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Abstract

Recent advancements in neural rendering have paved
the way for a future marked by the widespread distribu-
tion of visual data through the sharing of Neural Radiance
Field (NeRF) model weights. However, while established
techniques exist for embedding ownership or copyright in-
formation within conventional visual data such as images
and videos, the challenges posed by the emerging NeRF
format have remained unaddressed. In this paper, we in-
troduce StegaNeRF, an innovative approach for stegano-
graphic information embedding within NeRF renderings.
We have meticulously developed an optimization frame-
work that enables precise retrieval of hidden information
from images generated by NeRF, while ensuring the origi-
nal visual quality of the rendered images to remain intact.
Through rigorous experimentation, we assess the efficacy of
our methodology across various potential deployment sce-
narios. Furthermore, we delve into the insights gleaned
from our analysis. StegaNeRF represents an initial foray
into the intriguing realm of infusing NeRF renderings with
customizable, imperceptible, and recoverable information,
all while minimizing any discernible impact on the rendered
images. For more details, please visit our project page:
https://xggnet.github.io/StegaNeRF/

1. Introduction

Implicit neural representation (INR) is an emerging con-

cept where the network describes the data through its

weights [14, 24, 40, 42, 45, 58, 65]. After training, the INR

weights can then be used for content distribution, streaming,

and even downstream inference tasks, all without sending or

storing the original data. Arguably the most prominent INR

is Neural Radiance Fields (NeRF) [42], where a network

learns a continuous function mapping spatial coordinates to

density and color. Due to its lightweight size and superb

quality, NeRF has immense potential for 3D content repre-

sentation in future vision and graphics applications.
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Figure 1. We introduce the new problem of NeRF steganography:

hiding information in NeRF renderings. Our proposed framework,

StegaNeRF, can embed and recover customized hidden informa-

tion while preserving the original NeRF rendering quality.

While there is a plethora of work dedicated towards bet-

ter quality [4,63,72,91], faster rendering [43,56,61,71,83],

and sparse view reconstruction [10,11,44,57,80,81,85,88],

in this paper, we look beyond the horizon and explore a new

question: Can we achieve steganography with NeRF?
Established digital steganography method [12] focus on

embedding hidden messages in 2D images. The recent

growth of deep learning and social media platforms further

gives rise to many practical use cases of image steganog-

raphy. As countless images and videos are shared online

and even used to train deep learning models, 2D steganogra-

phy methods [2,3] allow users and data providers to protect

copyright, embed ownership, and prevent content abuse.

Now, with the ongoing advances in 3D representations

powered by NeRF, we envision a future where people fre-

quently share their captured 3D content online just as they

are currently sharing 2D images and videos online. More-

over, we are curious to explore the following research ques-

tions: � Injecting information into 2D images for copy-

right or ownership identification is common, but can we

preserve such information when people share and render 3D

scenes through NeRF? � NeRF can represent large-scale

real-world scenes with training images taken by different

people, but can we preserve these multiple source identities

in the NeRF renderings to reflect the collaborative efforts

required to reconstruct these 3D scenes? � Common image

steganography methods embed either a hidden image or a

message string into a given image, but can we allow differ-

ent modalities of the hidden signal in NeRF steganography?

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Driven by these questions, we formulate a framework

to embed customizable, imperceptible, and recoverable in-

formation in NeRF renderings without sacrificing the vi-

sual quality. Fig. 1 presents an overview of our proposed

framework, dubbed StegaNeRF. Unlike the traditional im-

age steganography that embeds hidden signals only into a

specific source image, we wish to recover the same intended

hidden signal from NeRF rendered at arbitrary viewpoints.

Despite many established works on 2D steganography

and hidden watermarks for image and video [2, 3, 9, 25,

36, 64], naively applying 2D steganography on the NeRF

training images is not practical, since the embedded infor-

mation easily gets lost in the actual NeRF renderings. In

contrast, our framework enables reliable extraction of the

hidden signal from NeRF renderings. During NeRF train-

ing, we jointly optimize a decoder network to extract hidden

information from the NeRF renderings. To minimize the

negative impact on the visual quality of NeRF, we identify

weights with low impact on rendering and introduce a gra-

dient masking strategy to steer the hidden steganographic

information towards those low-importance weights. Exten-

sive experimental results validate StegaNeRF balances be-

tween the rendering quality of novel views and the high-

fidelity transmission of the concealed information.

