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Abstract

Recently, several methods have explored the poten-
tial of multi-contrast magnetic resonance imaging (MRI)
super-resolution (SR) and obtain results superior to single-
contrast SR methods. However, existing approaches still
have two shortcomings: (1) They can only address fixed in-
teger upsampling scales, such as 2×, 3×, and 4×, which
require training and storing the corresponding model sep-
arately for each upsampling scale in clinic. (2) They lack
direct interaction among different windows as they adopt
the square window (e.g., 8×8) transformer network archi-
tecture, which results in inadequate modelling of longer-
range dependencies. Moreover, the relationship between
reference images and target images is not fully mined.
To address these issues, we develop a novel network for
multi-contrast MRI arbitrary-scale SR, dubbed as McASSR.
Specifically, we design a rectangle-window cross-attention
transformer to establish longer-range dependencies in MR
images without increasing computational complexity and
fully use reference information. Besides, we propose the
reference-aware implicit attention as an upsampling mod-
ule, achieving arbitrary-scale super-resolution via implicit
neural representation, further fusing supplementary infor-
mation of the reference image. Extensive and comprehen-
sive experiments on both public and clinical datasets show
that our McASSR yields superior performance over SOTA
methods, demonstrating its great potential to be applied
in clinical practice. Code will be available at https:
//github.com/GuangYuanKK/McASSR.

1. Introduction

Magnetic resonance imaging (MRI) can provide clear
information on tissue structure and function by acquir-
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Figure 1: Visual comparison with SOTA arbitrary-scale SR
method LTE [13], the reconstructed SR images by our net-
work contain sharper edges, more visual details, and fewer
blurring artefacts. ∗ means our implementation that uses
SwinIR [17] as the backbone and concatenates the refer-
ence and target image as input.

ing high-resolution (HR) magnetic resonance (MR) im-
ages, which is a non-invasive, radiation-free clinical imag-
ing technique. However, acquiring these HR MR images
is time-consuming, and the long acquisition time will cause
discomfort to patients and introduce motion artifacts [15, 5].
Image super-resolution (SR) technology is utilized to alle-
viate this problem by generating the corresponding HR ver-
sion from the low-resolution (LR) images obtained by MRI.

At the early stage, the model-based [27, 23] and
learning-based [37, 40] traditional methods are utilized to
generate SR images. However, these methods have in-
sufficient reconstruction performance under high upsam-
pling scale, such as 4×. Recently, some deep learning
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methods based on single-contrast for MRI SR reconstruc-
tion [22, 29, 31, 2, 24, 26, 32, 41] have been proposed to
cope with the limitations of traditional methods and acquire
higher-quality MR images. However, the aforementioned
single-contrast methods only focus on feature extraction
and restoration using single-contrast MR images, ignoring
the complementary information in the corresponding other
contrast images, which can be utilized to improve the re-
construction quality of the images.

MRI can offer multi-contrast images with the same tis-
sue and anatomical structure by setting different scanning
parameters. Therefore, using reference HR images of one
contrast with a shorter acquisition time (e.g., T1 and PD)
to complement target LR images of another contrast with
a longer scan time (e.g., T2 and FS-PD) is a promising
method. Several multi-contrast approaches [21, 4, 14, 16,
39, 44] have been proposed to utilize the reference images
for multi-contrast MRI SR and obtain better results than
single-contrast methods. Nevertheless, these methods still
have the following shortcomings that restrict their applica-
tion in clinic. Limitation 1: They can only address fixed
integer upsampling scales, such as 2×, 3×, and 4×, and
cannot directly perform arbitrary-scale upsampling. More-
over, each fixed integer scale requires training and storing
the corresponding deep neural network model separately,
which seriously hinders the application in the medical field.
Limitation 2: They lack direct interaction among different
windows since they employ the square window (e.g., 8×8)
transformer network architecture, which results in inade-
quate modelling of longer-range dependencies. Moreover,
the relationship between reference images and target im-
ages is not fully mined. Intuitively, for knee and brain MR
images, the vertical/horizontal rectangular window (e.g.,
4×16/16×4) can effectively establish longer-range depen-
dencies and capture more similar features to accelerate the
increase of receptive fields.

