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Abstract

Video segmentation aims to segment and track every
pixel in diverse scenarios accurately. In this paper, we
present Tube-Link, a versatile framework that addresses
multiple core tasks of video segmentation with a unified
architecture. Our framework is a near-online approach
that takes a short subclip as input and outputs the cor-
responding spatial-temporal tube masks. To enhance the
modeling of cross-tube relationships, we propose an effec-
tive way to perform tube-level linking via attention along
the queries. In addition, we introduce temporal contrastive
learning to instance-wise discriminative features for tube-
level association. Our approach offers flexibility and effi-
ciency for both short and long video inputs, as the length
of each subclip can be varied according to the needs of
datasets or scenarios. Tube-Link outperforms existing spe-
cialized architectures by a significant margin on five video
segmentation datasets. Specifically, it achieves almost
13% relative improvements on VIPSeg and 4% improve-
ments on KITTI-STEP over the strong baseline Video K-
Net. When using a ResNet50 backbone on Youtube-VIS-
2019 and 2021, Tube-Link boosts IDOL by 3% and 4%,
respectively. Code is available at https://github.
com/lxtGH/Tube-Link.

1. Introduction

The success of the Detection Transformer (DETR) [3]
has inspired recent works [8, 64, 9, 47] to develop uni-
versal architectures for addressing all image segmentation
tasks using the same architecture, also known as univer-
sal image segmentation. In video segmentation, the Video
Panoptic Segmentation (VPS) task involves segmenting and
tracking each pixel in input video clips [20, 52, 18], uni-
fying the Video Semantic Segmentation (VSS) [30] and
Video Instance Segmentation (VIS) [60] tasks. To mini-
mize specialized architecture design for each task, recent
studies [25, 21] follow a universal approach to video seg-
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Figure 1: Tube-Link takes subclips as inputs and links the result-
ing tubes in a near online manner. Our design embraces flexibility,
efficiency, and temporal consistency, making it suitable for vari-
ous video segmentation tasks, including VSS, VIS, and VPS. No-
tably, our method outperforms the best-specialized architectures
for these tasks on multiple datasets. Best viewed in color.

mentation by solving sub-tasks of VPS in a single unified
framework. These methods typically use an end-to-end set
prediction objective and successfully address multiple tasks
without modifying the architecture and loss.

While recent studies have demonstrated promising re-
sults, there are still several issues with VPS models and uni-
versal video segmentation methods. One major challenge is
the lack of exploration of VPS for arbitrary scenes and video
clip lengths. To address this gap, Miao et al. [29] have in-
troduced a more challenging benchmark, named VIPSeg,
which features long videos and diverse indoor and outdoor
scenes. This new dataset presents new challenges to exist-
ing VPS methods [20, 29, 25, 37], such as increased oc-
clusions and appearance changes in diverse scenarios. An-
other issue with universal methods [25, 21] is that they can-
not achieve comparable results to recent Transformer-based
VIS methods [57, 55], which raises the question of whether
we can design a universal video segmentation method to
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avoid these specialized designs.
To gain a better understanding of the limitations of cur-

rent solutions for video segmentation, we examine the exist-
ing methods and categorize them into two groups based on
how they process input video clips: online and near-online.
The former [20, 25, 57, 60, 54] performs video segmen-
tation at the frame level, while the latter [37, 52, 21, 50,
8, 19, 55] processes clip-wise inputs and directly obtains
tube-wise masks. However, there are trade-offs in deploy-
ing either approach. Although online methods offer great
flexibility, they struggle to use temporal information effec-
tively and thus compromise segmentation performance. On
the other hand, near-online methods achieve better segmen-
tation quality, but they cannot handle long video clips, and
most approaches are only validated in VIS tasks, which
have fewer instances and simpler scenes.

In this study, we introduce Tube-Link, a universal video
segmentation framework that combines the benefits of both
online and near-online methods. The framework follows
a common input and output space for video segmentation
tasks, where a long clip input is split into multiple subclips.
Each subclip contains several frames within a temporal win-
dow, and the output is a spatial-temporal mask that tracks
the target entity. Our framework is compatible with contem-
porary methods such as Mask2Former-VIS [7], where each
global query encodes the same tracked entity, and the global
queries perform cross-attention with spatial-temporal fea-
tures in the decoder directly.

In particular, we propose several key improvements to
the Mask2Former-VIS meta-architecture. First, we extend
the instance query into an entity query (either thing or stuff)
to improve temporal consistency for both thing and stuff
segmentation, thus generalizing Mask2Former-VIS into a
universal segmentation architecture. Second, we improve
the modeling of cross-tube relationships from two differ-
ent aspects through temporal consistency learning and tem-
poral association learning. For the former, we design a
simple link head with self-attention layers that links global
queries across tubes to enforce segmentation consistency
across tubes. For the latter, we generalize previous frame-
level contrastive learning into tube-level and learn tempo-
ral association embeddings with a temporal contrastive loss.
Unlike previous works [25, 57, 32] that only learn from two
adjacent frames, we consider multiple frames to learn cross-
tube consistency. The learned embeddings are then used to
perform tube mask matching, which is much more effective
than previous counterparts [25] in complex video scenar-
ios. Third, with the flexibility of window size and learned
association embeddings, we show that one can enlarge the
subclip size to improve temporal consistency and inference
efficiency, even when trained with fewer subclip inputs.