StegaNeRF presents the first exploration of hiding infor-

mation in NeRF models for ownership identification, and

our contributions can be summarized as follows:

• We introduce the new problem of NeRF steganogra-

phy and present the first effort to embed customizable,

imperceptible, and recoverable information in NeRF.

• We propose an adaptive gradient masking strategy to

steer the injected hidden information towards the less

important NeRF weights, balancing the objectives of

steganography and rendering quality.

• We empirically validate the proposed framework on a

diverse set of 3D scenes with different camera layouts

and scene characteristics, obtaining high recovery ac-

curacy without sacrificing rendering quality.

• We explore various scenarios applying StegaNeRF for

ownership identification, with the additional support of

multiple identities and multi-modal signals.

2. Related Work
Neural Radiance Fields Following the success of

NeRF [42], numerous techniques have been incorporated

including ray re-parameterizations [4, 5], explicit spatial

data structures [16, 23, 34, 43, 61, 84], caching and distil-

lation [19, 22, 54, 69], ray-based representations [1, 15, 59],

geometric primitives [33,35], large-scale scenes [39,63,79,

89], generalizable architectures [60, 68, 73], and dynamic

settings [18, 32, 46, 51, 78]. Unlike prior works, this pa-

per explores the uncharted problem of embedding informa-

tion in NeRF renderings, with critical implications for copy-

right protection and ownership preservation. As early-stage

NeRF-based products already become available [37,49] and

more are expected, we believe now is the right time to open

up the exploration of NeRF steganography.

Image Steganography Steganography hides intended

signals as invisible watermarks (e.g., hyperlinks, images)

within the cover media called carriers (e.g., images, video

and audio) [12, 26]. Classical methods focus on seeking

and altering the least significant bits (LSBs) [17, 47, 62, 76]

and transforming domain techniques [7, 8, 52, 70]. Prior

research also uses deep neural networks for steganogra-

phy [2, 3, 21, 66]. Among them, DeepStega [2] conceals

a hidden image within an equal-sized carrier image. Subse-

quent works [25,36] use invertible networks to improve the

performance of deep image steganography. Another line of

work conceals information in other carrier media like au-

dio [13, 20, 82] and video [38, 55, 75]. The above advances

all play a critical part in the era when traditional media for-

mats like images and videos are dominant. However, as

MLP-based neural representations of 3D scenes are gain-

ing momentum to become a major format of visual data,

extending steganography to NeRF is bound to become an

important problem in the upcoming future.

Lifting Steganography to 3D Prior to NeRF, meshes are

commonly used to represent 3D shapes. Early pioneers ap-

ply steganography 3D meshes [6, 50] for copyright protec-

tion when meshes are exchanged and edited. More recent

work [77] has also explored embedding multi-plane images

within a JPEG-compressed image. Their problem can be

regarded as a special case of 2D steganography, hiding mul-

tiple 2D images inside a single 2D image. In contrast, we

try to hide a natural image into a 3D scene representation

(NeRF), fundamentally differing from these prior methods

where 2D images act as the carrier of hidden information.

3. Method
The goal of StegaNeRF is to inject customized (stegano-

graphic) information into the NeRF weights with impercep-

tible visual changes when rendering. Given a NeRF with

weights θ0 and the information I to be injected, when we

render with θ on any viewpoint, we hope the injected I can

be recovered by a decoder Fψ with learnable weights ψ.