To cope with the above shortcomings, in this paper, we
propose a novel and effective network for multi-contrast
MRI arbitrary-scale SR. we call it McASSR. First, we de-
sign a rectangle-window cross-attention transformer as the
feature extraction backbone. Specifically, it employs hori-
zontal and vertical rectangle window cross-attention in dif-
ferent heads parallelly to expand the attention area, aggre-
gate the features among different windows, and cross-fuse
the complementary information of the reference and target
images. Second, inspired by implicit neural representation
(INR) [1], we propose the reference-aware implicit atten-
tion as an upsampling module, which achieves arbitrary-
scale super-resolution and further fuses complementary in-
formation of the reference and target images. Our contribu-
tions can be summarized as follows:

(1) We propose a novel network for multi-contrast MRI
arbitrary-scale SR, named as McASSR. To the best of our

knowledge, our study is the first one to achieve arbitrary-
scale upsampling in multi-contrast MRI tasks.

(2) The rectangle-window cross-attention transformer
is designed to increase the receptive field, which can ef-
fectively establish the longer-range dependencies to fully
use reference information without increasing computational
complexity.

(3) The reference-aware implicit attention is proposed to
realize multi-contrast MRI arbitrary-scale SR via INR and
improve the quality of the reconstruction images by utiliz-
ing supplementary information from the reference images.

(4) Our McASSR outperforms SOTA approaches on four
benchmark datasets (FastMRI, BraTs, healthy Brain, tumor
Brain), demonstrating its effectiveness and tremendous po-
tential to be used in clinical practice.

2. Related Works
2.1. Multi-Contrast MRI SR

In clinic, T1 or PD images usually have shorter repe-
tition time and echo time than T2 or FS-PD images, and
they have the same anatomical structure. Therefore, T1/PD
can be used as a reference image to provide high-frequency
texture and detail to T2/FS-PD (target image). Recently,
some studies have explored the potential of multi-contrast
MRI SR. For instance, Lyu et al. [21] designed a novel two-
level progressive network for multi-contrast MRI SR. Feng
et al. [4] proposed a novel network with the multi-stage fea-
ture fusion mechanism for multi-contrast MRI SR. Li et
al. [14] first explored the use of the transformer in multi-
contrast MRI SR and proposed a transformer-empowered
multi-scale contextual matching and aggregation network.
Li et al. [16] introduced a novel model to synergize wavelet
transforms with a new cross-attention transformer for multi-
contrast MRI SR. Although the above methods achieved
impressive results, they only apply to a fixed upsampling
factor and cannot perform arbitrary-scale SR, which is not
well suited to the requirements of clinicians.

2.2. Arbitrary-Scale SR

Recently, researchers have proposed some methods for
arbitrary-scale SR of natural images using implicit neural
representation (INR) [1]. For example, Chen et al. [1] first
used INR in the SR algorithm and proposed Local Implicit
Image Function (LIIF) for continuous image representa-
tion. Yang et al. [36] designed a novel Implicit Transformer
Super-Resolution Network (ITSRN) for screen content im-
ages arbitrary-scale SR. Wu et al. [35] proposed a novel
network using INR for 3D MR images arbitrary-scale SR.
Lee et al. [13] proposed a Local Texture Estimator (LTE)
for natural images arbitrary-scale SR. Inspired by the above
studies, we consider using INR in multi-contrast MRI SR to
achieve arbitrary-scale upsampling using a single network.
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Figure 2: The overall architecture of our proposed McASSR. It divides into two components: (1) feature extraction & cross-
fusion network, including rectangle-window cross-attention transformer and local feature enhanced module, and (2) implicit
upsampling network, including reference-aware implicit attention and MLP.

2.3. MRI Transformer

Transformer [34] is usually utilized to solve the issue that
the convolution kernel cannot capture long-range/non-local
dependencies and has been widely employed in MRI recon-
struction [7, 6, 14, 16, 20, 18, 19]. For instance, Feng et
al. [7] proposed a task transformer for simultaneous MRI
reconstruction and SR reconstruction and designed a multi-
modal transformer [6] for multi-contrast MRI reconstruc-
tion. Lyu et al. [20] proposed a novel dual-domain cross-
attention fusion transformer for multi-contrast MRI recon-
struction. Nevertheless, the above methods employ the
square window transformer to extract features of the ref-
erence image, which lacks the ability to model longer-range
dependencies [43], resulting in insufficient utilization of the
reference information. In contrast, the vertical/horizontal
rectangle window transformer is more suitable for MR im-
ages as they usually have global similarities, such as knee
and brain, which can effectively establish longer-range de-
pendencies and capture more similar features.

3. Methodology

The overall architecture of our proposed McASSR is
shown in Figure 2, which is divided into two components:
(1) feature extraction & cross-fusion network (Sec. 3.1),
including Rectangle-Window Cross-Attention Transformer
(RCT) and Local Feature Enhanced Module (LFEM);
(2) implicit upsampling network (Sec. 3.2), including
Reference-Aware Implicit Attention (RIA) and MLP.