Our approach is a simple yet flexible framework that out-
performs specialized architectures across various video seg-

mentation tasks. We evaluate Tube-Link on three video seg-
mentation tasks using six datasets (VIP-Seg [29], KITTI-
STEP [52], VSPW [30], YouTube-VIS-2019/2021 [60],
OVIS [36]). We demonstrate that, for the first time, our sin-
gle architecture performs on par or better than the most spe-
cialized architectures on five video benchmarks. In particu-
lar, as shown in Fig. 1, using the same ResNet-50 backbone,
Tube-Link outperforms recently published works Video K-
Net [25] 4% VPQ on KITTI-STEP, 13% VPQ, and 8% STQ
on VIP-Seg, VITA [16] and IDOL [57] on YouTube-VIS-
2019 by 3% mAP. We also outperform TubeFormer [21] on
VPSW by 1.7% mIoU, and on YouTube-VIS-2019 by 5.3%
mAP.

2. Related Work
Specialized Video Segmentation. VSS aims to predict a
class label for each pixel in a video. Recent approaches [42,
70, 30, 43, 44] model the temporal consistency or accelera-
tion using methods such as optical flow warping or spatial-
temporal attention. VIS [60] extends instance segmen-
tation into video, aiming to segment and track each ob-
ject simultaneously. Several methods [1, 26, 67, 38, 23]
link instance-wise features in the video. Recent stud-
ies [50, 19, 55, 57, 61, 11] have extended DETR into VIS,
proposing better ways to fuse different queries along the
temporal dimension. However, these methods cannot be di-
rectly transferred to complex scenes [52, 29] due to the lim-
ited instances and simpler scenes used in their training. VPS
aims to generate instance tracking IDs and panoptic seg-
mentation results across video clips. Kim et al. [20] mainly
focus on short-term tracks, using only six frames for each
clip in Cityscapes video sequences. STEP [52] proposes
a Segmentation and Tracking Quality (STQ) metric that
decouples the segmentation and tracking error, along with
long sequence VPS datasets. Recently, VIP-Seg [29] pro-
posed a more challenging dataset containing various scenes,
scales, instances, and clip lengths. However, current solu-
tions [20, 54, 25] for VPS mainly focus on online or near-
online approaches, which have difficulty adapting to gen-
eral tasks (VSS, VIS) or handling the complex scenarios in
VIP-Seg dataset.
Universal Architectures For Segmentation. Recent stud-
ies [47, 64, 8, 62, 24, 63] adopt mask classification architec-
tures with an end-to-end set prediction objective for univer-
sal segmentation, achieving better results than specialized
models. In video segmentation, two representative works
are Video K-Net [25] and TubeFormer [21]. The former
unifies the video segmentation pipeline via kernel tracking
and linking, while the latter adopts a near-online approach
and obtains tube-level masks with cross-attention along the
tube features and queries. However, both works fail to re-
place specialized models, as their performance on specific
tasks or datasets is still worse than the best-specialized ar-
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chitecture (they perform worse in VIS). Our proposed Tube-
Link is the first generalized architecture that outperforms
existing state-of-the-art specialized architectures on three
video segmentation tasks. In comparison to [21], Tube-Link
further explores cross-tube association, which is critical in
long and complex scenes.
Video Object Detection and Tracking. Object tracking is
a crucial task in VPS, and many works adopt the tracking-
by-detection paradigm [2, 22, 59, 68, 35]. These methods
divide the task into two sub-tasks, where objects are first
detected by an object detector and then associated using
a tracking algorithm. Recent works [33, 12] also perform
clip-wise segmentation or tracking [41]. However, the for-
mer only focuses on single-object mask tracking, while the
latter considers global tracking via clip-level matching. Our
proposed Tube-Link naturally handles both settings yet pro-
vides additional segmentation masks as outputs. In Video
Object Detection, the literature [69, 10, 5, 58, 66] has seen
the broad usage of information across multiple frames. Our
work is related to TransVOD [66], which uses a local tem-
poral window. However, in these studies, learning corre-
spondences and links across tubes are not explored, partly
due to the nature of ImageNet-VID dataset [40], which does
not require object tracking and segmentation.

