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Abstract

Amodal Instance Segmentation (AIS) endeavors to ac-
curately deduce complete object shapes that are partially
or fully occluded. However, the inherent ill-posed nature
of single-view datasets poses challenges in determining oc-
cluded shapes. A multi-view framework may help allevi-
ate this problem, as humans often adjust their perspective
when encountering occluded objects. At present, this ap-
proach has not yet been explored by existing methods and
datasets. To bridge this gap, we propose a new task called
Multi-view Amodal Instance Segmentation (MAIS) and in-
troduce the MUVA dataset, the first MUlti-View AIS dataset
that takes the shopping scenario as instantiation. MUVA
provides comprehensive annotations, including multi-view
amodal/visible segmentation masks, 3D models, and depth
maps, making it the largest image-level AIS dataset in terms
of both the number of images and instances. Additionally,
we propose a new method for aggregating representative
features across different instances and views, which demon-
strates promising results in accurately predicting occluded
objects from one viewpoint by leveraging information from
other viewpoints. Besides, we also demonstrate that MUVA
can benefit the AIS task in real-world scenarios. 1

1. Introduction
The amodal instance segmentation (AIS) task aims to

determine an object’s entire shape, encompassing its vis-
ible and occluded components. AIS task is more chal-
lenging than the visible instance segmentation task [23, 11]

*Corresponding author
1The proposed MUVA dataset can be downloaded from this link:

https://zhixuanli.github.io/project 2023 ICCV MUVA.

ill-posed 

problem

Figure 1. Comparison of the impact of ill-posed problems on
amodal prediction in single-view and multi-view input settings.
(a) In single-view input, ambiguity arises due to multiple candi-
dates for the occluded object. (b) Multi-view input helps alleviate
ambiguity and improves amodal prediction accuracy.

as it lacks occluded region appearance. Despite its com-
plexity, the AIS task has significant implications for vari-
ous industrial applications that encounter occlusion prob-
lems, such as robotic arm grasping [1], pedestrian re-
identification [34, 36, 29], automatic driving [27, 28], and
self-checkout systems in supermarkets [8].

Although numerous datasets [19, 40, 8, 27, 13] and
methods [19, 40, 8, 27, 13, 38, 33, 21] have been proposed
since the AIS task was firstly introduced in 2016 by Li
and Malik [19], current AIS datasets and methods rely on
a single-view approach, suffering from the ill-posed prob-
lem. For example, as shown in Fig. 1(a), directly deducting

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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the complete shape from a single-view image is extremely
challenging due to the presence of occluded regions with
multiple potential candidates. This is because distinct ob-
jects can share the same visible appearance but differ in
shape within the occluded region. However, as shown in
Fig. 1(b), humans tend to observe occluded objects from
multiple angles to obtain accurate predictions.

Inspired by this observation, this paper proposes a
novel task called MAIS (Multi-view Amodal Instance
Segmentation), which predicts amodal segmentations
through multiple viewpoints. The task is designed for real-
world applications, under the assumption that the number
of viewpoints and field of vision is limited, and objects in
the scene are closely distributed with reasonable occlusion.
These assumptions contribute to the difficulty and practical
significance of the MAIS task.