A seemingly obvious solution is to use prior image

steganography methods to 1) inject I on training images, 2)

train NeRF on those images with embedded information, 3)

apply their provided Fψ to extract I from NeRF-rendered

images. This approach has been successfully applied for

GAN fingerprinting [86]. However, it fails in the NeRF con-

text (see Fig. 3), where the subtle changes induced by prior
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Figure 2. StegaNeRF training overview. At the first stage, we optimize θ0 with standard NeRF training. At the second stage, we initialize θ
with θ0 and optimize for the steganography objectives. We train the decoder Fψ to recover hidden information from StegaNeRF renderings

and no hidden information from original NeRF renderings. We introduce Classifier Guided Recovery to improve the accuracy of recovered

information, and Adaptive Gradient Masking to balance between steganography ability and rendering visual quality.

steganography methods easily get smoothed out, inhibiting

the decoder from identifying the subtle patterns necessary

for information recovery.

Such shortcomings of off-the-shelf steganographic meth-

ods are not surprising since they are developed for the tradi-

tional setting where 2D images are the ultimate form of vi-

sual information. In contrast, our problem setting involves

the new concept of INR as the underlying representation,

and 2D images are just the final output rendered by NeRF.

3.1. Two-Stage Optimization

Recognizing the formulation difference due to the emer-

gence of implicit representation with NeRF, we move away

from the traditional 2D image-based pipeline that trains an

encoder network to inject subtle changes to the given 2D

images. Instead, we incorporate the steganography objec-

tive into the gradient-based learning process of NeRF.

We re-design the training as a two-stage optimization.

The first stage is the original NeRF training procedure, in-

volving the standard photometric loss between the rendered

and ground truth pixels to guarantee the visual quality. After

finishing the weights update θ0 at the first stage, we dedi-

cate the second stage to obtain the final NeRF weights θ
containing steganographic information. We introduce sev-

eral techniques to achieve robust information recovery with

imperceptible impact on the rendered images. The training

workflow is depicted in Fig. 2 and Alg. 1.

3.2. Information Recovery

Let P denote the camera pose at which we render an

image from a NeRF network. We want to recover I from the

rendered image θ(P ). Importantly, we also want to avoid

false positives on images θ0(P ) rendered by the original

network without steganography ability, even if the images

rendered by θ0 and θ look visually identical. Therefore, we
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Figure 3. Results of applying prior 2D steganography methods,

LSB [9] (top) and DeepStega [2] (bottom). From left to right,

we show (a) training image after applying 2D steganography, (b)

residual error of (a) over ground truth, (c) hidden image recovered

from (a), (d) residual error of NeRF rendering at the pose of (a),

and (e) hidden image recovered from (d). Prior 2D steganography

methods fail in the NeRF context since the hidden information

injected in training images mostly disappear in NeRF renderings.

optimize θ to minimize the following contrastive loss terms:

L+
dec = |Fψ(θ(P ))− I|, L−

dec = |Fψ(θ0(P ))−∅|, (1)

where ∅ is an empty image with all zeros. Effectively, L+
dec

serves as a regularization term, facilitating the decoder to

recover the embedded image pattern based on renderings

obtained from a StegaNeRF. In contrast, L−
dec prevents the

decoder from falsely producing any plausible image pattern

when given renderings from a Standard NeRF that is with-

out hidden signals.

Classifier-Guided Recovery The decoder Fψ is easily

implemented as a U-Net to decode I as the form of 2D im-

ages, but accurately recovering all the details in I might

be challenging. Therefore, we additionally train a classifier
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Algorithm 1 Train StegaNeRF on a single scene

Data: Training images {Yi} with poses {Pi}, hidden infor-

mation I , learning rate η = [η0, η1]
Output: Steganographic NeRF θ and decoder Fψ
Initialize NeRF θ0 and decoder network Fψ
Optimize θ0 on {Yi, Pi} with standard NeRF training

Compute mask m for θ0 as in Eq. (3)

for each training iteration t do
Randomly sample a training pose Pi and render θ(Pi)
Compute stega. losses Lcdec, L+

dec, L−
dec as Eq. (1), (2)

Compute Lrgb and combine total loss L as in Eq. (4)

Update θ with η0 · (∂L∂θ �m) and Fψ with η1 · ∂L∂ψ
end for

network F cψ to solve the easier task of classifying whether

the given NeRF rendering contains hidden information. F cψ
is optimized by the following cross-entropy loss [30, 67]:

Lcdec = − log
(
F cψ(θ(P ))

)− log
(
1− F cψ(θ0(P ))

)
. (2)

We then use its prediction to guide the process of decoding

pixel-wise information by adding the classification output

as input to Fψ , such that Fψ(x) = Fψ
(
x, F cψ(x)

)
.