3. Methodology

3.1. Preliminary and Motivation

In this subsection, we begin by introducing a unified
notation for universal video segmentation (VSS, VIS, and
VPS), and then demonstrate how this task can be modeled
through linking the tracked short tube masks. After that,
we further motivate tube-wise matching by comparing it
against conventional frame-wise matching.
Universal Video Segmentation Formulation. We denote
a video clip input as V ∈ RT×H×W×3, where T repre-
sents the frame number and H × W are the spatial size.
The video clip is annotated with segmentation masks. The
masks of a particular entity can be linked along the time
dimension to form a tube. The annotations are denoted as
{yi}Gi=1 = {(mi, ci)}Gi=1 , where the G is the number of
ground truth, each tube mask mi ∈ {0, 1}T×H×W does
not overlap with each other, and ci denotes the ground truth
class label of the i-th tube. The background is assigned with
value 0, and the foreground masks are assigned to be 1 in
each tube mask mi. VPS requires temporally consistent
segmentation and tracking results for each pixel. Specif-
ically, a model makes predictions on a set of video clips
{ŷi}Ni=1 = {(m̂i, p̂i(c))}Ni=1, where m̂i ∈ [0, 1]

T×H×W

denotes the predicted tube, and p̂i(c) denotes the probabil-
ity of assigning class c to a clip m̂i belonging to a predefined
category in a set C. The number of entities is given by N ,
which includes countable thing classes and countless stuff

Table 1: Exploration experiment on tube-wise matching.
Youtube-VIS: mAP. VIP-Seg:VPQ. We directly use pre-trained
models by changing the input to two consecutive frames.

Method Youtube-VIS-2019 Youtub-VIS-2021 VIP-Seg

Min-VIS [17] 47.4 44.2 -
Min-VIS + tube matching 48.8 (+1.4) 45.5 (+1.3) -

Video K-Net [25] - - 26.1
Video K-Net + tube matching - - 27.6 (+1.5)

classes. In particular, i is the tracking ID for the thing class.
When N = C and C only contain stuff classes, VPS turns
into VSS. If {ŷi}Ni=1 can overlap and C only contains the
thing classes, VPS turns into VIS. We use such notations
for universal video segmentation.
Video Segmentation as Linking Short Tubes. To segment
a video clip V , we divide it into a set of L smaller sub-
clips: {vi}Ni=1, where vi ∈ Rn×H×W×3, and n = T/L
with n representing the window size along the temporal di-
mension. The window size is flexible and can be adjusted
according to the dataset. By taking subclips as inputs, we
obtain shorter segmentation tubes than the whole clip. We
perform tracking and linking across nearby tubes. Each pre-
dicted tube is represented as {ŷti}Ni=1 = {(m̂t

i, p̂i(c)
t)}Ni=1,

where t is the index of each small tube, m̂t
i ∈ [0, 1]

n×H×W

represents the segmentation masks, and p̂i(c)
t is the corre-

sponding category. The final video prediction is obtained
by linking each tube, {ŷi}Ni=1 = Link({ŷti}Ni=1)t=1,..L. In
our formulation, tracking is only performed across different
tubes, and the segmentation within each tube is assumed
to be consistent. Note that the key to achieving temporally
consistent segmentation is the design of function Link.
Motivation of Tube-wise Matching. Existing video seg-
mentation methods [57, 17, 25] often perform instance as-
sociation via frame-wise matching. This approach ignores
local temporal information and can lead to occlusion errors.
In this study, we propose to perform tube-wise matching
using global queries based on their corresponding trackers.
To motivate our approach, we modify the input of two rep-
resentative works, Min-VIS [17] and Video K-Net [25], by
replacing the single frame input with a subclip input. Each
subclip contains two frames. Without additional re-training
or computation costs, we observe consistent improvements
on three video segmentation datasets and two video seg-
mentation tasks, VIS and VPS, as shown in Table 1. These
findings suggest that cross-tube information is worth ex-
ploring for achieving universal segmentation. Therefore,
we propose to model the Link function as tube-wise match-
ing and linking, and term our framework Tube-Link.

3.2. Tube-Link Framework

We first introduce our extension to Mask2Former-VIS,
which will serve as a baseline. Then, we present two
improvements, including cross-tube Temporal Contrastive

13925



Figure 2: Our proposed Tube-Link framework. Given the sub-
clips as input, we first use global queries to perform within-tube
spatial-temporal learning to obtain the tube masks and labels.
Then we link the object queries with cross-tube contrastive learn-
ing and self-attention.

Learning (TCL) and Cross-Tube Linking (CTL), to better
model cross-tube relations. The training process of our
method is illustrated in Fig. 2.
Mask2Former-VIS Extension as Baseline. Follow-
ing [50, 7], given a subclip vi, we first employ
Mask2Former-VIS [7] to extract the spatial-temporal fea-
ture Fi ∈ Rn×C×H×W . Mask2Former uses multiscale
features and a cascaded decoder to perform cross-attention.
Thus, we denote the layer index l to indicate the layer num-
ber. The global queries, Ql−1 ∈ RNq×C , perform masked
cross-attention between Fi and Qi as follows,

Ql = softmax(Ml−1 +MLP(Ql−1)K
T
l )Vl +Ql−1,

(1)

where Nq is the query number and is set to 100 by default,
Ml−1 ∈ Rn×H×W is the binarized output of the resized
tube-level mask prediction from the previous stage, follow-
ing Cheng et al. [8]. Instead of considering only thing
masks as in previous works [50, 55], we jointly process both
thing and stuff masks, shown in Equation (1). MLP denotes
linear layers to transform the object query, while Kl and
Vl represent the spatial-temporal features transformed from
Fi, where Kl = Key(Fi) and Vl = Value(Fi), Key and
Value are linear functions as in the common attention de-
sign. In the implementation, Fi is sampled from the multi-
scale feature output following Mask2Former, and we use
the feature with the highest resolution for simple formula-
tion purposes.

