mean per joint position er-
ror (PA-MPJPE) in mm and mean per joint position error
(MPJPE) in mm to evaluate the 3D pose accuracy. As for
CMU-Panoptic, we only report mean per joint position error
(MPJPE) in mm following previous work [10, 21, 56].
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Method MPJPE↓ PA-MPJPE↓ PVE↓
HMR [25] 130.0 76.7 -
Kanazawa et al. [26] 116.5 72.6 139.3
GCMR [33] - 70.2 -
DSD-SATN [58] - 69.5 -
SPIN [32] 96.9 59.2 116.4
I2L-MeshNet [50] 93.2 58.6 136.5
PyMAF [72] 92.8 58.9 110.1
OCHMR [28] 89.7 58.3 107.1
EFT [23] - 54.2 -
ROMP [56] 89.3 53.5 105.6
PARE [31] 82.9 52.3 99.7
3DCrowdNet [10] 81.7 51.2 98.3
Ours 76.4 48.7 92.6

Table 2: Comparisons to the state-of-the-art methods on
standard 3DPW [61] test split.

Method Haggl. Mafia Ultim. Pizza Mean
Zanfir et al. [70] 140.0 156.9 150.7 156.0 153.4
Zanfiret al. [71] 141.4 152.3 145.0 162.5 150.3
Jiang et al. [21] 129.6 133.5 153.0 156.7 143.2
ROMP [56] 111.8 129.0 148.5 149.1 134.6
SPIN [32] 124.3 132.4 150.4 153.5 133.1
OCHMR [28] 115.5 123.7 142.6 150.6 133.1
REMIPS [13] 121.6 137.1 146.4 148.0 138.3
3DCrowdNet [10] 109.6 135.9 129.8 135.6 127.6
BEV* [57] 110.3 125.6 150.7 131.7 127.9
Ours 99.9 113.5 115.7 123.6 114.7

Table 3: Comparison on CMU-Panoptic [22]. The num-
bers denote MPJPE. For a fair comparison, we apply BEV*
model that is not fine-tuned on AGORA [52] (i.e., a syn-
thetic 3D dataset.).

2D Feature 3D Feature MPJPE ↓ PA-MPJPE↓ PVE↓
sampling none 78.3 54.2 94.7
flatting none 77.8 53.2 94.7

sampling sampling 77.4 53.8 94.6
flatting sampling 77.0 53.6 94.3

Table 4: Ablation study of utilization of 2D and 3D features.
Flatting: flatting in height and weight for tokenization. Sam-
pling: joint feature sampling for tokenization.

Index of Refining Layer MPJPE ↓ PA-MPJPE↓ PVE↓
0 276.5 124.7 308.8
1 145.5 103.2 185.9
2 109.8 68.7 131.6
3 77.0 53.6 94.3

Table 5: Validation of coarse-to-fine regression. We take
intermediate outputs of refining layers for regressing SMPL
parameters. Zero stands for 2D-based initial regression.

w/o SMPL Token MPJPE ↓ PA-MPJPE↓ PVE↓
✗ 79.8 54.0 95.9
✓ 77.0 53.6 94.3

Table 6: Ablation study of decoupling SMPL query. We
apply average pooling on outputs of joint query tokens for
regressing SMPL parameters when without SMPL query.

J2N J2J MPJPE ↓ PA-MPJPE↓ PVE↓
✗ ✗ 77.0 53.6 94.3
✓ ✗ 75.9 52.5 93.0
✗ ✓ 76.6 52.2 93.2
✓ ✓ 75.7 52.2 92.6

Table 7: Ablation study of 3D joint contrastive learning.
J2N: joint-to-non-joint contrast. J2J: joint-to-joint contrast.

4.1. Comparison to the State-of-the-Art on Occlu-
sion Benchmark

3DPW-OC [61, 76] is a person-object occlusion subset of
3DPW and contains 20243 persons. Tab. 1 shows our method
achieve a new state-of-the-art performance on 3DPW-OC.
3DOH [76] is a person-object occlusion-specific dataset and
contains 1290 persons in testing set, which incorporates a
greater extent of occlusions than 3DPW-OC. For a fair com-
parison, we initialize PARE with weights that are not trained
on the 3DOH training set, resulting in different performances
from the results reported in [31]. Tab. 1 shows our method
surpasses all the competitors with 59.3 (PA-MPJPE).
3DPW-PC [56, 61] is a multi-person subset of 3DPW and
contains 2218 persons’ annotations under person-person oc-
clusion. Tab. 1 shows our method surpasses all the competi-
tors with 58.8 (PA-MPJPE).
3DPW-Crowd [10, 61] is a person crowded subset of 3DPW
and contains 1923 persons. We slightly surpass previous
state-of-the-art as shown in Tab. 1.
CMU-Panoptic [22] is a dataset with multi-person indoor
scenes. We follow previous methods [10, 21] applying 4