Although the above discussion focuses on hiding im-

ages, our framework can be easily extended to embed other

modalities like strings, text, or even audio, all of which may

be represented as 1D vectors. We can simply modify the

architecture of Fψ to have a 1D prediction branch.

3.3. Preserving Perceptual Identity

Since we want to hide information without affecting

the visual perception of the rendered output, an intuitive

regularization is to penalize how much θ deviates from

θ0. However, we find that naively summing the deviation

penalty across all weights makes it difficult for the NeRF

network to adjust its weights for the steganographic objec-

tive. Instead, motivated by the fact that INR weights are not

equally important and exhibit strong sparsity [28, 87], we

propose an adaptive gradient masking strategy to encode the

hidden information on specific weights’ groups.

Formally, given the initial set of weights θ0 ∈ R
N , we

compute a soft importance mask m ∈ R
N . Specifically, for

each weight wi ∈ θ0, we compute:

mi =
|wi|−α

∑N
i |wi|−α

, (3)

where the magnitude | · | of each model weight wi serves

as its individual importance indicator, and α > 0 is a scal-

ing factor of power controlling the relative distribution of

importance across the weights. We mask the gradient as
∂L
∂θ �m when optimizing θ based on the total loss L in the

second stage, where � is a Hadamard product. Effectively,

Algorithm 2 Typical usage scenario of StegaNeRF

1: Alice captures some images of a 3D scene

2: Alice trains a StegaNeRF to hide a personalized image

3: Alice shares the model θ online for other people to en-

joy and explore the 3D scene themselves

4: Bob grabs the model θ and reposts it with his own ac-

count without crediting Alice or asking for permission

5: Alice sees Bob’s post, deploys the decoder Fψ , and ver-

ifies the owner of θ is Alice, not Bob

6: Bob takes down the post or gets banned for copyright

infringement

more significant weights are “masked out” to minimize the

impact of steganographic learning on the rendered visual

quality.

We retain the standard photometric error in steganogra-

phy learning to maintain NeRF rendering fidelity: Lrgb =
|θ(P )−θ0(P )|. The overall training loss at the second stage

can be formulated as follows:

L = λ0Lcdec + λ1L+
dec + λ2L−

dec + λ3Lrgb. (4)

4. Experiments
4.1. Implementation Details.

Dataset. We use common datasets LLFF [41] and NeRF-

Synthetic [42], with forward scenes {flower, fern, fortress,
room} from LLFF and 360◦ scenes {lego, drums, chair}
from NeRF-Synthetic. We further experiment on the Bran-
denburg Gate scene from NeRF-W dataset [39], with over

800 views of in-the-wild collected online.

Training. On LLFF and NeRF-Synthetic, we adopt

Plenoxels [83] as the NeRF backbone architecture for ef-

ficiency. On NeRF-W, we use the available PyTorch im-

plementation [53]. The first stage of training is performed

according to the standard recipes of those implementations.

We then perform the second stage of steganography train-

ing for 55 epochs unless otherwise noted. On LLFF and

NeRF-W, we downsize the training images by 4 times fol-

lowing common practice, and we use the original size on

NeRF-Synthetic.

For hyper-parameters in Eq. (4), we set the weight of

NeRF reconstruction error λ3 = 1 for all experiments. We

set λ0 = 0.01, λ1 = 0.5, λ2 = 0.5 for all scenes on LLFF

dataset, and λ0 = 0.1, λ1 = 1, λ2 = 1 for the scenes in

NeRF-Synthetic, and λ0 = 0.05, λ1 = 1, λ2 = 1 for NeRF-

W. For Eq. (3), we set α = 3 for all scenes. We run experi-

ments on one NVIDIA A100 GPU.

