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Abstract

The performance of text-video retrieval has been sig-
nificantly improved by vision-language cross-modal learn-
ing schemes. The typical solution is to directly align the
global video-level and sentence-level features during learn-
ing, which would ignore the intrinsic video-text relations,
i.e., a text description only corresponds to a spatio-temporal
part of videos. Hence, the matching process should con-
sider both fine-grained spatial content and various tempo-
ral semantic events. To this end, we propose a text-video
learning framework with progressive spatio-temporal pro-
totype matching. Specifically, the matching process is de-
composed into two complementary phases: object-phrase
prototype matching and event-sentence prototype matching.
In the object-phrase prototype matching phase, the spa-
tial prototype generation mechanism predicts key patches
or words, which are aggregated into object or phrase proto-
types. Importantly, optimizing the local alignment between
object-phrase prototypes helps the model perceive spatial
details. In the event-sentence prototype matching phase,
we design a temporal prototype generation mechanism to
associate intra-frame objects and interact inter-frame tem-
poral relations. Such progressively generated event proto-
types can reveal semantic diversity in videos for dynamic
matching. Validated by comprehensive experiments, our
method consistently outperforms the state-of-the-art meth-
ods on four video retrieval benchmark.1

1. Introduction
Understanding multimodal information [13, 37, 40, 76,

6, 79, 41, 12, 53, 54] is an essential way for humans to
perceive the world. As a fundamental task in multimodal
learning [25, 62, 60], Text-Video Retrieval (TVR) [22, 70,
68, 24] has garnered huge interest with the rapid devel-
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Figure 1. Visualization of event and object prototypes learned by
1) adaptive event matching w/o object-phrase prototypes and 2)
object-phrase prototype matching. Object prototypes can focus on
local patches (e.g., tail) and complement event-level matching.

opment of short video platforms. TVR [45, 21] aims to
search semantically relevant videos based on user-entered
text queries. Unfortunately, the inherent modality gap phe-
nomenon [42, 61, 38, 3, 67] increases the difficulty of asso-
ciating multimodal data. Towards such a concern, pioneer-
ing works [47, 65, 73] usually exploit multiple unimodal
pre-trained models to extract features, and then use met-
ric learning strategies [14] to strengthen the modality align-
ment in the joint space. However, there are large differences
in the initial distributions of multiple unimodal offline fea-
tures, which inevitably brings the feature fusion challenge
to affect the retrieval results.

Recently, encouraged by the success of vision-language
pre-training [50, 66, 34, 27, 72, 35, 4], a series of canonical
works [51, 20, 44, 16] are proposed by transferring knowl-
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Figure 2. The progressive prototype generation process: 1) focus
on patch-level spatial details; 2) aggregate intra-frame object pro-
totypes; 3) interact inter-frame relations temporally as event pro-
totypes, corresponding to multiple semantics.

edge from cross-modal pre-trained models (e.g., CLIP [57])
to the TVR task. Among them, some methods [51, 1, 28]
learn to encode text or video data as a single embedding
and perform global alignment between the sentence and
the whole video. Subsequent approaches [48, 78] employ
frame-level or segment-level matching by taking into ac-
count the different importance of video content. These
methods try to encode the video into a single semantic
content described by corresponding text, establishing one-
to-one relations. However, videos contain rich visual ele-
ments [39] and a text description may only correspond to a
spatio-temporal part of the video, dynamic and fine-grained
matching is needed beyond the global video-level or frame-
level matching. Specifically, feature encoding should char-
acterize different semantic information to support dynamic
partial alignment during the matching process. Recently,
Lin et al. [43] attempt to address the dynamic matching
problem by temporally segmenting videos into multiple se-
mantic events, so that different text descriptions can adap-
tively match event prototypes. Nevertheless, various event
prototypes are still inadequate to model the relations be-
tween fine-grained objects and content words, lacking the
perception of local details. As shown in Fig. 1(1), the cor-
rect video corresponding to the text should focus on “tail”,
but the event prototype corresponding to the maximum sim-
ilarity may suffer from scene bias [8, 63] and ignore this
small object. Based on the above observation, an effective
event-sentence matching process needs to emphasize fine-
grained local spatial matching. This also suggests that the
generation of event prototypes should be bootstrapped from
the semantic combination of important objects. Therefore,
we should construct event prototypes progressively, i.e., ex-
plicitly preserve the local information learned in the spatial

matching stage, and then perform temporal aggregation.
To this end, we propose a novel Progressive Spatio-

Temporal Prototype Matching (ProST) framework, which
decomposes the matching process into complementary
object-phrase and event-sentence prototype alignments. In
the object-phrase prototype matching phase, a spatial pro-
totype generation mechanism is first developed to focus on
key image patches or word tokens. To prevent massive
video redundancy, we use sparse weights to filter irrelevant
background interference and aggregate important patch or
word tokens into object or phrase prototypes. As shown in
Fig. 1(2), optimal local responses can be found by the max-
imum similarity between object and phrase prototypes to
help the model perceive spatial details.