To study the MAIS task, creating a multi-view AIS
dataset is essential. However, annotating multi-view data
based on existing or newly collected real-world data in-
volve significant efforts and may not be accurate in iden-
tifying shapes of occluded regions. This is because man-
ually annotated amodal masks in real-world datasets are
often inaccurate and inconsistent due to the varying shape
prior knowledge of annotators, as shown in Fig. 2 (copied
from [40]). Therefore, using a synthetic approach would
be more precise and controllable. To create a synthetic
dataset, one option is to build upon existing synthetic AIS
datasets [6, 13, 14]. However, these datasets lack high-
quality 3D models and sufficient occlusion. To overcome
the limitation, we propose to create a new synthetic dataset
comprising reconstructed high-quality 3D models and suf-
ficient occlusion by controlling the distribution of objects.
As an initial step in exploring the MAIS task, we limit our
dataset construction to a single scenario. Specifically, the
shopping scenario is selected due to its potential for multi-
ple camera arrangements and its tendency for severe occlu-
sion when goods are piled up. Consequently, we introduce
MUVA, a novel MUlti-View Amodal Instance Segmenta-
tion dataset. The dataset creation process follows a standard
three-step approach. Initially, 3D artists construct models
from images collected from on-sale items. Next, 3D mod-
els are then selected and placed in a 3D scene with care-
ful compositions to control the occlusion degree. Finally,
multi-view images are captured by six simulated cameras
to simulate a real-world self-checkout setting. Each image
is extensively annotated with visible/amodal segmentation
masks, depth maps, occlusion orders, and 3D models.

To our best knowledge, MUVA is the first and only
multi-view AIS dataset currently available. Unlike real-
world-based AIS datasets [19, 40, 8, 27], MUVA provides
precise annotations in the occluded region due to its syn-
thetic nature and known ground-truth 3D models. Besides,
MUVA is also the largest image-level AIS dataset in terms

of both images and instances.

To exploit the multi-view information in MUVA, we in-
troduce MASFormer, a novel method that aggregates infor-
mation across different views and instances. Through com-
parative experiments with existing single-view-based AIS
methods, we demonstrate that MASFormer significantly
outperforms these methods by effectively utilizing multi-
view information. Additionally, our approach can accu-
rately predict objects that are severely occluded from one
angle by incorporating information from other angles.

Figure 2. Two examples of COCOA [40] dataset, displaying mul-
tiple annotated occluded regions by different annotators.

Our contributions are summarized as follows: 1) A new
task named MAIS is proposed to explore the AIS task un-
der the multi-view setting for alleviating the ill-posed prob-
lem in the AIS task. 2) A novel dataset named MUVA
is proposed for the MAIS task in the multi-view setting
for shopping scenarios. To our best knowledge, MUVA
is the first AIS dataset under the multi-view setting. 3) A
new method named MASFormer is proposed to collect
both view-level and instance-level information for solving
the ill-posed problem in the AIS task. The experimental re-
sults show the efficiency of the multi-view setting over the
single-view approach.

2. Related Work

2.1. Amodal Instance Segmentation Datasets

Various single-view-based AIS datasets have been pro-
posed, including the image and video levels. (1) For the
image level, most of the datasets are re-annotated manu-
ally based on the existing datasets for the visible instance
segmentation (VIS) [5, 17, 30] task. For example, CO-
COA [40, 8], BSDSA [40], KINS [27] and D2SA [8] are
extended based on the VIS datasets, including COCO [23],
BSDS [25], KITTI [9] and D2S [7]. However, human an-
notation of occluded regions in image-level datasets may
lack accuracy and consistency due to variations in the an-
notator’s perception of amodal shape. Besides, DYCE [6]
is a synthetic dataset for indoor furniture. (2) For the video
level, two synthetic datasets, SAIL-VOS [13] and SAIL-
VOS 3D [14] have been generated based on the GTA 3D
game, containing daily-life scenes. Compared to video-
level datasets with temporal consistency, MUVA exhibits
higher shape variability across different viewpoints.

23505



(c) Data Capture

(b) 3D Model Placing

Amodal Masks and Boxes

Visible Masks and Boxes

Depth Map

Relative Occlusion Order

RGB Images Annotations

For each scene, for all six views

Generated 3D Scenes

Number

Orientation

Step 2

3D Models
Placements

Step 1

3D Models
Selection

Random

(a) 3D Model Building

3D Reconstruction 3D Models2D Images Collection

Up, down, left, right, front, back

3D Artists

3D Artists

Figure 3. The pipeline of dataset generation. (a) For each object, 2D images are captured from up, down, left, right, front, and back,
respectively. Then 3D artists use the collected images to reconstruct the 3D models. (b) For each scene, 3D models are randomly selected
and placed with different amounts and orientations. (c) For each scene, six views are used to capture the data, including the RGB images
and various annotations.

