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Abstract

Few-shot image generation is a challenging task since
it aims to generate diverse new images for an unseen cat-
egory with only a few images. Existing methods suffer
from the trade-off between the quality and diversity of gen-
erated images. To tackle this problem, we propose Hy-
perbolic Attribute Editing (HAE), a simple yet effective
method. Unlike other methods that work in Euclidean
space, HAE captures the hierarchy among images using
data from seen categories in hyperbolic space. Given a
well-trained HAE, images of unseen categories can be gen-
erated by moving the latent code of a given image toward
any meaningful directions in the Poincaré disk with a fix-
ing radius. Most importantly, the hyperbolic space allows
us to control the semantic diversity of the generated im-
ages by setting different radii in the disk. Extensive exper-
iments and visualizations demonstrate that HAE is capable
of not only generating images with promising quality and
diversity using limited data but achieving a highly control-
lable and interpretable editing process. Code is available
at https://github.com/lingxiao-li/HAE.

1. Introduction
Due to the persistent development of deep learning,

the task of image generation has received significant re-
search attention in recent years. Specifically, the Gener-
ative Adversarial Networks (GANs) [21] and its variants
(e.g., StyleGANv2 [34]) have succeeded in generating high-
fidelity and realistic images, requiring a large number of
high-quality data for model training. However, consider-
ing the long-tail distribution and data imbalance widely ex-
ists among different image categories [30], it is difficult for
GANs to be trained on categories with sufficient training
images to generate new realistic and diverse images for a
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Figure 1: Illustration of hierarchical attribute editing in hy-
perbolic space. Hyperbolic space can naturally and compactly
encode semantic hierarchical structures within a large image data
corpus. Changing the high-level, i.e., category-relevant attribute
∆wr changes the category of an image. While changing low-
level or category-irrelevant attribute ∆wir varies images within
categories.

category with only a few images. This task is referred to as
few-shot image generation [10, 26, 30, 28, 29, 27, 15]. A
variety of tasks can benefit from improvements in few-shot
image generation, for instance, low-data detection [17] and
few-shot classification [54, 57].

In general, existing GAN-based few-shot image gener-
ation mechanisms can be classified into three categories.
Transfer-based methods [10, 39] introduce meta-learning or
domain adaptation on GANs to generate new images by
enforcing knowledge transfer among categories. Fusion-
based methods [2, 23, 30, 28] perform feature fusion of
multiple input images in a feature space and generate im-
ages via decoding the fused features back to image space.
However, the output is still highly similar to the source im-
ages. Transformation-based methods [1, 29, 27, 15] find
intra-category transformations or inject random perturba-
tions to conditional unseen category samples to generate
images without tedious fine-tuning. By representing the
images in the Euclidean feature space, the above learning
mechanisms tend to be over-complicated, and the generated
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images are often collapsed due to limited diversity.
Similar to the ubiquity of hierarchies in language [44,

56, 13], the semantic hierarchy is also common in im-
ages [35, 11]. As Fig. 1 shows, the semantic hierarchies
constructed in the language domain can be instantiated with
visual images. From the visual perspective, an image can
be regarded as a collection of attributes of multiple levels.
High-level attributes, a.k.a. category-relevant attributes, de-
fine the category of an image, such as the shape and color
of an animal [15]. For instance, in the middle row of
Fig. 1, changing the high-level attributes of the given im-
age of a Shih-Tzu dog, the category can be changed to
a Rhodesian Ridgeback Dog. While the low-level
or fine-grained attributes, including expressions, postures,
etc., that vary within the category as shown at the bottom of
Fig. 1, are called category-irrelevant attributes. Therefore,
an image can also be viewed as a descendant of another
image with the same category-relevant attributes by adding
fine-grained category-irrelevant attributes to its parent im-
age. To edit the visual attributes for high-quality image gen-
eration, it is crucial to capture the attribute hierarchy within
the large image data corpus and find a good representation
space. Ideally, we aim to construct a hierarchical visual rep-
resentation in a latent space that allows us to change the cat-
egory of an image by moving the latent code in a category-
relevant direction, and perform few-shot image generation
by moving the code in a category-irrelevant direction.