In the event-sentence prototype matching phase, a tem-
poral prototype generation mechanism is designed to de-
code various event prototypes for dynamic semantic align-
ment. Specifically, since the spatial details should not be
ignored in the event generation process, we send object pro-
totypes to the frame and event decoder for progressive pro-
totype learning. Multiple different event prototypes are gen-
erated to reveal the semantic diversity in videos and support
dynamic matching. Finally, as shown in Fig. 2, different text
sentences can match the most appropriate event prototype
learned from the video. Overall, ProST encodes the rich
video content by generating object-level, frame-level and
event-level prototypes in a progressive manner, and con-
structs dynamic and fine-grained spatio-temporal matching
strategies. ProST not only strengthens the interaction of lo-
cal spatial content, but also considers the intrinsic relations
where video and text are only partially aligned.

The contributions of this paper are threefold: 1) we pro-
pose a novel framework, ProST, to decompose the match-
ing process into complementary object-phrase and event-
sentence prototype alignments; 2) two prototype generation
mechanisms are developed to learn sparse spatial and dy-
namic temporal information respectively, which can fully
explore fine-grained local details and video semantic diver-
sity; 3) extensive experiments demonstrate that ProST out-
performs state-of-the-art methods on MSRVTT, DiDeMo,
VATEX and LSMDC datasets.

2. Related Work
Text-video retrieval. Existing works can be divided into
two categories: offline feature based [47, 11, 77, 26] and
end-to-end training [1, 51, 48, 43, 31, 29, 30, 28] methods.

Early methods [69, 11] extract video-text features of-
fline, and then perform embedding alignment in a com-
mon space. To enhance representation quality, CE [47],
MMT [17] and HiT [46] employ multiple unimodal ex-
perts (OCR, speech, etc.) to enrich video features. Teach-
Text [10] adopts multiple text encoders to gather text in-
formation and obtain more credible alignments. Besides,
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HGR [5] and T2vlad [65] build semantic graphs or shared
centers to explore global-local relations. However, these
methods employ additional analysis tools or experts to pre-
process data, which increases the complexity and limits
flexibility. Unlike the global-local alignment explored on
multiple experts [65, 46], we consider finer-grained patch-
level visual content without requiring additional experts.

Current mainstream works benefit from large-scale
vision-language pre-training [57, 19]. ClipBERT [33] and
Frozen [1] first propose efficient end-to-end pre-training
schemes. MCQ [18] builds cross-modal associations by
predicting verb or noun features. Recently, CLIP4clip [51]
uses CLIP [57] as the backbone network, significantly
improving TVR performance and inspiring a series of
works [48, 15, 20, 78, 28]. Centerclip [78] conducts
segment-level clustering, which reduces token redundancy
and computational overhead. TS2Net [48] designs the token
shift module to realize the perception of local movement be-
tween frames. Xpool [20] uses text as a condition to guide
the aggregation of video tokens. But the limitation is that
the video encoding process must involve both modal data.
Adaptive cross-modal retrieval. Recently, the correspon-
dence ambiguity problem (i.e., a text may only correspond
to a part of the video or image) has raised concerns in the
cross-modal retrieval community [9, 59, 43]. In text-image
retrieval, PVSE [59] employs the self-attention mechanism
to explore different local parts of instances and generates
K candidate features for adaptive matching. PCME [9]
samples the text-image probabilistic embeddings multiple
times from the learned Gaussian distribution to explore one-
to-many multiplicity relationships. In text-video retrieval,
TVMM [43] utilizes fully connected layers to directly ag-
gregate all tokens into multiple event prototypes for text-
adaptive event matching. However, fine-grained object-
level information is not well exploited in the event matching
process of TVMM, while the proposed progressive spatio-
temporal matching framework could simultaneously con-
sider local spatial details and dynamic temporal relations.