First, we utilize one convolution layer to perform shal-
low feature extraction on the target LR image Itar ∈ Rh×w,
the rescaled reference image I lrref ∈ Rh×w, and the ref-

Horizontal Window Fused WindowVertical Window

(a) (b) (c)

Fused Window

(d)

Figure 3: Illustration of rectangle window, including ver-
tical window, horizontal window, and fused window. The
blue point represents similar contents to the red point.

erence image Ihrref ∈ RH×W to obtain low-level fea-
tures Ftar ∈ RC×h×w, F lr

ref ∈ RC×h×w, and Fhr
ref ∈

RC×H×W , respectively. Here, the rescaled means dynami-
cally adjusting the reference image size to obtain the same
size as Itar, and F lr

ref is utilized to supplement the low-
frequency component in Ftar. Then, RCT is employed to
fuse Ftar and F lr

ref to obtain the fused high-level feature
Ff

tar ∈ RC×h×w. Meanwhile, LFEM is used to perform
local feature enhancement on Fhr

ref to obtain local enhanced
high-level feature Fe

ref ∈ RC×H×W . Next, Ff
tar and Fe

ref

are fed into the RIA for arbitrary-scale upsampling accord-
ing to the coordinate grid. Finally, the MLP is used to pre-
dict the final pixel values.

3.1. Feature Extraction & Cross-Fusion Network

Rectangle-Window Cross-Attention Transformer. MR
images of certain tissues have global similarities, such as
knee and brain, which means that the vertical/horizontal
rectangular window can effectively establish longer-range
dependencies and capture more similar features. As shown
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in Figure 3 (a)(b), the blue patches indicate the rectangle
window with a size of 4×16 or 16×4. As can be seen,
there is a high similarity in the longer-range regions (red
and blue). However, for the square window, such as 8×8,
it is impossible to establish the longer-range dependencies
of the red and blue regions without expanding the window
size. Hence, we consider using the transformer with the
rectangle window in the multi-contrast MRI SR (MCSR)
task to enhance further the network’s ability to establish
longer-range dependencies.

Inspired by recent studies [43, 3, 16], we design a
new rectangle-window cross-attention transformer, effec-
tively establishing longer-range dependencies in MR im-
ages while fusing complementary information from refer-
ence images. As shown in Figure 2, the RCT is composed
of n rectangle-window cross-attention blocks (RCBs) and
one convolutional layer (we set n=6). The shallow features
Ftar and F lr

ref are fed into the RCB, respectively, and fea-
ture extraction and cross-fusion are performed to obtain the
fused deep features Ff

tar. In addition, a residual connection
is involved in the RCT to stabilize the training. The process
can be expressed as:

Ff
tar = [F̂tar+Ftar, F̂ lr

ref+F lr
ref ], (1)

where F̂tar= Θ(Ψ(Ftar,F lr
ref )), F̂ lr

ref= Θ(Ψ(F lr
ref ,Ftar)),

Ψ is RCB, Θ means Conv, and [,] denotes concatenate.
Rectangle-Window Cross-Attention Block. As shown
in Figure 4, the RCB consists of two rectangle-window
cross-attentions (Rwin-CA) and two MLPs. Similar to
[43], Rwin-CA is divided into two types, vertical window
(Sh>Sw, as shown in Figure 3 (a), named as Vwin-CA),
and horizontal window (Sh<Sw, as shown in Figure 3 (b),
named as Hwin-CA), and employ them in parallel for dif-
ferent attention heads. We set the number of attention heads
H is even, where H/2 heads perform Vwin-CA, and the re-
maining heads perform Hwin-CA. Then, their outputs are
concatenated along the channel dimension. As shown in
Figure 3 (c)(d), by aggregating Vwin-CA and Hwin-CA,
the attention area can be expanded to establish longer-range
dependencies and capture more similar features without ex-
tending the window size.

For Vwin-CA, given the input Ftar and F lr
ref , we split

them into non-overlapping rectangle windows with the
number h×w

Sh×Sw . Specifically, for a rectangle window fea-
ture F i, i = [1, · · · , h×w

sh×Sw ], the query, key, and value are
denoted as:(

FQ,i,FK,i,FV,i
)
=

(
F iEQ,F iEK ,F iEV

)
, (2)

where EQ, EK , and EV denote the projection matrix. Then
the cross-attention between Ftar and F lr

ref can be computed
as:

A(FQ,i
tar ,F

K,i
ref ,F

V,i
ref ) = S(

FQ,i
tar (F

K,i
ref )

T

√
d

+B)FV,i
ref , (3)

𝓕𝒕𝒂𝒓
𝑸𝓕𝒓𝒆𝒇

𝑲𝓕𝒓𝒆𝒇𝑽𝓕𝒓𝒆𝒇
𝑸 𝓕𝒕𝒂𝒓𝑲 𝓕𝒕𝒂𝒓𝑽

cross

Rwin-CA

MLP

Rwin-CA

MLP

Figure 4: Illustration of rectangle-window cross-attention
block, including two Rwin-CAs and two MLPs.