Unfortunately, the Euclidean space and its correspond-
ing distance metrics used by existing GAN-based methods
can not facilitate the hierarchical attribute representation,
thus the design of complicated attribute disentangling and
editing mechanisms seems to be crucial for the generation
quality. Inspired by the application of hyperbolic space in
images [35] and videos [55], we found that the metrics in-
troduced in hyperbolic geometry can naturally and com-
pactly encode hierarchical structures. Unlike the general
affine spaces, e.g., the Euclidean space, hyperbolic spaces
can be viewed as the continuous analog of a tree since tree-
like graphs can be embedded in finite-dimension with min-
imal distortion [44]. This property of hyperbolic space pro-
vides continuous and up to infinite semantic levels for at-
tribute editing, allowing us to robustly generate diverse im-
ages with only a few images from unseen categories with
simple operations.

Based on the above findings, we propose a simple but
effective Hyperbolic Attribute Editing (HAE) method for
few-shot image generation. Our method is based on the ob-
servation that hierarchical latent code manipulation can be
easily implemented in Hyperbolic space. The core of HAE
is mapping the latent vectors from the Euclidean space Rn

to a hyperbolic space Dn. We minimize a supervised clas-
sification loss function to ensure the images are hierarchi-
cally embedded in hyperbolic space. Once we capture the

attribute hierarchy among images, we can generate new im-
ages of unseen categories by moving the latent code from
one leaf to another with the same parents by fixing the ra-
dius. Most importantly, the hyperbolic space allows us to
control the semantic diversity of generated images by set-
ting different radii in the Poincaré disk. Those operations
can well facilitate continually hierarchical attribute editing
in hyperbolic space for flexible few-shot image generation
with both quality and diversity.

Our contributions can be summarized as follows:

• We propose a simple yet effective method for few-shot
image generation, i.e., hyperbolic attribute editing. In
order to capture the hierarchy among images, we use
hyperbolic space as the latent space. To the best of our
knowledge, HAE is the first attempt to use hyperbolic
latent spaces for few-shot image generation.

• We show that in our designed hyperbolic latent space,
the semantic hierarchical attribute relations among im-
ages can be reflected by their distances to the center of
the Poincaré disk.

• Extensive experiments and visualization suggest that
HAE achieves stable few-shot image generation with
state-of-the-art quality and diversity. Unlike other few-
shot image generation methods, HAE allows us to gen-
erate images with better control of diversity by chang-
ing the semantic levels of attributes we want to edit.

2. Related Work
Few-shot image generation. Recently, diverse methods
have been proposed for few-shot image generation. The
transfer-based methods [10, 39] which introduce meta-
learning or domain adaptation on GANs can hardly gener-
ate realistic images. While fusion-based methods that fuse
the features by matching the random vector with the con-
ditional images [28] or formulating the problem as a con-
ditional generating task [23, 30] suffer from the limited di-
versity of generated images. Furthermore, transformation-
based methods [1, 29, 27, 15] can generate images with only
one conditional image by focusing on either capturing the
cross-category or intra-category transformations by inject-
ing random perturbations [1]. Nevertheless, the transfor-
mation captured by those methods is not very consistent.
Ding et al. [15, 14] propose the “editing-based” perspec-
tive, the intra-category transformation can be modeled as
category-irrelevant image editing based on one sample in-
stead of pairs of samples. Most recently, Zhu et al. [60] fine-
tune powerful diffusion models (DMs) [25] pre-trained on
large source domains on limited target data to generate di-
verse and high quality images. DMs outperform GANs [21]
on sample quality with a more controllable training process
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Figure 2: The overview of HAE. The Hyper layer is a hyperbolic feedforward layer called Möbius linear layer which is used to project
the latent code from Euclidean space Rn to hyperbolic space Dn [7]. z̄Di can be viewed as the “parent” or average code of zDi and z′Di.
One can generate diverse images without changing the category by moving the latent code from one child to another of the same parent in
the hyperbolic space.

at the cost less flexibility and editability, since they denoise
images in the image space rather than operate in the latent
space. Furthermore, the inference process of DMs is much
slower than GANs [52].