3. Method

Given a dataset consisting of n videos V = {vi}ni=1 and
their corresponding m captions T = {ti}mi=1, Text-Video
Retrieval (TVR) aims to learn a function s(ti,vi) to effec-
tively measure the similarity between modalities. For a text
query ti, we can rank all videos in the dataset according
to the similarity scores. Ideally, the cross-modal similar-
ity (e.g., cosine similarity) between paired cross-modal in-
stances should be greater than that of unpaired instances:
s(ti,vi) > s(ti,vj). This requires the model to learn pow-
erful text encoding network ft : T → Y and video en-
coding network fv : V → X , which generate high-quality
features and ultimately enable efficient matching.

3.1. Framework

Fig. 3 sheds light on our end-to-end trainable architec-
ture, which consists of a backbone network and two pro-
totype matching schemes. For a fair comparison with re-
cent methods [48, 51, 20], we adopt CLIP [57] as the back-
bone network, which exhibits strong performance in down-
stream tasks. Given an input video vi, we uniformly se-
lect L frames as keyframes to extract sequential features
Xi = {xl

C ,x
l
T1
, · · · ,xl

TK
}Ll=1 ∈ RL×(K+1)×D, where

xl
C is the global frame token feature ([CLS]) and K is

the patch number. For each query text ti, we add the
[SOT] and [EOT] tokens to indicate the start and the end
of the text. The output text token features can be defined
as Yi = {yS ,yT1

, · · · ,yTM
,yE} ∈ R(M+2)×D, where yE

is the global text token feature([EOT]), M and D are the
number of words and dimensions, respectively.

Apart from the backbone network, we decompose the
matching process into two spatio-temporal complemen-
tary parts: 1) Object-Phrase Prototype Matching (Sec. 3.2)
aligns the visual object prototypes and text phrase pro-
totypes generated by Spatial Prototype Generation (SPG)
to emphasize fine-grained spatial information; 2) Event-
Sentence Prototype Matching (Sec. 3.3) exploits event pro-
totypes progressively generated by Temporal Prototype
Generation (TPG) to learn dynamic semantic alignment,
which explores intrinsic one-to-many video-text relations.
The object-phrase and event-sentence prototype matching
schemes determine the final cross-modal similarity.

3.2. Object-Phrase Prototype Matching

The text of the video caption subjectively describes a cer-
tain event composed of different objects, actions and tem-
poral activities across the video sequence. This results in
pairs of video and text that are often partially matched. To
solve this problem [9, 59], existing method [43] learns a sin-
gle patch-event projection to aggregate multiple event pro-
totypes for text-adaptive matching. However, these proto-
types are still inadequate to perceive the local details. Our
intuition is that decoupling the spatio-temporal modeling
process in a divide-and-conquer manner is more beneficial
than a single projection. Therefore, we conduct progressive
spatio-temporal prototype matching for text-video retrieval.
In this section, we illustrate how to model spatial match-
ing. We first perform patch-object and word-phrase spatial
prototype aggregation to reveal key local details, and then
introduce the fine-grained prototype alignment.
Spatial prototype generation. For videos, we aggregate
the patch tokens into object prototypes to represent fine-
grained spatial information, such as object instance, object
part, and action region. In the prototype generation pro-
cess, not all patch tokens are aggregated. Although the
patch tokens contain important spatial information, they
also bring redundancy. For example, some background to-
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kens may interfere with cross-modal alignment. Hence, we
hope to filter out retrieval-superfluous information and gen-
erate object-level prototypes in a sparse aggregation man-
ner. For simplicity, two Fully Connected (FC) layers and
ReLU functions are used to predict sparse weights W l

o ∈
R(K+1)×No , where No is the number of object prototypes.
This way prevents object prototypes from being affected by
redundant patches. For each frame X l ∈ R(K+1)×D, SPG
can be defined as:

P l
o = W lT

o ·X l ∈ RNo×D. (1)

Ideally, each object prototype can adaptively aggregate the
corresponding object-related or action-related patches.

For text, we draw on the SPG mechanism and design a
similar network structure to aggregate word tokens, which
generates phrase prototypes Pp ∈ RNp×D. In this way,
we explore spatially important information based on fine-
grained patch tokens and word tokens. Then, the prototypes
are optimized by spatial object-phrase prototype matching.
Object-phrase matching. Different from the existing text-
image token-wise interaction [74], we propose a text-video
prototype-wise interaction designed from a spatial perspec-
tive. Specifically, we first compute the maximum similarity
of object-phrase prototypes within each frame. This asso-
ciates the most similar phrase prototypes to each object pro-
totype, reflecting cross-modal fine-grained matching. Then,
for the multi-frame object similarity matrix, we find the
largest similarity score across the frame sequences, which

gives a more confident probability of object-phrase match-
ing. Finally, the object-phrase matching scores are summed
to obtain the final similarity sop. The prototype-wise inter-
action process is defined as:

sop =
1

No

No∑
j=1

L
max
l=1

Np

max
i=1

[Pp · P lT

o ]ij , (2)

where No, Np and L are the number of object prototypes,
phrase prototypes and frames, respectively.