A(FQ,i
ref ,F

K,i
tar ,F

V,i
tar) = S(

FQ,i
ref (F

K,i
tar )

T

√
d

+B)FV,i
tar , (4)

where S represents SoftMax, d means the channel dimen-
sion, and B denotes the dynamic relative position encod-
ing. Performing the attention operation on all rectangle win-
dow features and obtaining the final output through MLP.
Note that the above operation is the same for Vwin-CA and
Hwin-CA.
Local Feature Enhanced Module. Current MCSR meth-
ods only consider local feature extraction [21, 4] or global
feature extraction [14, 16] of MR images and fail to perform
local and global feature extraction on MR images simulta-
neously. Therefore, we introduce a Local Feature Enhanced
Module to address this issue comprehensively. Specifically,
as shown in Figure 2, we use n RCABs [42] as a local fea-
ture extractor to obtain the high-level local feature Fe

ref ,
which is utilized to supplement the high-frequency compo-
nent information of Ff

tar in the implicit upsampling.

3.2. Implicit Upsampling Network

Current MCSR methods [14, 16] can only conduct fixed-
scale upsampling, which is unsuitable for clinical applica-
tions as they require training and storing a separate model
for each upsampling factor. Therefore, we propose implicit
upsampling to solve this problem comprehensively, which
consists of a reference-aware implicit attention (RIA) and
an MLP.
Reference-Aware Implicit Attention. Some methods [1,
36, 13] currently achieve arbitrary-scale SR of natural im-
ages via implicit neural representation (INR). INR refers
to a continuously differentiable function that utilizes the
pixel coordinates to generate pixel values, such as NeRF
[25]. Inspired by recent studies [1, 36, 13], we design RIA
to achieve arbitrary-scale upsampling while fusing high-
frequency component features from reference images, as
shown in Figure 5. Unlike explicit attention, which takes
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Figure 5: The detailed architecture of reference-aware im-
plicit attention.

pixel values as the query, RIA takes pixels’ coordinates
as the query. In other words, RIA is not learning the
pixel2pixel mapping but the coordinate2pixel mapping.

Specifically, we have the following definitions:

∆ = CHR − C↑
LR, R = L(Fe

ref ),
(Q,K, V ) = (L(∆), ↑ C(Ff

tar), ↑ C(Ff
tar)),

(5)

where L denotes Linear transform, C means Conv2D, ↑
represents nearest neighbor interpolation, ∆ ∈ R2×H×W

means the relative offsets between the query points (HR
space, as shown in Figure 5 blue point) and their corre-
sponding nearest neighboring points (target LR space, as
shown in Figure 5 green point). We embed ∆ to Q ∈
RC×H×W , Ff

tar to K ∈ RC×H×W and V ∈ RC×H×W ,
and Fe

ref to R ∈ RC×H×W . For a query point P , the
query feature is QP , its corresponding key feature and value
feature are KP↑ and VP↑ (in the target LR space), respec-
tively, and the reference feature is RP (in the reference HR
space), where P ↑ denotes the nearest neighboring point of
P . Therefore, the RIA can be expressed as:

FP = (QP ⊗KP↑)⊗ VP↑ +RP , (6)

where FP is the fused feature that needs to be predicted, ⊗
means element-wise multiplication. Note that coordinates
are normalized into the [−1, 1]. Inspired by [1, 13], we add
grid size in RIA to address the issue that the location of the
edge changes within a small area in its HR space when the
scale factor changes. Hence, the RIA can be optimized as
follows:

FP = (QP ⊗KP↑ + L(G))⊗ VP↑ +RP , (7)

where G is the grid size.

In addition, some studies [30, 33] have demonstrated that
employing periodic activation functions in INR, such as sin
and cos, can drive the network to learn high-frequency com-
ponents. For MR images, high-frequency information is
usually represented as complicated anatomical structures.
Therefore, we use sin as a non-linear function to reweight
the weights in RIA to preserve these structures:

FP = σ(QP ⊗KP↑ + L(G))⊗ VP↑ +RP , (8)

where σ denotes sin non-linear mapping function.
MLP. After acquiring the predicted feature FP , using MLP
to obtain the predicted pixel value IP of point P . Moreover,
we utilize a long skip connection to stabilize the training
and increase learning accuracy [11]. Thus, the predicted
pixel value IP can be expressed as:

IP = Φ(FP )+ ↑ ItarP , (9)

where Φ denotes MLP, as shown in Figure 2.