Hyperbolic Embedding. The use of hyperbolic space in
deep learning [44, 45, 56, 55, 35] is a pioneering work in
recent years. It was first used in natural language process-
ing for hierarchical language representation [44, 45, 56].
The Riemannian optimization algorithms are used to op-
timize models in hyperbolic space [5, 3]. As hyperbolic
space is successfully applied to represent hierarchical data,
Ganea et al. [18] derives hyperbolic versions of tools in
neural networks including multinomial logistic regression,
feed-forward, and recurrent neural networks. Following
this, hyperbolic geometry is used in image [35], video [55],
and graph data [7, 47]. Most recently, Lazcano et al [36]
shows that hyperbolic space outperforms traditional Eu-
clidean space in image generation using HGAN. However,
the hierarchy and controllability of hyperbolic space remain
uninvestigated in HGAN, as the generator is still governed
by Gaussian samples in Euclidean space.

Latent Code Manipulation. It has been shown that the la-
tent spaces of GANs are able to encode rich semantic infor-
mation [20, 32, 50]. One of the popular approaches is find-
ing linear directions corresponding to changes in a given
binary labeled attributes, which might be difficult to ob-
tain for new datasets and could require manual labeling ef-
fort [50, 20, 12]. Others [8, 58, 41, 31, 9] try to find seman-
tic directions in an unsupervised manner. For instance, PCA
is applied in the latent space to create interpretable controls
for synthesizing images [31, 9]. Most recent works [53, 51]
directly compute in the close form to find the meaningful se-
mantic direction without training and optimization. In com-

parison, our work HAE focuses on attributes in different
semantic levels in the latent space rather than trying hard to
find disentangled interpretable directions as previous works.

3. Method
The overall framework of HAE is shown in Fig. 2, we

first give a detailed explanation of getting the hierarchical
representations in the hyperbolic space, and then we intro-
duce the framework of HAE and explain the loss functions.

3.1. Hierarchical Representation

The major issue of our study is how to obtain the hierar-
chical representation from real images to facilitate editing
in different semantic levels, as illustrated in Fig. 1. There-
fore, hyperbolic space is introduced as the latent space to
achieve this goal.

Unlike Euclidean spaces with their zero curvature and
spherical spaces with their positive curvature, hyperbolic
spaces with negative curvature have been shown that it
is more appropriate for learning hierarchical representa-
tion [44, 45]. Informally, hyperbolic space can be viewed as
a continuous analogy of trees [44]. One important feature
of hyperbolic space is that the length grows exponentially
with its radius while linearly in Euclidean space. This prop-
erty allows hyperbolic space to be naturally compatible with
hierarchical data [22] including text, images, videos, etc.

The n-dimensional hyperbolic space can be formally de-
fined as a homogeneous, simply connected n-dimensional
Riemannian manifold, denoted as Hn with constant neg-
ative sectional curvature1. We choose to work in the
Poincaré disk from five isometric models of hyperbolic

1The curvature of the hyperbolic space c is set as −1 in this work.
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Figure 3: Illustration of the property of hyperbolic space on
the Poincaré disk. Given two latent codes of Spaniel zc1D and
zc1D

′(red dots) on the edge of Poincaré disk, the geodesic between
these two points is the brown curve rather than a straight line in
Euclidean space. Therefore, their average latent code is calculated
as z̄c1D (pink dot) which is closer to the center O (still a Spaniel, but
less fine-grained). While the latent code of a tiger zc2D (blue dot)
locates far from the latent code of a Spaniel. Thus, the hyperbolic
average code of tiger and Spaniel z̄c12D (purple dot) is closer to the
center O than z̄c1D which is more abstract (a feline contains features
from both tiger and Spaniel).

space defined in [6] since it is commonly used in gradient-
based learning [44, 18, 45, 56, 55, 35]. The Poincaré
disk model

(
Dn, gD

)
is defined by the manifold Dn =

{x ∈ Rn : ∥x∥ < 1} equipped with the following Rieman-
nian metric:

gDx = λ2
xg

E , (1)

where λx = 2
1−∥x∥2 , and gE is the Euclidean metric tensor

gE = In. The induced distance between two points x,y ∈
Dn can be defined by:

dD(x,y) = arccosh

(
1 + 2

∥x− y∥2

(1− ∥x∥2) (1− ∥y∥2)

)
.