3.3. Event-Sentence Prototype Matching

In this section, we illustrate how to model dynamic tem-
poral matching. We first perform progressive object-event
prototype aggregation to reveal the video semantic diversity,
and then introduce dynamic prototype matching.
Temporal prototype generation. A naive solution to ob-
tain video-level features based on global frame features is
by mean pooling [51, 65, 5], or by adding temporal encoder
layers [11]. However, this leads to two issues: 1) failure
to perceive local details [43, 78, 48] and ignoring important
objects will exacerbate the bias of video feature learning; 2)
these strategies generate a single video-level feature, which
can only quantify one-to-one relations. Therefore, we in-
vestigate how to incorporate key fine-grained objects and
dynamic temporal changes into diverse event prototypes.

The core idea is to progressively aggregate spatial object
prototypes into frame prototypes and then perform inter-
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frame interaction to generate various event prototypes. In
Fig. 4, a frame decoder is first designed to incorporate all
object prototypes Po ∈ R(L×No)×D into frame-level proto-
types Pf ∈ RL×D, which implies fine-grained inter-object
spatial relations. To learn frame-level object relations, we
define the masked attention as:

Pf = softmax
(
Mf +QfK

T
o

)
Vo +Qf , (3)

where Qf ∈ RL×D refers to frame queries (i.e., a set of
randomly initialized learnable tokens), Ko and Vo are the
features after the linear transformation of object prototypes
Po. The attention mask Mf ∈ RL×(L×No) is:

Mf (i, j) =

{
0 if i ·No ≤ j < (i+ 1) ·No

−∞ otherwise
. (4)

Inspired by [9], we add frame prototype pl
f and original

global feature xl
C of corresponding frames to enhance the

robustness of the model:

pl
f = (pl

f + xl
C)/2. (5)

Next, a dynamic event decoder is developed to learn the
inter-frame relations in Pf , which can obtain different event
prototypes Pe ∈ RNe×D to illustrate the rich information of
videos. Our dynamic attention is formulated as:

Pe = softmax
(
QeK

T
f

)
Vf +Qe, (6)

where Qe ∈ RNe×D refers to event queries, Kf and Vf are
the linear transformation features of frame prototypes Pf .
During training, each event query learns how to adaptively
focus on video frame prototypes, while multiple queries im-
plicitly guarantee a certain event diversity.

Differently, since the same video often corresponds to
multiple text semantic descriptions, we directly use the
global text representation yE as a sentence prototype to
align with the event prototypes Pe.
Event-sentence matching. Similar to [43], this event-
sentence prototype matching process can be expressed as:

ses =
Ne
max
i=1

⟨yE ,Pei⟩ . (7)

We look for the closest event prototype to the text represen-
tation for dynamic matching.

3.4. Training and Inference

The InfoNCE loss [55, 75] is employed to optimize the
prototype matching within a batch. We treat text-video pairs
as positive examples, while considering all other pairwise
combinations in the batch as negative examples:

Ltvc = (Lt2v(Sop)+Lv2t(Sop)+Lt2v(Ses)+Lv2t(Ses))/4,
(8)

Lt2v(S) = − 1

B

B∑
i=1

log
exp

(
Sii/σ

)∑B
j=1 exp (S

ij/σ)
, (9)

Lv2t(S) = − 1

B

B∑
i=1

log
exp

(
Sii/σ

)∑B
j=1 exp (S

ji/σ)
, (10)

where the σ is a learnable temperature parameter, Sop and
Ses are object-phrase and event-sentence prototype match-
ing similarity matrices in a batch of size B.

During the inference stage, we directly weight the spatio-
temporal matching scores for the final similarity matching:
s = ses + βsop, where β is the spatial matching factor.

4. Experiments
We carry out experiments on the standard text-video

retrieval datasets of MSRVTT [71], DiDeMo [23], VA-
TEX [64] and LSMDC [58]. Standard metrics in informa-
tion retrieval [48, 17] are adopted to measure the retrieval
performance, including Recall@1/5/10 (R@1/5/10), Me-
dian Rank (MdR), and Mean Rank (MnR).