3.3. Loss Function

The L1 pixel loss is utilized to evaluate the reconstruc-
tion results of the target image and reference image:

Ltar = ∥ISR
tar − IHR

tar ∥1, Lref = ∥ISR
ref − IHR

ref ∥1, (10)

where ISR
tar is the reconstructed target SR image, IHR

tar and
IHR
ref are the original target image and the reference image,

respectively, and ISR
ref is the reconstructed reference image

obtained by LFEM and one convolution layer. Therefore,
the final loss function is:

Lfull = λtarLtar + λrefLref , (11)

where hyperparameters λtar=0.7 and λref=0.3 are utilized
to control the weight between Ltar and Lref [4].

4. Experiments
4.1. Datasets and Baselines

Datasets. We employ four datasets to evaluate the perfor-
mance of our proposed network, including two public multi-
contrast MRI datasets: FastMRI [38] and BraTs [9], and
two in-house datasets: Healthy brain and Tumor brain, as
shown in Table 1. The tumor brain dataset is only used to
test the model trained by the healthy brain dataset. For the
training and validation datasets, we downsample the ground
truth (GT) images (256×256) at random scale s ∈ (1, 4] by
bicubic interpolation during training to generate LR images
[35]. For the test dataset, we utilize Fourier transform to
convert the images into k-space, crop the k-space, and then
obtain the LR test set by inverse Fourier transforms [14].
Baselines. We compare our method with existing fixed
integer scale MCSR methods, including MINet [4] (MIC-
CAI2021), WavTrans [16] (MICCAI2022), McMRSR [14]
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PSNR: 30.28
SSIM: 0.8091

PSNR: 30.55
SSIM: 0.9031

PSNR: 34.07
SSIM: 0.9501

PSNR: 30.51
SSIM: 0.9038

MINet[4]

PSNR: 31.99
SSIM: 0.8348

PSNR: 32.35
SSIM: 0.9208

PSNR: 35.22
SSIM: 0.9612

PSNR: 32.06
SSIM: 0.9195

WavTrans[16]

PSNR: 32.52
SSIM: 0.8407

PSNR: 32.37
SSIM: 0.9217

PSNR: 35.63
SSIM: 0.9675

PSNR: 32.30
SSIM: 0.9202

McMRSR[14]

PSNR: 30.57
SSIM: 0.8098

PSNR: 30.46
SSIM: 0.9026

PSNR: 34.16
SSIM: 0.9503

PSNR: 30.07
SSIM: 0.9013

MetaSR∗[10]

PSNR: 30.93
SSIM: 0.8164

PSNR: 30.78
SSIM: 0.9071

PSNR: 34.51
SSIM: 0.9517

PSNR: 30.76
SSIM: 0.9058

LIIF∗[1]

PSNR: 31.29
SSIM: 0.8266

PSNR: 30.95
SSIM: 0.9085

PSNR: 34.76
SSIM: 0.9538

PSNR: 31.04
SSIM: 0.9097

ITSRN∗[36]

PSNR: 32.14
SSIM: 0.8358

PSNR: 31.91
SSIM: 0.9137

PSNR: 34.87
SSIM: 0.9543

PSNR: 31.51
SSIM: 0.9122

LTE∗[13]

PSNR: 33.58
SSIM: 0.8557

PSNR: 33.21
SSIM: 0.9282

PSNR: 36.08
SSIM: 0.9701

PSNR: 32.48
SSIM: 0.9215

Ours Target HR

Figure 6: Qualitative comparison of different SR reconstruction methods on four datasets with an in-scale of 4×. ∗ means
our implementation that uses SwinIR [17] as the backbone and concatenates the reference and target image as input.

Table 1: Four datasets used for the experiments.

Datasets FastMRI BraTs Health Tumor

Reference PD T1 T1 T1
Target FS-PD T2 T2-FLAIR T2-FLAIR
Train 640 640 512 -

Validation 160 160 125 -
Test 160 160 125 305

(CVPR2022), and arbitrary-scale SR methods, including
MetaSR [10] (CVPR2019), LIIF [1] (CVPR2021), ITSRN
[36] (NeurIPS2021), LTE [13] (CVPR2022). For a fair
comparison, we use SwinIR [17] as the backbone and
concatenate the reference and the target image as input
for arbitrary-scale SR methods. In addition, we evaluate
our McASSR for both in-scale s ∈(1,4] and out-of-scale
s=[6, 8] to verify the generalization capability of our pro-
posed network and set rectangle window with a size of
4×16/16×4.