2.2. Amodal Instance Segmentation Methods

AIS methods employ various cues for amodal comple-
tion and can be categorized into three types based on rele-
vant literature. First, numerous methods are adapted from
VIS methods. Li and Malik [19] use Iterative Instance
Segmentation [18] to solve the amodal problem. OR-
CNN [8] extends Mask-RCNN for simultaneous visible and
amodal segmentations. ASN [27] learns features with a
proposed multi-level aggregation module. OAFormer [20]
proposes to learn the occlusion discriminative queries with
a transformer-base network. Second, some studies uti-
lize the relative occlusion order between objects, includ-
ing SLN [38] predicts and combines the relative orders, and
Deocclusion [35] employs a self-training method to learn
an ordering map for guiding the amodal completion. Third,
some studies use the shape prior knowledge to help infer the
shape of the occluded region, such as Amodal-VAE [24],
ShapeDict [33], GIN [22] and A3D [21]. However, the
multi-view information is not utilized in existing methods
due to the absence of a suitable dataset. Based on the pro-
posed MUVA dataset, this paper presents a 2D approach to
leverage multi-view knowledge. Instead of using sophisti-
cated 3D approaches like reconstruction, our 2D approach
can be easily applicable to real-world scenarios without re-
quiring 3D supervision signals.

3. MUVA: Multi-view Amodal Dataset

MUVA comprises 1,801 distinct 3D objects recon-
structed from multi-view photos. These objects are uti-
lized to fabricate 4,401 scenes with diverse object place-
ments. 26,406 RGB images are then produced from six
cameras, each from differing viewpoints. The dataset in-
cludes thorough annotations, such as depth maps, 3D mod-

els, and amodal/visible masks. The dataset split of MUVA,
including train, validation and test, are shown in the supple-
mentary material.

3.1. Dataset Contents

The contents of MUVA including images and corre-
sponding annotations are introduced below. RGB images
are captured from each camera view with a resolution of
1920×1080. The high-quality 3D reconstructed models
lead to final rendered RGB images with rich scene details
and high visual quality. Six types of annotations are avail-
able for each RGB image. (1) The segmentation annota-
tions of instances contain both visible and amodal instance
masks. These are generated by the 3D simulation software,
resulting in higher accuracy compared to manual annota-
tions. Moreover, the occluded region mask annotations are
more precise compared to human-annotated amodal masks
which may vary between annotators. (2) Depth maps are
produced to reflect the value of each pixel with regard to
its distance from the relevant camera to the 3D object. The
depth map registers distance for visible regions exclusively,
excluding amodal regions. (3) The occlusion order speci-
fies the list of other objects occluded by this one. (4) Ac-
companying high-quality 3D models are included. (5) The
bounding boxes and area of both visible and amodal masks
derived from corresponding masks are provided.

3.2. Dataset Generation

A universal pipeline is designed to generate the synthetic
dataset MUVA in three stages: building 3D models, placing
3D models, and capturing data, as illustrated in Fig. 3.

3D Model Building. In this stage, 3D models are created
as the foundation for the 3D scene, as presented in Fig. 3
(a). This stage contains two steps: (1) capturing six differ-
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Bags Others Bottles Boxes

Figure 4. The histogram of the number of instances for four parent categories (bags, others, bottles, boxes) and corresponding sub-
categories. Non-rigid categories are noted with star stripes. Best viewed in color.