4.1. Experimental Settings

Datasets. (1) MSRVTT [71] consists of 10k videos and
200k human-labeled descriptions, where many videos have
diverse captions. To thoroughly compare the existing meth-
ods, we follow [20] to train on 7k or 9k train+val videos and
test on a test set of 1k text-video pairs. (2) DiDeMo [23]
contains 10K Flickr videos and 40K captions. Follow-
ing [43], all caption descriptions of a video are concate-
nated as a query to evaluate all methods. (3) VATEX [64]
is comprised of 34, 991 video clips. According to [5], we
select 25, 991, 1, 500 and 1, 500 videos as the training, val-
idation and test sets. (4) LSMDC [58] consists of 118,081
movie clips each paired with a single caption description.
We choose 101, 079, 7, 408 and 1, 000 videos as the train-
ing, validation and test sets.
Implementation details. We initialize the backbone with
the pre-trained model CLIP (ViT-B/32) [57] following [48].
Our decoders consist of two transformer layers with a sin-
gle attention head. To reduce the computing overhead, all
videos are resized to 224 × 224 with random cropping and
flipping, and the frame rate is 3. We set the max text length
as 32 and video frame number as 12 except for DiDeMo
(set to 64 and 64) as its videos are longer. We optimize
the model for 5 epochs on 4 NVIDIA Tesla A100 GPUs,
employ Adam optimizer [32] with 0.2 weight decay and fix
the batch size as 128. The learning rate is set to 1e-7 for
CLIP-initialized weights and 1e-4 for all other parameters.
Following [57], we decay the learning rate using a warmup
cosine schedule [49]. The spatial matching factor β is 1.5.
By default, the prototype number No, Np, and Ne are 12,
28 and 3. The dimension of prototypes is 512.
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Table 1. Retrieval results on MSRVTT-9k. We reproduce TVMM∗ [43] using the same backbone network CLIP (ViT-B/32) [57]. All
results in this table do not use additional post-processing techniques [2, 7].

Method Reference Text → Video Video → Text
R@1 ↑ R@5 ↑ R@10↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10↑ MdR ↓ MnR ↓

CE [47] BMVC19 20.6 50.3 64.0 5.3 - 20.9 48.8 62.4 6.0 -
MMT [17] ECCV20 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3
T2vlad [65] CVPR21 29.5 59.0 70.1 4.0 - 31.8 60.0 71.1 3.0 -
HiT [46] ICCV21 27.7 59.2 72.0 2.9 - 28.8 60.3 72.3 3.0 -
TeachText [10] ICCV21 29.6 61.6 74.2 3.0 - 32.1 62.7 75.0 3.0 -
ClipBERT [33] CVPR21 22.0 46.8 59.9 6.0 - - - - - -
SupportSet [56] ICLR21 30.1 58.5 69.3 3.0 - 28.5 58.6 71.6 3.0 -
Frozen [1] ICCV21 31.0 59.5 70.5 3.0 - - - - - -
BridgeFormer [18] CVPR22 37.6 64.8 75.1 - - - - - - -
TVMM [43] NeurIPS22 36.2 64.2 75.7 3.0 - 34.8 63.8 73.7 3.0 -
CLIP4Clip [51] NeurCom22 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6
CenterCLIP [78] SIGIR22 44.2 71.6 82.1 2.0 15.1 42.8 71.7 82.2 2.0 10.9
X-Pool [20] CVPR22 46.9 72.8 82.2 2.0 14.3 - - - - -
TVMM∗ [43] NeurIPS22 45.8 71.7 81.9 2.0 14.8 44.0 71.9 82.3 2.0 10.6
TS2-Net [48] ECCV22 47.0 74.2 83.3 2.0 13.6 44.3 73.9 83.0 2.0 9.2
ProST Proposed 48.2 74.6 83.4 2.0 12.4 46.3 74.2 83.2 2.0 8.7
ProST (ViT-B/16) Proposed 49.5 75.0 84.0 2.0 11.7 48.0 75.9 85.2 2.0 8.3

Table 2. Text-to-Video retrieval results on MSRVTT-7k.