(2)
Recall that a geodesic is a locally minimized-length

curve between two points. In the hyperboloid model, the
geodesic can be defined as the curve created by intersect-
ing the plane defined by two points and the origin with the
hyperboloid [38]. Thus, the mean of two latent codes in hy-
perbolic space locates at the mid-point of the geodesic that
is closer to the origin. This is the key desired feature of hy-
perbolic space, i.e., the mean between two leaf embeddings
is not another leaf embedding, but the hierarchical parent of
them [55]. This feature allows us to generate new images
by moving the latent code from one leaf to another with the

same parents. We can also change the semantic levels of
attributes by determining how abstract their parent is.

This unique property is visualized in Fig. 3 on a 2-
D Poincaré disk. The image embedding near the edge of
the ball (with a large radius) represents a more fine-grained
image while the embedding near the center (which has a
smaller radius) represents an image with abstract features
(an average face).

Although the hyperbolic space shares similar features
with trees, it is continuous. In other words, there is no fixed
number of hierarchy levels. Instead, there is a continuum
from very fine-grained (near the edge of Poincaré disk) to
very abstract (near the origin).

3.2. Network Architecture

Although we aim to embed and edit real images in hy-
perbolic space, the whole network does not need to be im-
plemented in a hyperbolic manner. Instead, we can take
advantage of the number of existing GAN inversion models
and optimization algorithms that have been fine-tuned for
Euclidean space.

To achieve image editing, we need to embed the image
back into the latent space. In particular, we select pSp [49]
as the backbone of HAE to encode images to the W+-space
of StyleGAN2 [34]:

wi = pSp (xi) , (3)

where wi ∈ R18×512 is the corresponding latent vector of
xi in the W+-space.

To manipulate latent code in hyperbolic space, we need
to define a bijective map from Rn to Dn

c to map Euclidean
vectors to the hyperbolic space and vice versa. A manifold
is a differentiable topological space that locally resembles
the Euclidean space Rn [37, 38]. For x ∈ Dn, one can de-
fine the tangent space TxDn

c of Dn
c at x as the first order

linear approximation of Dn
c around x. Therefore, this bijec-

tive map can be performed by exponential and logarithmic
maps. Specifically, the exponential map expcx : TxDn

c
∼=

Rn → Dn
c , maps from the tangent spaces into the manifold.

While the logarithmic map logcx : Dn
c → TxDn

c
∼= Rn is the

reverse map of the exponential map.
We use exponential and logarithmic maps at origin 0 for

the transformation between the Euclidean and hyperbolic
representations. After getting wi in the W+-space, we first
use a Multi-layer Perceptron (MLP) encoder to reduce the
dimension of latent vectors in Euclidean space. Then we ap-
ply an exponential map to project the Euclidean latent code
zRi to hyperbolic space. After that, we use the hyperbolic
feed-forward layer as [18] to obtain the final hierarchical
representation zD as shown in Fig. 2:

zDi = f⊗c(expc0(MLPE(wi))), (4)
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Figure 4: One-shot image generation from HAE on Animal Faces, Flowers, and VGGFaces.

where f⊗c is the Möbius translation of feed-forward layer f
as the map from Dn

c to Dm
c , denoted as Möbius linear layer.

Finally, the hyperbolic representation zD needs to be pro-
jected back to the W+-space of StyleGAN2. In practice,
this is achieved by applying a logarithmic map followed by
an MLP decoder:

w′
i = MLPD(logc0(zDi)), (5)

and w′
i will be fed into a pre-trained StyleGAN2’s generator

G to reconstruct the image x′
i.

3.3. Loss Function

The loss function of HAE consists of two parts: the Hy-
perbolic loss ensures to get the hierarchical representation
in the hyperbolic space and the reconstruction loss guaran-
tees the quality of reconstruction images.
Hyperbolic Loss. To learn the semantic hierarchical rep-
resentation of real images in hyperbolic space, we mini-
mize the distance between latent codes of images with sim-
ilar categories and attributes while pushing away the la-
tent codes from different categories. We choose the su-
pervised approach to achieve this. In order to perform
multi-class classification on the Poincaré disk defined in
Sec. 3.1, one needs to generalize multinomial logistic re-
gression (MLR) to the Poincaré disk defined in [18]. An
extra linear layer needs to be trained for the classification
and the softmax probability can be computed as: Given K
classes and k ∈ {1, . . . ,K}, pk ∈ Dn

c , ak ∈ Tpk
Dn

c \{0} :

p(y = k | x) ∝ exp

(
λc
pk

∥ak∥√
c

sinh−1

(
2
√
c ⟨−pk ⊕c x, ak⟩(

1− c ∥−pk ⊕c x∥2
)
∥ak∥

))
,

∀x ∈ Dn
c .