Evaluation. We assume a typical authentication scenario

shown in Alg. 2. We consider the recovery quality of the

embedded information, including the metrics of classifica-

tion accuracy (Acc.) of the classifier, and the structural sim-
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Figure 4. Results on the NeRF-Synthetic dataset. Within each column, we show the StegaNeRF rendering, residual error from the initial

NeRF rendering, and the recovered hidden image. We show the SSIM for the StegaNeRF renderings and the recovered hidden images.

Table 1. Quantitative results of StegaNeRF rendering and hidden

information recovery. Standard NeRF is the initial NeRF θ0 with

standard training (upper-bound rendering performance). Prior 2D

steganography fails after NeRF training while StegaNeRF success-

fully embeds and recovers hidden information with minimal im-

pact on the rendering quality. Results are averaged over the se-

lected LLFF and NeRF-Synthetic scenes.

Method

NeRF Rendering Hidden Recovery

PSNR ↑ SSIM ↑ LPIPS ↓ Acc. (%) ↑ SSIM ↑
Standard NeRF 28.15 0.8575 0.1377 50.00 N/A

LSB [9] 28.13 0.8569 0.1452 N/A 0.0132

DeepStega [2] 26.94 0.8432 0.1641 N/A 0.2098

StegaNeRF (Ours) 28.13 0.8563 0.1460 100.0 0.9730

Standard NeRF 31.13 0.9606 0.0310 50.00 N/A

LSB [9] 31.12 0.9604 0.0310 N/A 0.0830

DeepStega [2] 31.13 0.9606 0.0313 N/A 0.2440

StegaNeRF (Ours) 30.96 0.9583 0.0290 99.72 0.9677

ilarity (SSIM) [74] of the hidden image recovered by the

decoder. We evaluate the final NeRF renderings with PSNR,

SSIM and LPIPS [90]. All the metrics are computed on the

test set and averaged over all the scenes and embedded im-

ages.

4.2. Case I: Embedding in a Single Scene.

We first explore the preliminary case of ownership iden-

tification on a specific NeRF scene. We select random im-

ages from ImageNet [27] as the hidden information to be

injected to NeRF renderings.

Failure of 2D Baseline Due to the lack of prior study

on NeRF steganography, we consider a baseline from 2D

image steganography by training NeRF from scratch with

Table 2. Quantitative results of NeRF rendering and hidden infor-

mation recovery. We consider two conditions, embedding each

scene with a common hidden image (One-for-All) or a scene-

specific hidden image (One-for-All). We report the quality dif-

ference compared to the single-scene settings as Δ
(10−2)
SSIM . Results

are averaged over the selected LLFF scenes.

Setting

NeRF Rendering Hidden Recovery

PSNR↑ SSIM↑ LPIPS ↓ Δ
(10−2)
SSIM ↑ Acc. (%)↑ SSIM↑ Δ

(10−2)
SSIM ↑

One-for-All 24.99 0.8013 0.1786 -0.10 100.00 0.9860 +0.19

One-for-One 24.99 0.8016 0.1779 -0.07 100.00 0.9122 -7.19

One-for-All 27.90 0.8513 0.1236 +0.01 100.00 0.9844 -0.76

One-for-One 27.90 0.8515 0.1195 +0.03 100.00 0.9448 -4.45

One-for-All 30.27 0.8498 0.1289 +0.02 100.00 0.9430 -5.42

One-for-One 30.12 0.8480 0.1302 -0.16 100.00 0.9102 -8.67

the watermarked images. We implement two off-the-shelf

steganography methods including a traditional machine

learning approach called Least Significant Bit (LSB [9]),

and a deep learning pipeline as DeepStega [2]. An ideal

case is that the embedded information can be recovered

from the synthesized novel views, indicating the successful

NeRF steganography. However, as can be seen in Fig. 3, the

embedded information containing the hidden images can-

not be recovered from the NeRF renderings. By analyzing

the residual maps of training views (between GT training

views and the watermarked) and novel views (between GT

novel views and the actual rendering), we observe the sub-

tle residuals to recover the hidden information are smoothed

out in NeRF renderings, and similar failures occur on other

datasets as well. Therefore, for the rest of our study, we

mainly focus on analyzing our new framework that per-

forms direct steganography on 3D NeRF.
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(c) Multi-Scene: One-for-One

Figure 5. Results on three multi-scene settings. Within each column, we show the StegaNeRF rendering, residual error from the initial

NeRF rendering, and recovered hidden image. We show the SSIM for the StegaNeRF renderings and the recovered hidden images.