Method Text → Video
R@1 ↑ R@5 ↑ R@10↑ MdR ↓ MnR ↓

HowTo100M [52] 14.9 40.2 52.8 9.0 -
HERO [36] 16.8 43.4 57.7 - -
ClipBERT [33] 22.0 46.8 59.9 6.0 -
CLIP4Clip [51] 42.1 71.9 81.4 2.0 15.7
X-Pool [20] 43.9 72.5 82.3 2.0 14.6
TS2-Net [48] 43.1 72.2 82.1 2.0 14.2
ProST 44.5 72.3 82.4 2.0 13.8
ProST (ViT-B/16) 46.9 73.3 82.9 2.0 13.0

Table 3. Text-to-Video retrieval results on the DiDeMo dataset.

Method Text → Video
R@1 ↑ R@5 ↑ R@10↑ MdR ↓ MnR ↓

CE [47] 16.1 41.1 82.7 8.3 -
ClipBERT [33] 20.4 48.0 60.8 6.0 -
Frozen [1] 31.0 59.8 72.4 3.0 -
MCQ [18] 37.0 62.2 73.9 3.0 -
TVMM [43] 36.5 64.9 75.4 3.0 -
CLIP4Clip [51] 42.8 68.5 79.2 2.0 18.9
TS2-Net [48] 41.8 71.6 82.0 2.0 14.8
ProST 44.9 72.7 82.7 2.0 13.7
ProST (ViT-B/16) 47.5 75.5 84.4 2.0 12.3

4.2. Comparison with State-of-the-art Methods

To evaluate the relative benefits of ProST, we compare
its performance with recent works [48, 20, 78, 51] from the
literature. The results on the 9k and 7k splits of MSRVTT
are shown in Tab. 1 and Tab. 2 respectively. We consistently
achieve the best results for text-to-video retrieval and video-
to-text retrieval across all splits and all metrics. Specifi-
cally, TS2-Net [48] integrates important patches into frame
features for frame-level matching, which achieves the sec-
ond best performance. Notably, for text-to-video retrieval,
ProST outperforms TS2-Net [48] with 1.2% and 1.4% R@1
gains on the 9k split (47.0% vs. 48.2%) and the 7k split
(43.1% vs. 44.5%). A 2.0% improvement on R@1 (9k
split) is also obtained compared to TS2-Net for video-to-

Table 4. Text-to-Video retrieval results on the VATEX dataset.

Method Text → Video
R@1 ↑ R@5 ↑ R@10↑ MdR ↓ MnR ↓

HGR [5] 35.1 73.5 83.5 2.0 -
CLIP [57] 39.7 72.3 82.2 2.0 12.8
CLIP4Clip [51] 55.9 89.2 95.0 1.0 3.9
QB-Norm [2] 58.8 88.3 93.8 1.0 -
CLIP2Video [15] 57.3 90.0 95.5 1.0 3.6
TS2-Net [48] 59.1 90.0 95.2 1.0 3.5
ProST 60.6 90.5 95.4 1.0 3.4
ProST (ViT-B/16) 64.0 92.2 96.3 1.0 3.1

Table 5. Text-to-Video retrieval results on the LSMDC dataset.

Method Text → Video
R@1 ↑ R@5 ↑ R@10↑ MdR ↓ MnR ↓

Frozen [1] 15.0 30.8 39.8 20.0 -
TVMM [43] 17.8 37.1 45.9 13.5 -
CLIP4Clip [51] 21.6 41.8 49.8 11.0 61.0
X-Pool [20] 24.0 42.9 51.5 9.0 55.1
QB-Norm [2] 22.4 40.1 49.5 11.0 -
TS2-Net [48] 23.0 42.1 50.4 9.0 57.0
ProST 24.1 42.5 51.6 9.0 54.6
ProST (ViT-B/16) 26.3 46.1 55.2 8.0 51.4

text retrieval (44.3% vs. 46.3%). Furthermore, we repro-
duce TVMM [43] based on CLIP (ViT-B/32), which has
2.4% (45.8% vs. 48.2%) and 2.3% (44.0% vs. 46.3%) lower
R@1 than ProST on the 9k split. The results demonstrate
the effectiveness of ProST, which mines the spatial object
details and temporal event diversity of videos, improving
the model discrimination. Besides, ProST achieves a low
MnR metric of 12.4 (text-to-video) on the 9k split, demon-
strating the model robustness to erroneous results.