(6)
where ⊕c denotes the Möbius addition defined in [35]

with fixed sectional curvature of the space, denoted by c.
After getting the softmax result for each class, one can

use negative log-likelihood loss (NLL Loss) to calculate the

hyperbolic loss:

Lhyper = − 1

N

N∑
n=1

log(pn), (7)

where N is the batch size and pn is the probability predicted
by the model for the correct class.

As mentioned in Sec. 3.1, the distance between points
grows exponentially with their radius in the Poincaré disk.
In order to minimize Eq. (7), the latent codes of fine-grained
images will be pushed to the edge of the ball to maximize
the distances between different categories while the embed-
ding of abstract images (images have common features from
many categories) will be located near the center of the ball.
Since hyperbolic space is continuous and differentiable, we
are able to optimize Eq. (7) with stochastic gradient descent,
which learns the hierarchy of the images.
Reconstruction Loss. In order to guarantee the quality of
the generated images, we first use the L2 loss and LPIPS
loss used in pSp [49], given image xi:

L2(xi) = ∥xi − HAE(xi)∥2. (8)

LLPIPS (xi) = ∥F (xi)− F (HAE(xi))∥2, (9)

where F (·) denotes the perceptual feature extractor.
Since the pSp encoder and StyleGAN2 generator are pre-

trained, we only train the neural layers between the encoder
and generator of HAE. To further guarantee the network to
better project back to the W+-space, the reconstructed w′

i

should be the same as the original wi:

Lrec(wi) = ∥wi −w′
i∥2, (10)

where w′
i can be calculated by Eq. (4) and Eq. (5).

The overall loss function is:

L = L2(xi) + λ1LLPIPS + λ2Lrec + λ3Lhyper, (11)

where λ1, λ2 and λ3 are trade-off adaptive parameters. This
curated set of loss functions ensures the model learns the
hierarchical representation and reconstructs images.
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Figure 5: Images generated by HAE by adding the same perturbation on the latent code of a given image with different hyperbolic radii on
Animal Faces and Flowers.
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Figure 6: Interpolations in hyperbolic space along the edge of the
Poincaré disk (with rD = 6.2126) on three datasets.

3.4. Image Generation

To study the generating quality of the model, a straight-
forward way is to generate new images via interpolation be-
tween two designated images, or random perturbation.

In hyperbolic space, the shortest path with the induced
distance between two points is given by the geodesic de-
fined in Eq. (2). The geodesic equation between two em-
beddings zDi and zDj, denoted by γzDi→zDj (t), is given by

γzDi→zDj (t) = zDi ⊕c t⊗c ((−zDi)⊕c zDj) , t ∈ [0, 1],
(12)

where ⊕c denotes the Möbius addition with aforementioned
sectional curvature c, with details in supplementary mate-
rial.

We adopt the following method to achieve generating via
perturbation: For a given image xi, we first rescale its em-
bedding zDi to the desired radius rD. Then we sample a
random vector from seen categories in zDj with radius rD
fixed and take the geodesic as the direction of perturbation
to generate images.

4. Experiment
4.1. Implementation Details

In the training stage, we first train a StyleGAN2 [33] and
pSp [49] with seen categories. Given a trained pSp, the

Input r𝔻 = 6.21 r𝔻 = 0.00

Figure 7: Interpolations by moving the latent codes from the edge
to the center of the Poincaré disk (from fine-grained to abstract)
on three datasets.

MLP encoder MLPE is an 8-layer MLP with a Leaky-ReLU
activation function. The dimension of the latent code in hy-
perbolic space is chosen to be 512. More details can be
found in the supplementary.

4.2. Datasets

We evaluate our method on Animal Faces [40], Flow-
ers [46], and VGGFaces [48] following the settings de-
scribed in [15].
Animal Faces. We randomly select 119 categories as seen
for training and leave 30 as unseen categories for testing.
Flowers. The Flowers [46] dataset is split into 85 seen cat-
egories for training and 17 unseen categories for testing.
VGGFaces. For VGGFaces [48], we randomly select 1802
categories for training and 572 for testing.