Results Tab. 1 contains quantitative results on LLFF

and NeRF-Synthetic scenes. While NeRF trained by 2D

steganography methods hardly recovers the embedded in-

formation, StegaNeRF accurately recovers the hidden im-

age with minimal impact on the rendering quality measured

by PSNR. Fig. 4 provides qualitative results of StegaNeRF

on three embedded images on the NeRF-Synthetic scenes.

An interesting observation is the common regions where

hidden information (high residual error) emerges in the ren-

derings, e.g., the right rear side of lego and left handrail of

chair. We also notice that, within each scene, these regions

are persistent across multiple viewpoints.

4.3. Case II: Embedding in Multiple Scenes.

Settings We extend our steganography scheme to embed

information within multiple scenes at once. Specially, we

use three LLFF scenes {flower, fern, fortress} to test the two

sub-settings of multi-scene embedding with: (1) One-for-
All, a common hidden image and (2) One-for-One scene-

specific hidden images. All scenes share the same decoder

Fψ and classifier F cψ . The difference between the two sub-

settings is the number of hidden images that Fψ and F cψ
need to identify and recover. We sample one scene for every

training epoch, and due to the increased data amount, we

increase training epochs until convergence.

Results Tab. 2 provides quantitative results on the multi-

scene setting. The performance drop compared to single-

scene training is sometimes noticeable, but it is not surpris-

ing due to the inherent requirement of per-scene fitting for

our NeRF framework. Fig. 5 presents visual comparisons

of multi-scene steganography against single-scene scheme.

4.4. Case III: Embedding Multiple Identities.

Settings Constructing NeRF of large-scale cultural land-

marks is a promising application, and community contri-

butions are crucial to form the training images. Since ev-

ery NeRF prediction is indebted to some particular train-

ing images, it would be meaningful to somehow identify

the contributing users in the rendered output. Specifically,

we present a proof-of-concept based on the following sce-

nario: Given a collection of user-uploaded training images,

our task is to apply StegaNeRF to ensure the final NeRF ren-

derings hide subtle information about the relevant identities

whose uploaded images help generate the current rendering.

To simulate this multi-user scenario in the public NeRF-

W dataset, we randomly select M anchor views with dif-

ferent viewing positions, and then find the K nearest neigh-

bour views to each anchor to form their respective clusters.

We set M = 3,K = 20 in experiments. We assume a

common contributor identity for each cluster, and we want

the NeRF rendering to contain customized hidden informa-

tion about those M contributors when we render within the

spatial regions spanned by their own cluster. Thus, our clas-

sifier network F cφ is modified to output M -class cluster pre-

dictions and another class for identity outside of theM clus-

ters. Since the decoder should extract no information for

views outside of those M clusters to prevent false positives,

we also compute L−
dec (1) and Lcdec (2) for those poses.

Results We employ the same network backbone as NeRF-

W [66] to handle in-the-wild images with different time and

lighting effects. Fig. 6 presents qualitative results of embed-

ding multiple identities in a collaborative large-scale NeRF.
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Figure 7. Multi-modal hidden information. We show StegaNeRF

rendering, recovered hidden images, audio (waveform and spec-

trum), and text. Metrics for hidden information in each modality

are labeled respectively. For the StegaNeRF rendering, we report

both SSIM and the relative change from initial NeRF renderings.

4.5. Case IV: Embedding Multi-Modal Information.

Settings We further show the potential of StegaNeRF in

embedding multi-modal hidden information, such as im-

ages, audio, and text. We modify the decoder network to

build a modal-specific decoder for each modality.