In Tab. 3, 4 and 5, we examine the performance of ProST
on the DiDeMo, VATEX and LSMDC datasets respectively.
Compared with TS2-Net [48], ProST achieves a substan-
tial boost of 3.1%, 1.5% and 1.1% on the R@1 metric for
DiDeMo, VATEX and LSMDC, respectively. ProST out-
performs state-of-the-art methods by a large margin with the
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Table 6. The ablation study on MSRVTT-9k to investigate the effectiveness of Object-Phrase Prototype Matching (OPPM) and Event-
Sentence Prototype Matching (ESPM). MdR results are not shown, as MdR=2.0 for all variants. Definition of important symbols: ✓
indicates default settings; ⟲TPG or ⟲SPG means replace with TPG or SPG to generate prototypes; P-P or O-W refers the alignment of
patch-phrase or object-word; -F, -M or -R refers to removing frame decoder, attention mask or residual structure in Eq. 5; F-W or F̄-S
means directly aligning frame global tokens and word tokens or aligning the mean of frame global tokens and text global token.

ID OPPM ESPM Text → Video Video → Text
SPG Matching TPG Matching R@1 ↑ R@5 ↑ R@10↑ MnR R@1 ↑ R@5 ↑ R@10↑ MnR

1 ✓ ✓ 45.6 72.2 81.1 14.3 44.9 71.6 82.3 10.0
2 ⟲SPG ✓ 45.8 71.7 81.9 14.8 44.0 71.9 82.3 10.6
3 ✓ ✓ 45.9 72.8 82.4 13.2 45.1 73.3 82.7 9.8
4 ⟲TPG ✓ ✓ ✓ 46.3 73.3 81.8 13.5 45.0 73.1 82.4 9.8
5 ✓ ✓ ⟲SPG ✓ 47.7 73.6 83.0 12.6 45.9 74.0 83.0 9.0
6 ✓ P-P ✓ ✓ 46.0 72.5 81.6 14.9 43.1 72.4 82.1 10.8
7 ✓ O-W ✓ ✓ 47.1 73.3 82.2 12.8 45.7 73.3 82.6 9.6
8 ✓ ✓ -F ✓ 46.4 72.8 81.7 13.5 44.5 72.5 82.0 10.2
9 ✓ ✓ -M ✓ 47.8 73.8 82.9 12.6 46.0 73.7 82.8 9.0
10 ✓ ✓ -R ✓ 46.6 72.9 82.4 14.0 45.3 72.1 81.8 10.1
11 F-W ✓ ✓ 47.3 73.5 82.8 12.6 45.9 73.7 83.1 9.0
12 ✓ ✓ F̄-S 46.5 72.6 82.3 13.4 45.1 73.4 82.5 9.8

Ours ✓ ✓ ✓ ✓ 48.2 74.6 83.4 12.4 46.3 74.2 83.2 8.7

Table 7. The ablation study on MSRVTT-9k to investigate the
configuration of the number of prototypes.

{No, Np, Ne}
Text → Video

R@1 ↑ R@5 ↑ R@10↑ MdR ↓ MnR ↓
{6, 14, 3} 45.6 73.2 81.6 2.0 14.3
{6, 28, 3} 46.7 73.4 82.2 2.0 13.4
{12, 14, 3} 47.0 73.7 83.0 2.0 12.9
{24, 32, 3} 46.0 73.3 82.0 2.0 13.8
{12, 28, 1} 46.3 73.0 82.1 2.0 13.5
{12, 28, 2} 47.4 74.0 83.1 2.0 12.7
{12, 28, 4} 47.6 74.3 83.2 2.0 12.5
{12, 28, 3} 48.2 74.6 83.4 2.0 12.4
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Figure 5. The R@1 results at different spatial matching factors β.

CLIP (ViT-B/16) backbone. These results suggest the ver-
satility and generalization of ProST, which can effectively
process videos from different domains (e.g., movies). We
owe the advantage of ProST over these works to the full use
of dynamic spatio-temporal prototype matching.

4.3. Ablation Study

Analysis of progressive spatio-temporal prototype
matching. In Tab. 6, we compare ProST with 12 variants,
which proves that each module contributes to final results.

We elaborate on some important observations. First, we
show the results relying only on Object-Phrase Prototype
Matching (OPPM) or Event-Sentence Prototype Match-

ing (ESPM). To implement our model without OPPM, all
tokens are fed directly into the frame decoder and event de-
coder (TPG) to get multiple event prototypes. When only
ESPM is used, there is a 2.6% decrease in R@1. This con-
firms the complementary role of fine-grained spatial details
for ESPM. Next, we replace TPG with SPG and find that
there is a certain suppression effect on noise. However,
both of the above variants perform poorly due to the lack
of progressive prototype generation and matching. When
we only train model with OPPM, the model still underper-
forms. This may be due to the lack of temporal understand-
ing and the inability to resolve correspondence ambiguity.