4.3. Analysis of Hierarchical Feature Editing

We analyze the properties of the learned hierarchical rep-
resentations and how the levels of attributes relate to their
locations of latent codes in hyperbolic space.

As we mentioned in Sec. 3.1, there is a continuum from
fine-grained attributes to abstract attributes, corresponding
to the points from the peripheral to the center of the ball.
We define the hyperbolic radius rD

2 as the hyperbolic dis-

2The radius of the Poincaré disk in our experiment is about 6.2126
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Method Settings Flowers Animal Faces VGG Faces*
FID(↓) LPIPS(↑) FID(↓) LPIPS(↑) FID(↓) LPIPS(↑)

DAWSON [39] 3-shot 188.96 0.0583 208.68 0.0642 137.82 0.0769
MatchingGAN [28] 3-shot 143.35 0.1627 148.52 0.1514 118.62 0.1695
F2GAN [30] 3-shot 120.48 0.2172 117.74 0.1831 109.16 0.2125
LoFGAN [23] 3-shot 79.33 0.3862 112.81 0.4964 20.31 0.2869

DeltaGAN [27] 1-shot 109.78 0.3912 89.81 0.4418 80.12 0.3146
Disco-FUNIT [29] 1-shot 90.12 0.4436 71.44 0.4511 - -
AGE [15] 1-shot 45.96 0.4305 28.04 0.5575 34.86 0.3294
SAGE [14] 1-shot 43.52 0.4392 27.43 0.5448 34.97 0.3232

HAE (Ours) 1-shot 50.10 0.4739 26.33 0.5636 35.93 0.5919

Table 1: FID(↓) and LPIPS(↑) of images generated by different methods for unseen categories on three datasets. Bold indicates the best
results and underline indicates the second best results. VGGFaces is marked with * because different methods report different numbers
of unseen categories on this dataset(e.g. 552 in LoFGAN, 96 in DeltaGAN, 497 in L2GAN, and 572 in AGE and SAGE). Note that:
Disco-FUNIT [29] does not provide pre-trained models on VGG Faces [48] dataset.

Input MatchingGAN AGE HAE(ours)LoFGAN
Figure 8: Comparison between images generated by MatchingGAN, LoFGAN, AGE, and HAE on Flowers, Animal Faces, and VGGFaces.
Zoom in to see the details. Note that: SAGE [14] has not released code and pre-trained models.

tance of the given latent code to the center of the Poincaré
disk. To study the influence of the radius of embeddings in
hyperbolic space, we run several experiments with different
choices of rD.

Hyperbolic Perturbation and Interpolation. As men-
tioned in Sec. 3.4, we demonstrate the results of pertur-
bation and interpolation. In addition to the choice of per-
turbation, we can set the intensity of the perturbation by
controlling both the step distance and radius as shown in
Fig. 5. The results show that level of semantic attributes is
highly related to rD. With the radius becoming smaller, the
attributes become more abstract. We further visualize this
property of hyperbolic space by moving the latent codes of
the given image from the edge of the Poincaré disk to the
center. As Fig. 7 shows, the images change from very fine-
grained to very abstract (the average of all images). The
results in Fig. 6 show that we can achieve smooth interpola-

tion in hyperbolic space without any distortion. The results
demonstrate that with HAE, we can freely control the edit-
ing geodesically and hierarchically.

4.4. Few-shot Image Generation

As Fig. 5 shows, the image categories will be changed
when rD is smaller than about 4, and the category-irrelevant
attributes of images will be changed when rD is larger than
about 5. The embeddings of Animal Faces are visualized
in 2-D Poincaré disk using UMAP [43] shown in Fig. 9.
As Fig. 6 shows, the posture and the angle of the images
will be changed at the early stage of interpolation without
changing the category. Thus, the images can be generated
by moving the latent code of a given image to some ran-
domly selected semantic direction within the cluster of the
category. In practice, we select rD = 6.21 and step size of
perturbation as 8 to achieve few-shot image generation as
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Figure 9: UMAP visualization of hyperbolic 2-D embeddings of
Animal Faces dataset. We observe that similar categories are clus-
tered and positioned near the boundary, while ambiguous samples
are located near the center. Zoom in to see the details.