Dataset Publication
Data
Type

Multiple
Views # Image # Instance Scenario

Synthetic
or Real 3D Model Depth # Categories

Resolution
(pixels)

SAIL-VOS [13] CVPR’19 video - 111,654 1,896,295 daily life synthetic - ✓ 162 1M
SAIL-VOS 3D [14] CVPR’21 video - 237,611 3,460,213 daily life synthetic ✓ ✓ 178 1M

COCOA [40] CVPR’17 image - 5,000 46,314 daily life real - - N/A 0.28M
BSDSA [40] CVPR’17 image - 500 3,739 daily life real - - N/A 0.15M
DYCE [6] CVPR’18 image - 5,500 85,975 daily life synthetic - - 79 1M
KINS [27] CVPR’19 image - 14,991 190,626 street real - - 8 0.47M
D2SA [8] WACV’19 image - 5,600 28,720 shopping real - - 60 3M
COCOA-cls [8] WACV’19 image - 3,501 10,562 daily life real - - 80 0.28M
MUVA N/A image ✓ 26,406 198,573 shopping synthetic ✓ ✓ 20 2M

Table 1. Comparison with existing amodal instance segmentation datasets. # means the number of this item. Bold numbers denote the
largest one in each column among image-level datasets.

ent images of each object to provide adequate information
for 3D reconstruction, and (2) utilizing MAYA, a 3D mod-
eling software, to reconstruct and manually refine the 3D
objects iteratively by 3D artists. This process results in the
reconstruction of 1801 distinct 3D objects, each with recon-
structed shape and texture.

3D Model Placing. This stage involves generating 3D
scenes by selecting and placing 3D object models. It com-
prises two steps: 3D model selection and placement, as de-
picted in Fig. 3 (b). First, a shelf is created as a platform
for scene construction, and 3D models are randomly cho-
sen from those reconstructed in the previous stage. Sec-
ond, placement settings, including object number, orienta-
tion, and position, are varied randomly to enhance diver-
sity. The number of objects can range from less than 10
to more than 10, and their upright or flat placement is ran-
domized. Object positions are also randomized, ensuring
they are within the shelf’s range. Finally, Unity3D soft-
ware is used to render the scene. The physical simulation
utilizes non-deformable 3D models with collision detection
to prevent object penetration. The scenes were illuminated
uniformly and gravity was applied to mimic realistic condi-
tions. Creating all 1801 3D models required approximately

600 hours with a 20-minute time frame for each model. The
cost of generating the models totaled approximately 15,000
USD at a rate of 25 USD per hour for each 3D artist.

Data Capture. The simulated scene depicted in Fig. 3
(c) provides various types of data for sampling. Six cameras
are positioned in the front to capture sparse views and sim-
ulate the self-checkout setting, ensuring the applicability of
MUVA to real-life scenarios. For each view, RGB images
and numerous annotations are generated.

The above dataset generation pipeline is adaptable for
creating datasets for other vision tasks, such as indoor 3D
reconstruction [4] and person re-identification [31].

3.3. Dataset Statistics

MUVA dataset comprises 26,406 images with 198,573
instances categorized into four parent categories (bags, bot-
tles, boxes, and others), and 20 sub-categories that include
both rigid and non-rigid objects. The instance ratio of each
category is presented in Fig. 4. The dataset contains 27.41%
non-rigid objects, such as the “Plastic Bag,” which pro-
vides shape variations. The proposed dataset includes high-
resolution images of 1920×1080 pixels, providing rich de-
tails of the objects’ edges and surfaces.
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Figure 5. Overall architecture of our method. There are two stages in our method, including the Feature Extraction Stage and the Multi-view
Aggregation Stage. The first stage aims to extract the features of each instance from all views. The second stage utilizes the relationship of
features at the instance level and view level, respectively, to generate accurate predictions.