Second, ⟲TPG, P-P and O-W prove that there is indeed
redundancy in the original video tokens. The sparse weights
in SPG can alleviate this problem. However, FC layers in
SPG cannot interact with intra-frame and inter-frame infor-
mation, making it difficult to generate better event proto-
types. This may be the reason for the drop in ⟲SPG. Third,
P-P and O-W also confirm the benefits of prototype match-
ing. Raw patches or words without aggregation strategies
may worsen the cross-modal alignment.

Fourth, the results for -F, -M and -R also decreased. Be-
cause intra-frame local object relations and global frame
features jointly complement comprehensive frame-level
spatial information, which is helpful for subsequent tem-
poral learning. Fifth, from F-W and F̄-S, we can see the im-
portance of prototype design mode. Directly using global
frame features ([CLS] tokens) in ProST-S for frame-word
alignments lacks object details. In F̄-S, the mean value of
frame global features mixes all information equally, making
it difficult to characterize dynamic and changeable videos.
Analysis of prototype configuration. We conduct exper-
iments on various prototype configurations in Tab. 7. Im-
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Figure 6. Visualization of the object and event prototypes. We sample 12 frames in the video and object prototypes are shown as highlighted
response regions in the frame. Then, we show cross-attention event weights of Eq. 6 in a line graph. Best viewed in color.

proper configuration of spatial prototypes leads to perfor-
mance degradation, possibly because too many prototypes
may introduce local noise, while few prototypes are not
enough to express semantics. Furthermore, the best result is
obtained when the number of event prototypes is 3, which
may be related to the degree of semantic divergence of texts.
Hyperparameter analysis. As shown in Fig. 5, we in-
vestigate the spatial matching factor β and present results
for text-video (T2V) and video-text retrieval (V2T). As β
grows, the performance increases at first and reaches the
best results, then decreases as a whole. A small β may
not fully exploit the underlying fine-grained spatial infor-
mation, while a large β may overemphasize local matching
and destroy the overall dynamic semantic understanding.

4.4. Qualitative Results

Visualization of prototypes. In Fig. 6, we first present ob-
ject prototypes in video frames. Many redundant patches
are removed by prototypes, and the spatially highlighted
object part and the phrase can be well locally corresponded.
Then, we compute cross-attention for 3 event queries and 12
video frames according to Eq. 6, whose weights are shown
in a line graph. The weights of different event prototypes
on different frames are quite different, which proves that our
model can learn temporal relations and event prototypes can
express diverse semantics. For example, event prototype 1
has larger weights on the first three frames, which indicates
that it may correspond to the semantics contained in text 1.
Similarly, event prototype 2 or 3 corresponds to text 2 or 3.
Retrieval results. Top-3 TVR results are illustrated in
Fig. 7. Specifically, for query 97, although the top-2 re-
called videos are women in the same dress, the difference
is that the correct video discusses the cushion seat, while
the incorrect video does not. This proves that object-phrase
prototype matching provides fine-grained spatial knowl-
edge (i.e., objects). For query 353, ProST pays attention to

Query 97: a woman in red dress explaining about cushion seat. 
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Query 353: a man giving a presentation and showing the planet earth. 
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Figure 7. Top-3 TVR results on MSRVTT-9k. Left: the ranked
videos by our ProST. Right: the ranked videos with only event-
sentence prototype matching. Red: correct videos.

both the brief human speech at the beginning of the video
and the subsequent earth display. However, using only event
prototypes will result in a matching error. This shows that
ProST can make a trade-off between the spatio-temporal
matching relations to achieve better discrimination.

5. Conclusion

We have proposed a novel text-video retrieval frame-
work, ProST, to decompose the matching process into
complementary object-phrase and event-sentence prototype
alignments. In the object-phrase prototype matching stage,
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we design the spatial prototype generation mechanism to
focus on important video content and strengthen the fine-
grained spatial alignment. In the event-sentence prototype
matching phase, we use the temporal prototype generation
mechanism to progressively generate diverse event proto-
types and learn dynamic one-to-many relations. In this pa-
per, we hope not only to provide insights into the impor-
tance of complementary spatio-temporal matching but also
to facilitate future work that advances text-video retrieval
by solving design flaws rather than mostly trial and error.
Acknowledgment. This work is supported by the
National Key Research and Development Program of
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