Within each tube, the query index is naturally the track-
ing ID for each object with no tracking association within
the tube. This process is shown in the dash box area of the
Fig. 2.
Cross-Tube Temporal Contrastive Learning. Recent
studies [25, 57, 32] have demonstrated the effectiveness of
contrastive learning in video segmentation. However, all of
these studies perform learning on only two adjacent frames,
which is not suitable for tube-level matching. To capture
a larger temporal context, we propose cross-tube temporal

PushPull

Contrastive Loss
Emb

Emb

Figure 3: Illustration of the proposed cross-tube temporal con-
trastive learning. The input queries are first sent to the Emb. Then
cross-tube contrastive learning is performed. The same instance
across different frames is indicated in the same color. We use
spatial-temporal ground truth masks to perform positive/negative
assignments to each query embedding.

contrastive learning. While temporal contrastive learning is
not new, our study is the first attempt to perform contrastive
learning at the tube level.

As shown in Fig. 2, given a pair of subclips vi and vj
as inputs, we first perform tube-level inference to obtain
the global queries, Qi and Qj , corresponding to two tubes.
Note that both queries already encapsulate spatial-temporal
information through Equation (1). We randomly select two
subclips from the neighborhood of all subclips, assuming
that they contain corresponding objects (i.e., objects with
the same IDs). We then add an extra lightweight embed-
ding head Emb after each global query to learn the asso-
ciation embedding, which is implemented through several
fully-connected layers. Following Li et al. [25], we use a
mask-based assignment for contrastive learning.

Different from previous frame-wise methods, we pro-
pose a tube-wise label assignment strategy to form con-
trastive targets. Recall that our query embedding encodes
information from more than one single frame, we use
spatial-temporal masks (the same instance masks within
the tube) for mask-based assignment, as shown in Fig. 3.
Specifically, we define a query embedding as positive to
one object if its corresponding tube mask has an IoU higher
than α1, and negative if the IoU is lower than α2. We set
α1 and α2 as 0.7 and 0.3, respectively. We use a sparse
set of matched global queries for learning, where the query
indices are assigned from ground truth tube masks.

We assume that there are X matched queries from Qi

and Y matched queries from Qj as contrastive targets,
where both X and Y are much fewer than all queries N .
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Table 2: System-level comparison between Tube-Link with re-
lated approaches [25, 21, 57].

Property and Settings Video K-Net [25] TubeFormer [21] IDOL [57] Our Tube-Link

Online ✓ ✓ ✓ ✓(n=1)
Nearly Online ✓ ✓

VIS ✓ ✓ ✓ ✓
VSS ✓ ✓ ✓
VPS ✓ ✓ ✓

Mulitple Frames ✓ ✓ ✓
Frame Query Matching ✓ ✓

Mask Mathicing ✓
Global Query Matching ✓

The cross-tube temporal contrastive loss is written as:

Ltrack = −
∑
y+

log
exp(x · y+)

exp(x · y+) +
∑

y− exp(x · y−)
, (2)

where x, y+, y− are query embeddings of tube pairs, their
positive targets, and negative targets, which are sampled
from Qi and Qj , respectively, as illustrated in Fig. 2.
The loss pulls positive embeddings close to each other and
pushes the negative away, as shown in Fig. 3. In addition,
following previous work [32, 25], we also adopt L2 loss as
an auxiliary loss to regularize the global query association
process.

Ltrack aux = (
x · y

||x|| · ||y||
− b)2, (3)

where b is 1 if there is a match between the two samples,
and 0 otherwise. Compared with previous works [25, 57]
for contrastive learning, our loss considers additional tem-
poral information, thus achieving a much better result. Ex-
periments are reported in Sec. 4.3.
Cross-Tube Linking. Apart from the improved supervision
at the tube level, we take a further step to link tubes via their
global queries, Qi and Qj for both training and inference.
This encourages the interactions among tubes along the
temporal dimension. We adopt a Multi-Head Self Attention
(MHSA) layer with a Feed Forward Network (FFN) [46]
to learn the correspondence among each query to obtain the
updated queries, allowing full correlation among queries.
This process is shown as follows:

Qf
j = FFN(MHSA(Query(Qj),Key(Qi),Value(Qi)).