3.4. Comparison with Existing Datasets

Tab. 1 presents a comparison between MUVA and other
AIS datasets, including video and image-level datasets such
as COCOA [40], BSDSA [40], DYCE [6], KINS [27],
D2SA [8] and COCOA-cls [8]. MUVA stands out as the
only dataset specifically designed for the multi-view AIS
task and the only synthetic image-level dataset that provides
3D models. The 3D models used to build the dataset are
publicly available to support new methods for the AIS task.
Additionally, MUVA and D2SA are the only two datasets
for the shopping scenario. MUVA’s synthetic nature leads
to consistent and higher-quality annotations than human-
annotated datasets. Moreover, MUVA has the largest num-
ber of images and instances among image-level datasets,
and is the only dataset at the image level that contains depth
maps, which can potentially help with the AIS task.

Dataset simplicity ↓ convexity ↓
visible amodal visible amodal

BSDS-A 0.718 0.834 0.616 0.643
COCO-A 0.746 0.856 0.658 0.685
KINS 0.709 0.830 0.610 0.639
MUVA 0.959 0.801 0.923 0.963

Table 2. Complexity is evaluated through simplicity and convexity
metrics. Small values of these metrics indicate a complex dataset.
A circle shape yields the maximum value of 1.0 for both metrics.

Shape Complexity. To assess the shape complexity of
mask annotations contained in MUVA, metrics proposed by
COCOA [40] is used. These metrics include convexity and
simplicity for both visible and amodal masks. As shown in
Tab. 2, MUVA has the lowest shape simplicity (0.801) and
the highest convexity (0.963) of amodal masks. The high
convexity can be attributed to the presence of goods such

as bags, bottles, and boxes, which possess naturally convex
shapes. Conversely, the low simplicity confirms that the
shapes within MUVA are complex. For instance, a plastic
bag with zigzagged boundaries exhibits high convexity but
low simplicity.

3.5. Applications

MUVA provides diverse annotations that can be used
for multiple research tasks. For example, using instance
IDs from different viewpoints can lead to a new task of
multi-view amodal instance segmentation (MAIS), which
involves matching and segmenting the same instance from
multiple viewpoints. High-quality 3D models can be used
for single/multiple-view 3D reconstruction. The provided
relative depth order annotation allows for occlusion order
prediction. Finally, the depth map from the object to the
camera can be utilized for depth estimation.

4. Method
This paper focuses on the newly formulated multi-view

amodal instance segmentation (MAIS) task. This section
proposes a network designed for the MAIS task, named
Multi-view Amodal Segmentation Transformer (MAS-
Former). The task definition, overall architecture, and the
proposed new modules are introduced in the following.

4.1. Overview

Problem Definition. Given N input images from N
viewpoints, the MAIS task aims to predict K instance-level
segmentation masks for interested objects in each image.

Overall Architecture. The whole pipeline of the pro-
posed method contains two stages, including the Feature
Extraction Stage (FES) and the Multi-view Aggregation
Stage (MAS). (1) The FES extracts features of each instance
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from all angles. (2) The MAS takes the instances’ feature
from FES as input and optimizes from two aspects, includ-
ing aggregating all instances’ features of the same view and
all views’ features of the same instance. Finally, the amodal
instance predictions of objects in all images are generated
after fusion.

4.2. Feature Extraction Stage

This stage aims to extract features from all views si-
multaneously. As shown in Fig. 5, the Backbone takes
for N images as input and extracts representative features
for K instances, including low-level structural details and
high-level semantic information. Next, the CNN Decoder
up-samples the representative features and generates multi-
level features containing all objects’ information. Then a
Transformer Decoder is employed to output features FFES

corresponding to all objects in all views. Bipartite match-
ing [2] is used to find the correspondence between predic-
tions and supervisions, to specify the view id and instance
id of each feature.

4.3. Multi-view Aggregation Stage

As shown in Fig. 5, this stage aims to enhance the ex-
tracted features FFES from two aspects, including view-
level and instance-level. Two branches are designed for the
two aspects, respectively.