Results Fig. 7 shows recovered multi-modal embedded

signals in the trex and horns scenes from LLFF. Evidently,

the StegaNeRF framework can easily extend to embed

multi-modal information with high recovery performance

without scarifying the rendering quality.

4.6. Ablation Studies

The effect of removing each component of StegaNeRF

is presented in Tab. 3. Standard NeRF uses the initial NeRF

Table 3. Ablation study of different components of StegaNeRF.

Results are averaged on the selected LLFF scenes.

Method

NeRF Rendering Hidden Recovery

PSNR↑ SSIM↑ LPIPS↓ Acc. (%)↑ SSIM↑
StegaNeRF 28.13 0.8568 0.1430 100.0 0.9486

No Classifier 26.85 0.8077 0.2417 N/A 0.5629

No Classifier Guided 27.12 0.8239 0.2073 100.0 0.6716

No Gradient Masking 27.86 0.8375 0.1710 100.0 0.8822

No Soft Masking 28.05 0.8558 0.1526 94.44 0.8751

Standard NeRF 28.15 0.8575 0.1377 50.00 N/A

rendering. No Classifier removes the classifier F cψ , while

No Classifier Guided retains the classification task (hence

impact on NeRF rendering) but does not condition the de-

coder on classifier output. No Gradient Masking removes

the proposed masking strategy (Sec. 3.3), and No Soft Mask-
ing uses the binary mask [29, 31] with a threshold of 0.5.

Our StegaNeRF makes a good balance between the render-

ing quality and the decoding accuracy. Fig. 8 shows the

visual impact of removing each component. It appears that

when any component is removed, the performance drops

accordingly, revealing the effectiveness of our design.

Fig. 9 shows the impact of varying gradient masking

strategies. We can see a different degree of affected by ratio

variation on hidden recovery and rendering quality. Fig. 10

reports the performance of StegaNeRF against the common

perturbations including JPEG compression and Gaussian

noise. The lines show the average accuracies across se-

lected scenes and the shaded regions indicate the range of

0.5 standard deviation. It appears that the hidden recovery

of StegaNeRF is robust to various JPEG compression ratios

and Gaussian blur degradation.
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(c) No Classifier Guided(b) No Classifier (d) No Gradient Masking (e) No Soft Masking (f) StegaNeRF(a) Ground Truth

Render 0.8933

Hidden 0.5539

Render 0.8942

Hidden 0.5887

Render 0.9325

Hidden 0.9002

Render 0.9423

Hidden 0.9856

Render 0.9435

Hidden 0.9867

Ground  Truth

Hidden Image 

Figure 8. Impact on visual quality when changing different components of the proposed StegaNeRF framework as in Tab. 3. We show the

SSIM for the renderings and the recovered hidden images.

(a) Varying α (b) Varying masking ratio

Figure 9. Analysis of gradient masking. (a) Varying α from

Eq. (3). (b) Varying portions of masked out weights from the gra-

dient updates at steganography learning. We provide the SSIM of

rendered views (blue) and recovered hidden images (green).

(a) Varying JPEG compression rate (b) Varying Gaussian blur std.

Figure 10. Analysis of robustness over (a) JPEG compression and

(b) Gaussian blur. We provide the SSIM of rendered views (blue)

and recovered hidden images (green).

5. More Discussions

How useful is steganography for NeRF? Although

NeRF-based 3D content has yet to become mainstream, we

believe it will play a major future role not only for so-

cial platforms, but also for 3D vision research and applica-

tions. As people upload their personal NeRF models online

for viewing purposes, NeRF steganography for ownership

identification is apparently an important feature. Moreover,

future 3D vision research will likely demand large-scale

NeRF datasets of real-world images, and in this context,

NeRF steganography can be a crucial tool for responsible

(a) Varying #watermmark per scene (b) Varying #scene per watermark

Figure 11. Results using a universal decoder to embed (a) multiple

images for the flower scene and (b) a common image into different

scenes from the LLFF dataset. The successful application under

these two setups suggests that StegaNeRF can generalize across

different scenes, user identities, and hidden images.