4.2. Implementation Details

We implement our proposed approach in PyTorch [28]
with a single NVIDIA RTX A6000 GPU (48GB). The
Adam [12] optimizer is adopted for network training with
epochs of 1000. We set the batch size as 8 and the learning
rate as 2e-4 and decayed by factor 0.5 at [500, 800, 900,
950]. In addition, Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity index (SSIM) are employed as metrics
to measure the performance of the SR reconstruction.

4.3. Qualitative results

Figure 6 provides the qualitative comparison of three
fixed integer scale MCSR methods (1cst to 3crd) and four
arbitrary-scale SR methods (4cth to 7cth) on four datasets
with an in-scale of 4× ([64× 64] → [256× 256]). The top,
second, third, and bottom rows are the SR results under the
FastMRI, BraTs, healthy brain, and tumor brain datasets,
respectively. The green box is the local zoom-in region and
the corresponding error map, and the more textures in the
error map, the poorer quality of the reconstructed SR re-
sults. As can be seen, our method can restore the compli-
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Table 2: Quantitative comparison with SOTA methods on four datasets (PSNR (dB) ↑ and SSIM ↑). The best results are
highlighted in red (best) and blue (2nd best). ∗ means our implementation that uses SwinIR [17] as the backbone and
concatenates the reference and target image as input.

Dataset Method
in-scale out-of-scale

2× 3× 4× 6× 8×
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

FastMRI
Knee

MINet [4] 35.02 0.8933 32.85 0.8504 30.59 0.8101 - - - -
WavTrans [16] 36.15 09054 34.23 0.8576 31.95 0.8343 - - - -
McMRSR [14] 36.17 0.9063 34.35 0.8588 31.96 0.8345 - - - -
MetaSR∗ [10] 34.26 0.8902 32.71 0.8443 30.66 0.8102 28.57 0.7914 27.42 0.7258
LIIF∗ [1] 34.79 0.8931 32.90 0.8508 30.87 0.8155 28.86 0.7945 27.74 0.7263
ITSRN∗ [36] 35.13 0.8948 33.02 0.8513 31.02 0.8258 29.05 0.7995 27.92 0.7306
LTE∗ [13] 35.16 0.8955 33.14 0.8574 31.19 0.8263 29.12 0.8007 27.85 0.7316
Ours 36.31 0.9071 34.54 0.8743 32.52 0.8416 29.92 0.8096 28.76 0.7457

BraTs

MINet [4] 40.90 0.9906 36.85 0.9724 34.27 0.9514 - - - -
WavTrans [16] 41.65 0.9911 38.35 0.9785 35.36 0.9621 - - - -
McMRSR [14] 41.73 0.9912 38.41 0.9793 35.49 0.9663 - - - -
MetaSR∗ [10] 40.82 0.9904 35.90 0.9700 34.15 0.9503 30.25 0.9107 28.50 0.9003
LIIF∗ [1] 40.96 0.9907 36.73 0.9713 34.53 0.9519 30.73 0.9156 28.98 0.9037
ITSRN∗ [36] 41.18 0.9909 36.92 0.9728 34.62 0.9523 30.77 0.9157 29.35 0.9094
LTE∗ [13] 41.40 0.9910 37.24 0.9750 34.77 0.9535 31.06 0.9192 29.97 0.9135
Ours 41.98 0.9917 38.47 0.9801 35.62 0.9659 32.05 0.9237 30.68 0.9197

Healthy
Brain

MINet [4] 37.59 0.9836 32.91 0.9453 30.75 0.9049 - - - -
WavTrans [16] 38.52 0.9904 33.85 0.9521 32.42 0.9215 - - - -
McMRSR [14] 38.59 0.9911 33.89 0.9537 32.48 0.9217 - - - -
MetaSR∗ [10] 36.37 0.9751 31.83 0.9372 30.72 0.9042 26.61 0.8394 26.27 0.7996
LIIF∗ [1] 37.22 0.9826 32.80 0.9451 30.82 0.9073 27.95 0.8559 26.35 0.8122
ITSRN∗ [36] 37.66 0.9838 32.97 0.9455 31.24 0.9117 28.23 0.8596 26.68 0.8163
LTE∗ [13] 37.73 0.9856 33.31 0.9486 31.96 0.9140 28.39 0.8612 26.92 0.8176
Ours 38.68 0.9914 34.12 0.9579 32.65 0.9227 29.38 0.8697 27.56 0.8219