View-level Aggregation. This branch aims to utilize the
relationship between features of all instances in the same
view for enhancing each instance’s feature quality. Firstly,
for input features FFES including all objects in all views, an
View Feature Grouping module takes features of the same
view into the same group. Then the View-level Attention
module learns the correlation between all instances’ fea-
tures in the same view. Finally, the feature of each instance
is enhanced by integrating all correlated instances’ features
in the same view. Here the correlation between different
features is computed by cosine similarity. And the self-
attention [32] is used to construct this module. Please refer
to our supplementary material for detailed explanations of
the network. Besides, this module requires objects in dif-
ferent views could be identified and matched. To achieve
this, for each instance, both the view id and the instance id
are predicted by the network and supervised by using the
bipartite matching [2] to match between the prediction and
ground truth.

Instance-level Aggregation. This module aims to use
features of the same instance in all views to improve the
feature quality of each instance. First, the Instance Fea-
ture Grouping module takes features of the same instance
across all views to the same group. Next, for each group, the
Instance-level Attention module learns correlations between
features of the same instance in different views and inte-
grates associated features by using the self-attention [32]

mechanism.
Finally, a CNN-based fuse layer is used to merge the

output features of two branches for the final prediction of
amodal masks. With the aggregation of two branches, the
feature representations of all instances can be enhanced, and
more precise amodal segmentation results can be obtained.

5. Experiments

This section first compares the newly proposed method
MASFormer with existing single-view-based state-of-the-
art AIS methods on the proposed MUVA dataset. Then the
ablation studies are conducted to show the effectiveness of
amount and order for the input viewpoints and components
of the proposed method.

Method Publication AP AP50 AP75 AR

Mask-RCNN [11] ICCV’17 17.2 26.6 18.7 48.8
ORCNN [8] WACV’19 7.8 25.9 2.1 24.7
SLN [38] ACM MM’19 6.9 20.2 5.6 22.9
DeepSnake [26] CVPR’20 7.7 11.9 7.4 23.8
BCNet [16] CVPR’21 23.1 28.9 25.0 40.9
ShapeDict [33] AAAI’21 9.9 36.0 1.3 27.8
E2EC [37] CVPR’22 11.8 15.7 12.9 25.5
Baseline (1 view) CVPR’22 17.8 26.1 18.0 29.2
Baseline (6 views) CVPR’22 22.9 35.5 22.3 36.4
Ours (1 view) N/A 25.6 38.0 25.6 41.2
Ours (6 views) N/A 39.4 55.9 40.3 51.8

Table 3. Compared with state-of-the-art methods on MUVA. In
each column, the best is in bold, and the second-best is underlined.

Method ResNet-50 ResNet-101 ResNeXt-101

MaskRCNN 17.2 19.1 19.8
BCNet 23.1 25.3 26.6
E2EC 11.8 14.2 15.9
Ours (6 views) 39.4 42.5 43.0

Table 4. Performance of methods with stronger backbones.

Experimental Settings. The baseline method only con-
tains the first stage FES in the proposed method MAS-
Former, which is implemented following the video instance
segmentation method Mask2Former [3] as an instantiation.
The baseline method can take multi-view images as input
and outputs amodal segmentation masks, the same as MAS-
Former. ResNet-FPN-50 [12] is employed as the backbone
for all methods. The results are evaluated using the AP and
AR metric, commonly used to measure the precision and
recall of prediction. For fairness, all experiments use the
same training dataset of MUVA to train and the same val-
idation dataset of MUVA to validate. The ground truth of
all methods is the same, including the bounding boxes and
masks for amodal and visible regions, image ids, and in-
stance ids. The ground-truth camera viewpoint information
and 3D models are not used for fairness.
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Figure 6. Visualization comparisons between BCNet [16] and ours on MUVA, trained with one viewpoint (1V) and six viewpoints (6V).
For masks, different colors denote different instances, and the same instance in different angles has the same color. Red circles indicate
regions should be focused. Zoom in for a better view. In the first and third columns, even if a bottle is severely occluded, it can be predicted
accurately by our method. Moreover, our method trained with 6 views performs better than training with a single view.