Table 4. The further empirical study on StegaNeRF. Results are

averaged on the selected LLFF scenes.

Method

NeRF Rendering Hidden Recovery

PSNR↑ SSIM↑ LPIPS↓ Acc. (%)↑ SSIM↑
StegaNeRF 28.13 0.8568 0.1430 100.0 0.9486

No Empty Sampling 28.12 0.8557 0.1466 100.0 0.9364

NeRF Frozen 28.15 0.8575 0.1377 50.00 0.3975

Standard NeRF 28.15 0.8575 0.1377 50.00 N/A

and ethical uses of training data and deployed models.

Hidden or Memorized? StegaNeRF follows the standard

setup of NeRF which prescribes per-scene training. There-

fore, it may be reasonable to wonder whether the decoder is

trained to “memorize” the hidden image without it really be-

ing injected into NeRF. To address this concern, we perform

an experiment where the NeRF weights are frozen after the

first stage and only update the decoder of StegaNeRF. If the

decoder actually memorizes the image by itself, then we

should expect good recovery performance under this setup.

However, as shown in Tab. 4, with NeRF Frozen, we ob-

serve a significant performance degradation. Therefore, we

can verify that the decoder alone cannot trivially memorize
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the hidden image, and the information is actually hidden

in the NeRF renderings. Furthermore, we extend StegaN-

eRF to generalize across different scenes and hidden images

while sharing the same universal decoder. Fig. 11a shows

the rendering and decoding quality of embedding the differ-

ent numbers of hidden images to a scene (flower). Fig. 11b

shows the performance of embedding a common image into

a varying number of scenes from the LLFF dataset. While

the performance slightly decreases in the generalized set-

ting, it still remains at a comparable level.

Why not just share the rendered images instead of NeRF
weights? Directly sharing the NeRF model gives end

users the freedom to render at continuous viewpoints, which

fundamentally differs from the traditional setting centered

around discrete 2D image frames. It would not be realis-

tic to assume people will stick with sharing 2D images in-

stead of 3D weights, and therefore, it is necessary for the

research community to see beyond 2D steganography and

explore 3D NeRF steganography.

Robustness: As shown in Fig. 12, in addition to using a

resolution of 128×128 for hidden images in most of our ex-

periments, we also tested resolutions ranging from 96×96

to 224×224. We found that increasing the size of embed-

ded images had no noticeable impact on the performance of

StegaNeRF, with only a 0.6% drop in rendering PSNR and a

1.2% reduction in hidden SSIM. We also demonstrated the

robustness of StegaNeRF to different sampling approaches

during rendering, such as avoiding sampling in empty areas

[43, 48]. Instead of considering all the points on a ray dur-

ing rendering, we disregard the contribution of points to the

integration along the entire ray if their density falls below a

threshold, like 0.001. As shown in Tab. 4, replacing the con-

ventional rendering strategy with No Empty Sampling has

minimal effect on the performance of StegaNeRF, revealing

our robustness to different rendering fashions.

Figure 12. Ablation on the resolutions of embedded images by the

average results over the selected scenes from the LLFF dataset.

Limitations: The current implementation is limited by

the computational efficiency of NeRF, since the stegano-

graphic training stage requires performing gradient descent

updates through the NeRF model. Another limitation is

that, the recovery accuracy of the injected hidden infor-

mation varies across different 3D scenes. More systematic

analysis is required to understand the underlying factors that

make some scenes easier to hide information than others.

6. Conclusion
With the progression of NeRF-based content, now serv-

ing as a pivotal element in diverse 3D applications, it is in-

cumbent upon the research community to proactively tackle

the imminent requirement to embed information within

NeRF models as they are exchanged and disseminated

across online platforms. This study introduces StegaNeRF,

a pioneering framework for the automated embedding of

steganographic information within NeRF renderings. We

outline the essential components essential for achieving this

functionality, unveiling potential challenges and revealing

insights that can be instrumental for subsequent developers.

By shedding light on the prospect of ownership identifica-

tion within the realm of NeRF, this paper underscores the

need for increased attention and concerted efforts toward

addressing related challenges and avenues.
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