(4)
In this way, the information from the i-th tube is propagated
to the j-th tube via the affinity matrix. The linked output
Qf

j is employed as the input to the embedding head Emb,
shown in the middle of Fig. 2 and the left of the Fig. 3.
Relation with Previous Works. We summarize the differ-
ences and properties of Tube-Link with previous methods in
Table 2. Compared to Tubeformer [21], Tube-Link explores
cross-tube relationships from a global query matching per-
spective, while Tubeformer adopts simple mask match-
ing. A detailed experimental comparison can be found in

Sec. 4. Compared to IDOL [57] and Video K-Net [25],
our method explores multiple-frame information and global
query matching, which is more robust for complex scenes
and temporal consistency. If n = 1, Tube-Link degenerates
into the naı̈ve online method. It is noteworthy that since we
process the video by sampling n frames as input, we can ob-
tain a much faster inference speed than online approaches
via more efficient GPU memory usage and parallelization
(see Sec. 4.4).

3.3. Training and Inference of Tube-Link

Training and Loss Function. In addition to the track-
ing loss in Equation (2), we also use tube-wise segmenta-
tion loss. Specifically, we obtain the tube masks by stack-
ing the mask of the same instance from different frames.
This establishes a one-to-one mapping between the pre-
dicted tube-level mask and the ground-truth tube-level mask
based on the masked-based matching cost [3, 8]. The
tube-level masks are obtained from global queries Q like
Mask2Former [8]. The final loss function is given as
L = λclsLt cls + λceLt ce + λdiceLt dice + λtrackLtrack +
λauxLtrack aux. Here, Lt ce is the Cross Entropy (CE) loss
for tube-level classification, and Lt ce and Lt dice are tube-
level mask Cross Entropy (CE) loss and Dice loss [31, 49]
for segmentation, respectively. Ltrack and Ltrack aux are
the tracking losses. For VSS, we remove the Ltrack term.

Simplicity. We intend to keep a simple framework, and
thus we do not use any extra tricks or auxiliary losses em-
ployed in previous works, such as extra semantic segmen-
tation loss [47], tube-level mask copy and paste [21], joint
image dataset and video dataset pre-training [55, 57], etc.

Inference. Taking VPS as an example, we use Tube-Link to
generate tube-level panoptic segmentation masks from each
input. We use the query embeddings from the learned em-
bedding head Emb as association features and feed them as
input to Quasi-Dense Tracker [32] in a near-online manner.
Note that we only track the preserved instance masks from
the panoptic segmentation maps, and the matching process
is performed at tube-level between two global queries. Un-
like previous studies [53, 51], we do not use extra motion
cues to help track across subclips. Instead, we only use
simple query feature matching across subclips, which saves
time for track matching compared to online methods. An
advantage of Tube-Link is its flexible inference via different
subclip size settings n. Enlarging n can improve both infer-
ence speed and performance on most datasets. For complex
and high-resolution inputs, we decrease n by only utilizing
information within the temporal vicinity. We perform de-
tailed ablations in Sec. 4.3. We will provide more details on
inference for other tasks (VIS, VSS) in the appendix.
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4. Experiments

4.1. Experimental Settings

Dataset. We conduct experiments on five video datasets:
VIPSeg [29], VSPW [30], KITTI-STEP [52], and YouTube-
VIS-19/21 [60]. We mainly conduct experiments on
VIPSeg due to its scene diversity and long-length clips.
The training, validation, and test sets of VIPSeg contain
2,806/343/387 videos with 66,767/8,255/9,728 frames, re-
spectively. Although VSPW and VIPSeg share the same
video clips, the training details are different since they are
different tasks. Please refer to the supplementary material
for other datasets.
Evaluation Metrics. For the VPS task, we adopt two met-
rics: V PQ [20] and STQ [52]. The metric STQ con-
tains geometric mean of two items: Segmentation Qual-
ity (SQ) and Association Quality (AQ), where STQ =
(SQ × AQ)

1
2 . The former evaluates the pixel-level track-

ing, while the latter evaluates the pixel-level segmentation
results in a video clip. For the VSS task, the Mean Inter-
section over Union (mIoU) and mean Video Consistency
(mV C) [30] are used for reference. For the VIS task, mAP
is adopted.
Implementation Details and Baselines. We implement
our models in PyTorch [34] with the MMDetection tool-
box [4]. We use the distributed training framework with
16 V100 GPUs. Each mini-batch has one image per GPU.
Following previous work, we use the image baseline pre-
trained on COCO dataset [27]. ResNet [15], STDC [13],
and Swin Transformer [28] are adopted as the backbone net-
works, which are pre-trained on ImageNet, and the remain-
ing layers adopt the Xavier initialization [14]. For the de-
tailed settings of other datasets, pretraining, and fine-tuning,
please refer to the supplementary material. To further verify
the effectiveness of our approach, we build a stronger base-
line by unifying Video K-Net with Mask2Former, where we
replace the image encoder with Mask2Former. We term it
Video K-Net+. We denote the extended Mask2Former-VIS
for VPS as Mask2Former-VIS+.