Tumor
Brain

MINet [4] 37.18 0.9812 32.31 0.9406 30.37 0.9015 - - - -
WavTrans [16] 38.19 0.9882 33.52 0.9495 31.99 0.9177 - - - -
McMRSR [14] 38.22 0.9891 33.59 0.9502 32.07 0.9191 - - - -
MetaSR∗ [10] 36.34 0.9751 31.70 0.9353 30.43 0.9032 26.47 0.8384 26.12 0.7989
LIIF∗ [1] 37.14 0.9815 32.53 0.9414 30.72 0.9057 27.87 0.8545 26.29 0.8107
ITSRN∗ [36] 37.55 0.9834 32.65 0.9428 31.10 0.9102 28.19 0.8581 26.68 0.8162
LTE∗ [13] 37.62 0.9851 33.16 0.9456 31.74 0.9165 28.26 0.8606 26.90 0.8173
Ours 38.43 0.9901 33.97 0.9529 32.39 0.9206 29.14 0.8685 27.57 0.8219

Table 3: Ablation study on various variant models under FastMRI dataset with an in-scale of 4×. The best quantitative result
(PSNR (dB) ↑ and SSIM ↑) is marked in bold.

Variants Square w/o reference w/o Lref w/o RIA w/o GS w/o PAF w/o RCB w/o LFEM Ours Full

PSNR 31.63 31.11 32.26 31.69 31.42 31.85 31.52 32.01 32.52
SSIM 0.8289 0.8265 0.8357 0.8293 0.8273 0.8302 0.8281 0.8348 0.8416

cated anatomical structure in MR images and preserve the
original information in the HR images, which demonstrates
that our McASSR can establishes longer-range dependen-
cies and effectively fuse high-frequency information in the
reference images. Furthermore, Figure 7 illustrates the SR
reconstruction results of our method with other arbitrary-
scale SR methods using a single network under the out-of-
scale 8× ([32× 32] → [256× 256]). Even at an extremely

large magnification factor of 8×, our method can still re-
construct the closest image to the original, indicating that
our method has significant clinical application prospects.

4.4. Quantitative results

Table 2 offers the quantitative comparison between our
proposed method and other SR methods, including fixed
integer scale MCSR and arbitrary-scale SR methods. We
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Figure 7: Qualitative results of different arbitrary-scale SR
methods on the FastMRI with an out-of-scale of 8×.
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Figure 8: Complexity comparison. The PSNR are evaluated
on the FastMRI dataset for 4× upsampling, and the FLOPs
are calculated with a 64×64 input. FLOPs (G): ×103.
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Figure 9: Local attribution maps comparison between
square-window and rectangle-window.

notice that, WavTrans and McMRSR have significant bene-
fits for in-scale as they train corresponding models for each
fixed integer scale. Nevertheless, the best results in terms

PSNR: 31.98
SSIM: 0.8316

PSNR: 33.36
SSIM: 0.8487

𝑤/ RIA Target HR𝑤/𝑜 RIA

Figure 10: Qualitative comparison of w/o RIA and w/ RIA.

of all metrics are still acquired by our method regardless of
in-scale or out-of-scale, demonstrating that our McASSR
achieves arbitrary-scale upsampling while maximizing the
restoration of detailed information in the MR image.

Moreover, we calculated the Parameters (M) and FLOPs
(G ×103) for each network model, as shown in Figure
8. The Parameters are represented as circles; a larger cir-
cle diameter means a larger parameter. As can be seen,
our method can get the most satisfactory SR results under
smaller Parameters and FLOPs. Furthermore, the inference
time per image is as follows: MINet: 128ms, WavTrans:
193ms, McMRSR: 187ms, MetaSR: 56ms, LIIF: 40ms, IT-
SRN: 80ms, LTE: 24ms, and Ours: 35ms.

4.5. Ablation Study

In this section, we explore the significance of each key
component of our proposed method. All these variant mod-
els are retrained the same way as before on the FastMRI
dataset and tested with an in-scale of 4×. The quantitative
metrics results of these variants are shown in Table 3.

4.5.1 Effect of rectangle-window.

To investigate the effectiveness of the rectangle window, we
design a variant by replacing the rectangle window with the
square window (8×8), as shown in Table 3. As can be seen,
the PSNR value of the square-window variant decreases
by about 0.89dB, demonstrating that using the rectangle-
window can effectively establish longer-range dependen-
cies to accelerate the increase of receptive fields.