5.1. Multi-view Amodal Instance Segmentation

Tab. 3 shows the comparison results of some existing
AIS methods on MUVA. Several state-of-the-art methods
designed for single-view datasets are compared. For base-
line and the proposed method MASFormer, two kinds of
input are used during training, one is a single view, and the
other is six. Note that the amount of training data is the
same for these two settings.

We compare the results at three levels, including one-
view, one vs. six views, and six-view levels. (1) As shown
in Tab. 3, when only using one view for training, our pro-
posed method MASFormer achieves the best performance
(25.6% AP , 38.0% AP50, 25.6% AP75, 41.2% AR) on
all metrics. MASFormer outperforms the best performance
of single-view-based methods with 2.7% AP , 2.0% AP50,
0.6% AP75, and 0.2% AR. The results demonstrate the
effectiveness of the proposed view-level attention module,
which can learn the relationship between different instances
of the same view and improve the amodal prediction with
the help of a learned relationship. (2) Both ours and the
baseline method achieve better performance when using six
views than one view for training. The results show that
even with the same training data, using more views as in-
put for training can improve the prediction. (3) When both
methods use six views for training, our method can out-
perform the baseline method with 16.5% AP. The results
show the effectiveness of the proposed instance-level atten-
tion module, which learns and benefits from the relationship
between different views of the same instance. Besides, the
performance of methods with stronger backbones is shown
in Tab. 4. Stronger backbones bring improvements for all

methods, while the proposed MASFormer still achieves the
best performance. Qualitative results are shown in Fig. 6.

Setting Training Dataset Testing Dataset AP

1 D2SAtrain D2SAval 63.5
2 MUVAtrain D2SAval 41.9
3 D2SAtrain + MUVAtrain D2SAval 68.4

Table 5. Performance of MASFormer evaluated on the validation
set of D2SA dataset and trained with different combinations of
source-domain datasets for training. For the two datasets, only
data of overlapped categories are used.

5.2. Generalization to Real-world Scenarios

In this section, we demonstrate the generalization ability
of the proposed dataset and method on real-world scenarios
under single-view and multi-view settings, respectively.

Single-view Generalization. To validate generalization
ability in real-world scenarios, the MUVA dataset is uti-
lized under a single-view setting. To be specific, we employ
settings of the domain generalization [39, 10, 15] task to
evaluate the generalization ability of learning from a source
domain, typically synthetic datasets, to out-of-distribution
target domains like real-world datasets. Specifically, the
MUVA synthetic dataset and real-world AIS dataset D2SA
[8] are used in this study. D2SA contains 60 categories,
of which 18 categories overlap with MUVA. More infor-
mation about the category labels can be found in the sup-
plementary material. The following experiments only con-
sider data from the overlapping categories. Three settings
were adopted as presented in Tab. 5. Firstly, MASFormer
is trained and evaluated on the train and validation sets of
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D2SA datasets, demonstrating its ability to generalize well
on real-world data. Secondly, MASFormer is trained on the
synthetic MUVA dataset and evaluated on the real-world
dataset D2SA, with results validating the generalizability
of the synthetic MUVA dataset. Lastly, mixing D2SA and
MUVA for training lead to a 4.9% AP improvement, indi-
cating the benefits of using MUVA in a real-world scenario.

Figure 7. Qualitative results of a real-world case. Red circles in-
dicate differences between ours and BCNet. Zoom in for a better
view.

Multi-view Generalization. Considering there is no ex-
isting multi-view real-world AIS dataset, we construct a
real-world shopping scenario to obtain multi-view data for
validating the generalization ability of the proposed dataset
and method. Images are captured from the left, middle, and
right sides, respectively. MASFormer trained with six views
and BCNet are used. And the train set of MUVA is utilized
for training. As shown in Fig. 7, MASFormer can obtain
good amodal segmentation results, demonstrating the gen-
eralization ability of MUVA to real-world scenarios. More-
over, when compared with BCNet, MASFormer performs
better consistently on all viewpoints, validating its potential
for generalizing to the real-world scene.