4.2. Benchmark Results

[VPS] Results on VIPSeg. We present the results of
our Tube-Link method compared to previous works on the
VIPSeg dataset in Tab. 3. Our approach outperforms Video
K-Net[25] (under the same backbone) with 12%-15% VPQ
and 7%-10% STQ improvements, respectively. Notably,
our method with Swin-base [28] backbone achieves new
state-of-the-art results. We also evaluate our method using
a lightweight backbone [13] for more efficient inference on
video clips, and it achieves even better results than all pre-
vious methods with a larger ResNet50 backbone. These re-
sults demonstrate the effectiveness of our approach in ex-
ploiting temporal information. Benefiting from the joint

Table 3: Results on VIPSeg-VPS [29] validation dataset. We
report VPQ and STQ for reference. Following Miao et al. [29], we
report VPQ scores at different window sizes (1, 2, 4, 6). We report
the results obtained from either an efficient or a strong backbone
for comparison.

Method backbone V PQ1 V PQ2 V PQ4 V PQ6 VPQ STQ

VIP-DeepLab [37] ResNet50 18.4 16.9 14.8 13.7 16.0 22.0
VPSNet [20] ResNet50 19.9 18.1 15.8 14.5 17.0 20.8

SiamTrack [54] ResNet50 20.0 18.3 16.0 14.7 17.2 21.1
Clip-PanoFCN [29] ResNet50 24.3 23.5 22.4 21.6 22.9 31.5

Video K-Net [25] ResNet50 29.5 26.5 24.5 23.7 26.1 33.1
Video K-Net+ [8, 25] ResNet50 32.1 30.5 28.5 26.7 29.1 36.6

Video K-Net [25] Swin-base 43.3 40.5 38.3 37.2 39.8 46.3
Tube-Link STDCv1 32.1 31.3 30.1 29.1 30.6 32.0
Tube-Link STDCv2 33.2 31.8 30.6 29.6 31.4 32.8
Tube-Link ResNet50 41.2 39.5 38.0 37.0 39.2 39.5
Tube-Link Swin-base 54.5 51.4 48.6 47.1 50.4 49.4

Table 4: Results on the YouTube-VIS datasets. We report the
mAP metric. † adopt COCO video pseudo labels. Axial means
using the extra Axial Attention [48]. Our method does not apply
these techniques for simplicity.

Method Backbone YTVIS-2019 YTVIS-2021

VISTR [50] ResNet50 36.2 -
TubeFormer [21] ResNet50 + Aixal 47.5 41.2
IFC [19] ResNet50 42.8 36.6
SeqFormer [55] ResNet50 47.4 40.5
Mask2Former-VIS [7] ResNet50 46.4 40.6
IDOL [57] ResNet50 46.4 43.9
IDOL [57] † ResNet50 49.5 -
VITA [16] † ResNet50 49.8 45.7
Min-VIS [17] ResNet50 47.4 44.2
Tube-Link ResNet50 52.8 47.9
SeqFormer [55] Swin-large 59.3 51.8
Mask2Former-VIS [7] Swin-large 60.4 52.6
IDOL [57] Swin-large 61.5 56.1
IDOL [57] Swin-large † 64.3 -
VITA [16] † Swin-large 63.0 57.5
Min-VIS [17] Swin-large 61.6 55.3
Tube-Link Swin-large 64.6 58.4

Table 5: Results on VSPW-VSS validation set. mV Cc means
that a clip with c frames is used.

VPSW Backbone mIoU mV C8 mV C16

DeepLabv3+ [6] ResNet101 35.7 83.5 78.4
TCB(PSPNet) [30, 65] ResNet101 37.5 86.9 82.1
Video K-Net (Deeplabv3+) [25, 6] ResNet101 37.9 87.0 82.1
Video K-Net (PSPNet) [25, 65] ResNet101 38.0 87.2 82.3
MRCFA [44] MiT-B5 49.9 90.9 87.4
CFFM [43] MiT-B5 49.3 90.8 87.1
TubeFormer [21] Axial-ResNet50x64 63.2 92.1 88.0
Tube-Link ResNet50 42.3 86.8 83.2
Tube-Link Swin-large 59.7 90.3 88.4

inference of subclips, our method achieves a much faster
inference speed, as shown in Fig. 4.
[VIS] Results on YouTube-VIS-2019/2021. In Tab. 4, we
compare our method with state-of-the-art VIS methods on
the YouTube-VIS 2019 and 2021 datasets. Our method
achieves a 3.0% and 2.2% mAP gain over VITA [16] when
using the ResNet50 backbone. Furthermore, compared with
the Mask2Former-VIS baseline [7], our method achieves
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Table 6: Results on VIP-Seg-VSS validation set. mV Cc means
that a clip with c frames is used.

VPSW Backbone mIoU mV C8 mV C16

Video K-Net (Deeplabv3+) [25, 6] ResNet101 38.3 88.0 83.1
Video K-Net (PSPNet) [25, 65] ResNet101 39.0 88.2 84.2
Mask2Former [8] ResNet50 38.4 87.5 82.5
Video K-Net+ [8, 25] Swin-base 57.2 90.1 87.8
Tube-Link ResNet50 43.4 89.2 85.4
Tube-Link Swin-base 62.3 91.4 89.3
Tube-Link Swin-large 64.9 92.4 89.9

Table 7: Results on the KITTI val set. OF refers to an optical
flow network [45].