Moreover, we utilize local attribution maps (LAM) [8]
to visualize the receptive fields of rectangle-window and
square-window, as shown in Figure 9. Note that LAM
means the contribution of pixels in other regions when re-
constructing the red region. That is, the more pixels that can
be utilized, the larger the long-range dependencies of the
network. We notice that, the square window variant utilizes
only a limited range of pixels. In contrast, the rectangular
window can employ a longer range of pixels, which means
that it effectively establishes longer-range dependencies.

21237



4.5.2 Effect of rectangle-window size

To explore the effectiveness of rectangle-window size, we
design two variants by adjusting the rectangle-window size
to 1 × 64 / 64 × 1, named as R-window-1, and adjusting
the rectangle-window size to 2 × 32 / 32 × 2, named as
R-window-2, as shown in Table 4. As can be seen, the
PSNR values of R-window-1 and R-window-2 decrease by
about 1.5dB and 1.09dB, respectively, demonstrating that
the rectangle-window width/height compression will lead
to the reduction of the reconstruction performance of the
network.

4.5.3 Effect of reference image.

To evaluate the contribution of the reference image, we con-
duct three ablation studies by removing the reference image,
referred as w/o reference, removing the Lref , referred as
w/o Lref , removing the reference-aware in RIA, referred
as w/o RIA. As can be seen, using supplementary informa-
tion in the reference image can enhance the quality of target
SR reconstruction. In addition, RIA can effectively supple-
ment high-frequency information for the target image, as
shown in Figure 10. As can be seen, the reconstructed im-
age of variant w/o RIA loses some high-frequency detail
information, resulting in a large reconstruction error.

4.5.4 Effect of GS and PAF

To verify the contribution of Grid Size (GS) and Periodic
Activation Functions (PAF), we design two variants by re-
moving grid size and removing periodic activation func-
tions, named w/o GS and w/o PAF, respectively. As shown
in Table 3, the introduction of grid size and periodic activa-
tion functions can enhance the reconstruction performance
of the network.

4.5.5 Effect of RCB and LFEM

To explore the effect of the rectangle-window cross-
attention block (RCB) and local feature enhanced module
(LFEM), we design two variant models by removing the
cross in RCB, named as w/o RCB, and replacing LFEM
with one convolution layer, named as w/o LFEM. As shown
in Table 3, by introducing the RCB and LFEM, the re-
construction performance of our proposed network is opti-
mized. This confirms the strong ability of RCB and LFEM
modules to ensure that the target LR features make maxi-
mum use of the reference information.

4.5.6 Effect of IUN

To validate the contribution of the proposed implicit upsam-
pling network (IUN), we design a variant model named w/o

Table 4: Ablation study on various window-size under
FastMRI dataset with an in-scale of 4×. The best quanti-
tative result (PSNR (dB) ↑ and SSIM ↑) is marked in bold.

Variant Window-Size PSNR SSIM
R-window-1 1× 64 / 64× 1 31.02 0.8257
R-window-2 2× 32 / 32× 2 31.43 0.8273
Ours Full 4× 16 / 16× 4 32.52 0.8416
S-window 8× 8 / 8× 8 31.63 0.8289

Table 5: Effect of implicit upsampling network. The best
quantitative result (PSNR (dB) ↑ and SSIM ↑) is marked in
bold.

Scale Metrics w/o IUN w/ IUN

4× PSNR 31.21 32.52
SSIM 0.8266 0.8416

6× PSNR 29.21 29.92
SSIM 0.8017 0.8096

8× PSNR 28.03 28.76
SSIM 0.7339 0.7457

IUN, which replaces IUN with the simplest implicit neu-
ral representation [1]. Utilizing the public dataset FastMRI
to conduct experiments at in-scale 4× and out-of-scale 6×
and 8×, the quantitative results (PSNR/SSIM) are shown in
Table 5. The results indicate that without IUN, the perfor-
mance of the network significantly decreases.

5. Conclusion

This study proposes a novel multi-contrast MRI SR
method to establish longer-range dependencies in MR im-
ages and provide sufficient complementary information for
the target LR image via a rectangle-window cross-attention
transformer and achieve arbitrary-scale super-resolution by
harnessing reference-aware implicit attention. Experimen-
tal results demonstrate that our McASSR outperforms ex-
isting SOTA methods, showing the potential to be applied
in clinical practice.
Future Work. The multi-contrast image pairs need to
be co-registered in advance, which is tedious and time-
consuming. In the future, we shall work on designing a
multi-task framework to perform registration and SR recon-
struction simultaneously.
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