Fig. 4 shows the diverse images generated by adding ran-
dom perturbations from seen categories. We conduct three
experiments to show that HAE can achieve promising few-
shot image generation. More examples of generated images
are available in the supplementary.
Quantitative Comparison with State-of-the-art. We cal-
culate the FID [24] and LPIPS [59] to evaluate the fidelity
and diversity of the generated images following one-shot
settings in [15, 14]. The comparison results are shown in
Tab. 1. Our method achieves the best scores on most of
the FID and LPIPS metrics compared with state-of-the-art
few-shot image generation methods, which indicates that
our method not only improves the model from the semantic
aspect but also achieves state-of-the-art performance on the
traditional evaluation metrics. Specifically, the LPIPS score
of HAE beats SOTA model SAGE on all three datasets since
HAE can generate more diverse images.
Qualitative Evaluation. We qualitatively compare our
method with MatchingGAN [28], LoFGAN [23], Delta-
GAN [27] and AGE [15]. As shown in Fig. 8, HAE can gen-
erate images with diversity and fine-grained details. More
importantly, the newly generated images have more seman-
tic diversity than others. For instance, the shadow and skin
color of the generated faces change with the light condition,
and this effect looks more natural. We further conduct a user
study by randomly selecting 60 (20 from each dataset) im-
ages with generated variants using AGE and HAE. 50 users
from different backgrounds are asked to rate the results only
based on diversity and quality external information. This is
achieved by randomly shuffling the order of images pair-
wisely and inside any pair. HAE won by a ratio of 58.1%
(1743/3000) over AGE (more details in supplementary).

Input

Target 1

Target 2

Figure 10: Manipulate images from different categories with the
same perturbation (Target 1&2).

Transferability. If we move latent codes at category-
irrelevant levels, the target perturbation is transferable
across all categories. We edit the images from three cat-
egories with the same editing direction, the output images
are shown in Fig. 10. It demonstrates that HAE achieves a
highly controllable and interpretable editing process.

Method Flowers Animal Faces VGG Faces
FID LPIPS FID LPIPS FID LPIPS

SAGE [14] 43.52 0.4392 27.43 0.5448 34.97 0.3232

HAE(Euc) 54.62 0.4293 25.27 0.5129 38.46 0.5908
HAE(Hyp) 50.10 0.4739 26.33 0.5636 35.93 0.5919

Table 2: FID(↓) and LPIPS(↑) of images generated by HAE in
different geometries for unseen categories on three datasets. Bold
indicates the best results and underline indicates the second best
results.

4.5. Ablation Study

HAE in Euclidean. We re-trained HAE models in Eu-
clidean space with the NLL loss to validate the performance
gain in Tab. 1 is due to the hierarchical hyperbolic represen-
tation rather than the disentanglement caused by Eq. (7).
The quantitative comparison is shown in Tab. 2. It shows
that the hyperbolic space boosts the performance, especially
for the LPIPS score, since the latent code is more disentan-
gled in hyperbolic space [19]. This finding is also supported
by the UMAP visualization in Fig. 9. More details can be
found in the supplementary material.
Hyperbolic Radius versus Truncation. StyleGAN [33]
uses truncation trick [42, 4, 33, 34] in W-space to achieve
the balance between the image quality and diversity. The
experiments in [33, 34] also show that the truncation level
in W+-space control the level of abstraction of the gener-
ated images. We conduct the experiments in Sec. 3.4 using
truncation to validate the gains of hyperbolic space. The re-
sults are illustrated in Fig. 11 and Fig. 12. As Fig. 11 shows,
the category of the image changes along with the posture of
the dog as the truncation gets smaller, while the category-
relevant attributes do not change when the hyperbolic radius
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Input

r! = 6.21 r! = 0.00

Euclidean

Hyperbolic

()*+,-./0+ = 1 ()*+,-./0+ = 0

Figure 11: Top: Interpolations by moving the latent codes from
the edge to the center in hyperbolic space. Bottom: Interpolation
with different truncation in Euclidean space. Zoom in to see the
details.

EuclideanHyperbolicInversion

r! = 6.21

r! = 5.00

r! = 3.00

r! = 4.00

+,-./0123. = 1.0

+,-./0123. = 0.8

+,-./0123. = 0.6

+,-./0123. = 0.4

Figure 12: Images generated by HAE(Hyp) and HAE(Euc) by
adding the same perturbation on the latent code of a given image
with different settings of hyperbolic radius and truncation. Zoom
in to see the details.