KITTI-STEP Backbone OF STQ AQ SQ VPQ

P + Mask Propagation ResNet50 ✓ 0.67 0.63 0.71 0.44
Motion-Deeplab [52] ResNet50 0.58 0.51 0.67 0.40
VPSNet [20] ResNet50 ✓ 0.56 0.52 0.61 0.43
TubeFormer-DeepLab [21] ResNet-50 + Axial 0.70 0.64 0.76 0.51
Video K-Net [25] ResNet50 0.71 0.70 0.71 0.46
Video K-Net [25] Swin-base 0.73 0.72 0.73 0.53
Tube-Link ResNet50 0.68 0.67 0.69 0.51
Tube-Link Swin-base 0.72 0.69 0.74 0.56
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Figure 4: Tube-Link also achieves the best accuracy and speed
trade-off on VIP-Seg dataset. FPS is measured on RTX GPU.

4-5% mAP gains on the two datasets with different back-
bones. Our method also outperforms the previous near-
online method TubeFormer [21] by 5-6% in terms of mAP
on the two VIS datasets.
[VSS] Results on VSPW and VIP-Seg. We further con-
duct experiments on VSPW dataset [30] for VSS to demon-
strate the generalization of Tube-Link. As shown in Tab. 5,
our method achieves over 4% mIoU improvement com-
pared to the Mask2Former baseline. Under the same
ResNet101 backbone, our method achieves the best re-
sults. Using the Swin base backbone, our method achieves
about 3.7% mIoU gains over Video K-Net+ with consistent
improvements on mV C. Our method with a lightweight
backbone achieves comparable results to DeepLabv3+ with
ResNet101, but with about four times faster inference speed
(shown in Fig. 6). Without using any additional techniques,

our method also outperforms recent methods specifically
designed for VSS [43, 44]. In Tab. 6, we also compare
the video semantic segmentation methods in recent VIPSeg
datasets with higher-resolution images. Compared with pre-
vious state-of-the-art methods, our approaches also achieve
state-of-the-art results.
[VPS] Results on KITTI STEP. We further validate our
method on KITTI STEP [52] and report the results in Tab. 7.
Our method achieves 0.51 VPQ with the ResNet50 back-
bone, setting a new state-of-the-art result without using tem-
poral attention or optical flow warping. When using a strong
Swin-base [28] backbone, our method still achieves better
results than Video K-Net [25] by 3% VPQ and comparable
results on STQ. It is worth noting that one can further im-
prove the performance of Tube-Link by employing a better
tracker design.

4.3. Ablation Study and Visual Analysis

Improvements over Strong VPS Baseline. In Tab. 8a,
we demonstrate the effectiveness of each component pro-
posed in Sec. 3.2. The first row shows the results of the
frame matching baseline. After adopting the tube match-
ing, we obtain a gain of 1.6% VPQth and 2.1% on VPQ,
even without any specific tracking design, which results in
the same observation as shown in Tab. 1. Thus, we use
Mask2Former-VIS+ (T, T=2) as our baseline by default,
which achieves a strong starting point of 34.5 VPQ. VPQth

refers to the VPQ for the thing class. This result shows the
effectiveness of the naı̈ve framework. The addition of TCL
further boosts performance, with a gain of 3.5% on VPQth

and 1.7% on VPQ. Furthermore, adding CTL, which makes
the association more consistent, improves VPQth by 1.5%.
Ablation on Temporal Contrastive Loss. We also com-
pare our TCL design with previous works that use dense
queries [32] or sparse queries [25] for matching. Both set-
tings use only one frame, while our subclip size is two. As
shown in Tab. 8b, our method achieves the best results since
tube matching encodes more temporal information. In par-
ticular, we observe 3.0% VPQ improvements compared to
the strong Video K-Net baseline.
Ablation on Association Target Assignment. In Table 8c,
we show the results of the ablation study on building associ-
ation targets. We find that using a tube-level mask achieves
the best results. Using the mask from one of the input sub-
clips leads to inferior results. This is because the ground
truth masks of a single frame are not aligned with the input
global queries, where the global queries are learned from
multiple frames using Equation (1).
Effect of Sub-clip Size for Training. In Tab. 8d, we in-
vestigate the impact of subclip size on training. Tube-Link
becomes an online method when the subclip size is 1. As
shown in the table, enlarging the subclip size improves the
performance. We also examine overlapping during sam-
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Table 8: Ablation studies and comparative analysis on VIPSeg validation set with the ResNet50 backbone.

(a) Ablation Study on Each Component.

baseline TCL CTL VPQth VPQ

Mask2Former-VIS+ (F) - - 29.4 32.4
Mask2Former-VIS+ (T) - - 31.0 34.5

✓ - 34.6 36.8
✓ ✓ 35.1 37.5

(b) Design Choices of TCL.

Method VPQ STQ

Dense Query [32] 30.2 30.1
Sparse Query [25] 34.5 35.1

Global Query(Ours) 37.5 36.5

(c) Association Target Assign.