Views Order # Views AP AP50 AP75 AR

N/A 1 25.6 38.0 25.6 39.2

Fixed Order

2 26.2 38.0 26.3 39.8
3 28.0 42.9 27.7 40.9
4 30.9 45.6 30.9 43.5
5 34.1 49.0 34.7 47.4
6 37.9 53.9 38.6 51.4

Random Order

2 26.9 39.5 27.1 40.4
3 28.4 41.7 28.4 42.9
4 32.8 46.6 33.4 45.6
5 36.9 52.7 37.2 50.5
6 39.4 55.9 40.3 51.8

Table 6. Effect of fixing views input order and views amount. In
each column, the best is in bold, and the second-best is underlined.

5.3. Ablation Study
We conducted ablation study experiments for MAS-

Former, examining the impact of the number and order of

input viewpoints, the effectiveness of attention modules,
and computational cost.

Viewpoints Count and Order. Tab 6 presents some
combinations of the number and order of input viewpoints
used for training in the proposed MASFormer method. The
same amount of training data is used for all experiments.
Performance consistently improves as the number of input
views increases, regardless of whether their order is fixed
(rows # 2 to # 6) or random (rows # 7 to # 11). These re-
sults show that using more views for training can improve
performance and multi-view data is crucial for amodal in-
stance segmentation. When the number of input views is
constant, the impact of the input views’ order is analyzed
below. As shown in Tab. 6, results of random input order
outperform fixed order ones with the equal number of in-
put views. For example, random order improves the AP
metric with the following percentages compared to fixed or-
der: 0.7% (2 views), 0.4% (3 views), 1.9% (4 views), 2.8%
(5 views) and 1.5% (6 views). Results show that random-
izing input image ordering of various viewpoints leads to
increased training sample distribution and improved effec-
tiveness.

Index View-level Instance-level AP AP50 AP75 AR

1 22.9 35.5 22.3 36.4
2 ✓ 28.7 43.1 28.3 41.6
3 ✓ 34.1 49.0 34.7 47.4
4 ✓ ✓ 39.4 55.9 40.3 51.8

Table 7. Effect of two attention modules in the proposed method.

Attention Modules. Tab. 7 shows the ablation study of
proposed attention modules proposed in our MASFormer
method, using six input views with random order. The
proposed view-level attention module improves AP perfor-
mance from 22.9% to 28.7% by learning feature relation-
ships within the same view. Instance-level attention mod-
ule achieves an 11.2% improvement by utilizing multi-view
features of the same instance. Both attention modules com-
bined result in a 39.4% AP performance, surpassing indi-
vidual settings.

Method Framework GPU Mem FPS Time AP

BCNet CNN 4G 8.3 4h 23.1
Baseline Transformer 9G 6.5 6h 22.9
Ours Transformer 13G 3.7 8h 39.4

Table 8. Comparison of computational cost and the performance.
Time means the training time.

5.4. Computational Cost

Tab. 8 compares the computational cost. The ResNet50-
FPN backbone is used for all methods. The FPS is the av-
erage of all images in the validation dataset. Compared to
other methods, our method exhibits superior performance at
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the expense of higher computational cost due to the use of
Transformer framework.

6. Limitation and Conclusion

Limitations of this paper include the consideration of
only one scenario, shopping, and a high computational cost
of the proposed method. Future research should aim to ex-
pand the dataset to include other scenarios and develop a
more efficient network that incorporates additional informa-
tion such as 3D models from MUVA. As for the conclusion,
this paper introduces a novel task called multi-view amodal
instance segmentation (MAIS) in the shopping scenario.
To facilitate research in this area, a new synthetic dataset,
MUVA, is introduced along with a proposed method that
utilizes multi-view information.
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