scenes for evaluation without using any data from training
set. Tab. 3, shows that our method outperforms previous 3D
human pose estimation methods on CMU-Panoptic, which
means our model also works well for indoor and daily life
scenes.
4.2. Comparison to the State-of-the-Art on Stan-

dard Benchmark
3DPW [61] is the latest large-scale benchmark for 3D hu-
man mesh recovery. We do not use the training set and report
performance on its test split which contains 60 videos and
3D annotations of 35515 persons. As shown in Tab. 2, Our
method achieves state-of-the-art results among previous ap-
proaches. The results demonstrate the robustness of JOTR
to a variety of in-the-wild scenarios.
4.3. Analysis.

In this section, we analyze the main components of JOTR
and evaluate their impact on the mesh recovery performance.
More details and ablation studies can be found in the supple-
mentary material.
Utilization of 2D and 3D features: Tab. 4 demonstrates that
the incorporation of 3D features is beneficial for mesh recov-
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Figure 4: Visualization of cross-attention weights in the last
refining layer. We randomly sample 100 persons from 3DPW
test set and average the attention weights for visualization.

ery performance. For the utilization of 2D features, flatting
shows better performance than sampling, which supports our
hypothesis that sampling joint features in obscured regions
could have a negative impact. For 3D features, we do not
conduct experiments for flatting 3D features due to mem-
ory limitations. Moreover, we believe that 3D joint feature
sampling is adequate for alleviating occlusion problems by
attending to the accurate depth. Fig. 4 shows the attention
weights in the last refining layer. The query tokens signif-
icantly pay more attention to 3D features, which validates
the usefulness of our fusion framework.

Validation of coarse-to-fine regression: We validate the
accuracy of intermediate predictions of fusion transformer
in Tab. 5, which shows the coarse-to-fine regression process
in JOTR.

Decoupling SMPL query: JOTR performance improve-
ment is observed in Tab. 6 by decoupling SMPL query from
joint query. In the experiment without decoupling, we em-
ploy mean pooling on the decoder’s output and regress SMPL
parameters through MPLs. Decoupling SMPL query is pre-
sumed to enhance performance by reducing interference in
executing other tasks (e.g., joint localization) during SMPL
parameter regression.

3D Joint contrastive learning: The impact of 3D joint
contrastive learning on the performance of JOTR is pre-
sented in Tab. 7. Both joint-to-non-joint and joint-to-joint
contrastive losses result in improved performance, with the
former being more effective as it incorporates global super-
vision for the entire 3D space. Our contrastive losses also
lead to more compact and well-separated learned joint em-
beddings, as shown in Fig. 5. This indicates that our network
can generate more discriminative 3D features, producing
semantically clear 3D spaces and promising results.

(a) Embedding Space of Joint and Non-Joint Voexl

(b) Embedding Space of Joints

w/o Joint-to-Non-Joint Contrast w/ Joint-to-Non-Joint Contrast

w/o Joint-to-Joint Contrast w/ Joint-to-Joint Contrast

Figure 5: Visualization of features learned with (left) “local”
joint supervision and (right) our “global” 3D joint contrast
optimization objective (i.e., Eq. (4) and Eq. (5)) on 3DPW
test set [61]. Each color stands for a kind of joint (e.g., head
and right knee) in (b).

Input Image 3DCrowdNet PARE JOTR (Ours)
Failure Case

Figure 6: Qualitative results on 3DPW dataset [61]. Note
that we use no data from 3DPW for training. The bottom
row shows the failure cases of JOTR. JOTR performs badly
on extreme poses due to the lack of training data. More qual-
itative results can be found in the supplementary material.

5. Conclusion
Many human mesh recovery methods focus on 2D align-

ment technologies, which would fail under occlusions or
limited visibility. To address this limitation, we propose
JOTR, a novel method that combines 2D and 3D features
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using an encoder-decoder transformer architecture to achieve
2D&3D alignment. Furthermore, we introduce two noevl 3D
joint contrastive losses that enable global supervision of the
3D space of target persons, producing meaningful 3D rep-
resentations. Extensive experiments on 3DPW benchmarks
show that JOTR achieves the new state of the art.
Limitations and Broader Impact. 1) JOTR relies on the
human pose predictor to detect 2D keypoints, leading to long
inference times. 2) In the future, JOTR has the potential
to be integrated with bottom-up 3D human mesh recovery
methods for real-time applications.
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the Natural Science Foundation of Zhejiang Province
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