Method VPQ STQ

All-Masks [32] 30.1 29.2
GT-Mask [25] 35.6 35.9

Tube-Mask 37.5 36.5

(d) Input Sub-clip Size with Tube Window
Size of 2 as Input.

Clip Size STQ VPQ VPQth

T=1 34.5 35.6 30.2
T=2 36.5 37.5 35.1

T=2(ovl) 35.9 37.3 35.0
T=3 36.4 37.0 35.3

(e) Tube-Window for Inference with Input
Sub-clip Size 2 for Training.

Window Size STQ VPQ VPQth

W=2 36.5 37.5 35.1
W=4 39.2 39.0 38.2
W=6 39.5 39.2 38.9
W=8 38.3 38.5 37.3

(f) Tracking Choices with the Default Setting of
Tab.(d).

Settings STQ VPQ VPQth

Extra Tracker [51, 53] 33.9 36.6 34.1
RoI Features [32] 34.5 35.9 34.5

Query Embedding [25] 33.1 36.0 33.0
Our Tube embedding 36.5 37.5 35.1

Video K-Net+ Tube-Link Mask2Former-VIS Tube-Link

Figure 5: Comparison results on VIP-Seg and YuoTube-VIS. Our
method achieves consistent segmentation (shown in orange boxes)
and better tracking results (shown in red boxes).
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Figure 6: Efficiency Analysis of Tube-Link. Left: Segmentation
results (mIoU) of VSPW with different subclip sizes. Right: In-
ference speed (FPS) with different subclip sizes.

pling, denoted as ovl, where two input subclips overlap at
one frame. As shown in Tab. 8d, enlarging the subclip size
to 2 achieves significant improvement. However, we find
that either frame overlapping or using a larger subclip size
(T = 3) does not bring extra gains. Adding more frames

does not benefit temporal association learning, since most
instances are similar within a subclip. Moreover, using
more frames is not memory-friendly during training. Thus,
the subclip size is set to 2. We can enlarge the size for in-
ference, as shown in Tab. 8e.
Effect of Sub-clip Size for Inference. During training, the
subclip size is limited due to memory constraints, but we
can expand it during inference to improve the performance.
For instance, we use a subclip size of 2 during training and
increase it to 6 during inference. Tab. 8e shows that enlarg-
ing the subclip size for inference improves the performance
considerably for all three metrics: STQ, VPQ, and VPQth.
However, when the subclip size is further increased to 8,
the performance drops because the global queries are not
designed to handle larger subclips. Increasing the subclip
size can also speed up the inference process by utilizing the
full GPU memory, as demonstrated in Fig. 6.
Different Tracking Choices. In Tab. 8f, we compare differ-
ent tracking approaches used in previous studies [32, 25, 53]
with our Tube-Link. Our Tube-Link only uses the learned
tube-level embedding for the association. We find that the
default tube embedding works best in our framework, with-
out requiring any association embedding head or RoI crop
operation on the VIPSeg dataset.

4.4. Visualization and More Analysis

GFLops and Parameter Analysis. Compared with
Mask2Former baseline, we only add one Emb head and
one self-attention layer, introducing only 2.2% GFLops and
1.4% extra parameters with 720× 1280 input.
Speed and Accuracy with Different Input Subclip Size.
As shown in Table 8e, adding more frames improves the
VPS results. To further analyze the speed-accuracy trade-
off, we present a detailed comparison of different methods
on the VSPW dataset in Fig. 6. The left plot shows that
enlarging the subclip size also improves the VSS results.
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The right plot illustrates that increasing the subclip size im-
proves the single-frame baseline by 1.25-1.5% for various
backbones. Both performance and speed reach a plateau
when the size increases to 6. The experiment justifies our
choice of using an input subclip size of 6 for inference.
Visual Improvements on Baselines. In Fig. 5, we present
the visual comparison with several strong baselines (Video
K-Net+ and Mask2Fomer-VIS) in VPS and VIS settings.
The results are randomly sampled from a long clip. We
achieve better results on both segmentation and tracking.
More visual examples can be found in the supplementary
material.

5. Conclusion

We present Tube-Link, a simple yet flexible universal
video segmentation framework. Our key insight is to per-
form cross-tube matching rather than cross-frame matching.
By equipping the Mask2Former architecture with the pro-
posed cross-tube learning, Tube-Link achieves new state-
of-the-art results in all three major video segmentation tasks
(VSS, VIS, VPS) using one unified architecture.
Limitation and Future Work. Tube-Link is pre-trained on
image datasets and requires re-training for each new video
dataset. In the future, we hope to develop a model that can
be trained only once to unify universal image and video seg-
mentation tasks. One potential solution can be training our
Tube-Link with the merged image and video datasets using
CLIP [39, 56] text embedding to unify labels. Then, we can
build a universal image/video model for various scenes.
Broader Impact. Our work pushes the boundary of video
panoptic segmentation algorithms in a simple, flexible, and
efficient way. The proposed framework provides a unified
and general solution for dense video segmentation, which
has the potential to greatly simplify and expedite model de-
velopment in various real-world applications that heavily
rely on video input, including autonomous driving and robot
navigation.
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