(rD) is large. This can also be proved in Fig. 12. The cat-
egory remains the same after adding perturbation when rD
is large, while the truncation can not control semantic-level
editing. This shows that Euclidean space can only capture
scale-based hierarchy rather than the semantic hierarchy.
Downstream Task. We conduct data augmentation via
HAE for image classification on Animal Faces [48]. We
randomly select 30, 35, and 35 images for each category as
train, val, and test, respectively. Following [23], a ResNet-
18 backbone is initialized from the seen categories. Then
the model is fine-tuned on the unseen categories referred
to as the baseline. 60 images are generated for each un-
seen category as data augmentation. The result is presented
in Tab. 3. The diversity and quality of generated images
are primarily controlled by the hyperbolic radii rD. As the
radius becomes smaller, HAE generates images of higher
diversity, but categories (referring to high-level attributes)
also gradually change to others. rD = 6 achieves the best
performance on the classification experiment. However, the
performance drops when the radius is smaller than 4.5. This
is because the semantic attributes change too much and thus
mislead the classifier.

4.6. Limitations and Future Work

Although HAE achieves reliable hierarchical attribute
editing in hyperbolic space for few-shot image generation,
there are several limitations.

First, the boundary of category changing is hard to be
quantified since the hierarchical levels are continuous in

Hyperbolic
Radius Accuracy FID(↓) LPIPS(↑)

baseline 58.67 - -

6.0 60.10 46.89 0.4520
5.5 59.52 48.68 0.4651
5.0 59.05 52.08 0.4823
4.5 59.14 60.87 0.5174
4.0 58.57 65.83 0.5386
3.5 56.86 68.44 0.6034
3.0 54.14 69.40 0.6316

Table 3: Ablation of same perturbation on different radii on Ani-
mal Faces.

the hyperbolic space. Users need to find a “safe” bound-
ary by trying different radii and step sizes of perturbation
before generating new images. However, from another per-
spective, this continuity of hierarchy provides flexibility for
users to set different boundaries for different downstream
tasks as they need.

Second, the performance of HAE is limited by the pre-
trained styleGAN and the inversion method. If the input
image can not be well embedded, the editing will also fail.
This problem can be solved by changing more powerful
backbones, e.g., ViT [16], in future work.

Finally, we use supervised learning to get the hierarchi-
cal embedding in hyperbolic space. However, the number of
images in existing datasets with labels for generation tasks
is relatively small, which makes the embeddings in the hy-
perbolic space not evenly distributed. The solution to this
problem is simple, use unsupervised learning with large-
scale high-quality datasets.

5. Conclusion

In this work, we propose a simple yet effective method
HAE to edit hierarchical attributes in hyperbolic space.
After learning the semantic hierarchy from images, our
model is able to edit continuous semantic hierarchical
features of images for flexible few-shot image generation in
the hyperbolic space. Experiments demonstrate that HAE
is capable of achieving not only stable few-shot image
generation with state-of-the-art quality and diversity but a
controllable and interpretable editing process. Future work
includes the combination of HAE and large pretrained
models and applications to more downstream tasks.

Acknowledgement. This work was supported in part
by the National Key R&D Program of China under Grant
2018AAA0102000, in part by National Natural Science
Foundation of China: 62022083 and 62236008.

22722



References
[1] Antreas Antoniou, Amos Storkey, and Harrison Edwards.

Data augmentation generative adversarial networks. arXiv
preprint arXiv:1711.04340, 2017. 1, 2

[2] Sergey Bartunov and Dmitry P. Vetrov. Few-shot generative
modelling with generative matching networks. In AISTATS,
2018. 1

[3] Silvère Bonnabel. Stochastic gradient descent on rieman-
nian manifolds. IEEE Transactions on Automatic Control,
58(9):2217–2229, 2013. 3

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
In ICLR, 2019. 8

[5] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian
adaptive optimization methods. In ICLR, 2019. 3

[6] James W Cannon, William J Floyd, Richard Kenyon, and
Walter R Parry. Hyperbolic geometry. Flavors of geometry,
31:59–115, 1997. 4

[7] Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec.
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