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Abstract

The prolific performances of Vision Transformers (ViTs)
in image tasks have prompted research into adapting the
image ViTs for video tasks. However, the substantial
gap between image and video impedes the spatiotemporal
learning of these image-pretrained models. Though video-
specialized models like UniFormer can transfer to the video
domain more seamlessly, their unique architectures require
prolonged image pretraining, limiting the scalability. Given
the emergence of powerful open-source image ViTs, we pro-
pose unlocking their potential for video understanding with
efficient UniFormer designs. We call the resulting model
UniFormerV2, since it inherits the concise style of the Uni-
Former block, while redesigning local and global relation
aggregators that seamlessly integrate advantages from both
ViTs and UniFormer. Our UniFormerV2 achieves state-of-
the-art performances on 8 popular video benchmarks, in-
cluding scene-related Kinetics-400/600/700, heterogeneous
Moments in Time, temporal-related Something-Something
V1/V2, and untrimmed ActivityNet and HACS. It is note-
worthy that to the best of our knowledge, UniFormerV2 is
the first to elicit 90% top-1 accuracy on Kinetics-400.

1. Introduction

The triumph of transformer-based language foundation
models [16, 51, 5] has resulted in the swift growth of im-
age foundation models [18, 24, 50, 73], which have been
meticulously trained on massive web datasets with rich su-
pervision, such as image-text contrastive learning [50, 30]
and mask image modeling [24, 3]. The resulting Vision
Transformers (ViTs) exhibit exceptional generalization ca-
pacity for a range of image tasks [43, 12, 53], motivating
researchers to explore their applications for video tasks.
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Figure 1: Comparison with SOTA methods using open
sources. Our UniFormerV2 achieves state-of-the-art per-
formances on popular scene-related, temporal-related, het-
erogeneous and untrimmed video benchmarks. Compared
to VideoMAE [71] which requires thousands of epochs for
pre-training, our method directly arms well-prepared image
ViTs with efficient designs for robust video understanding.

In light of the success of adapting 2D convolution neu-
ral networks (CNNs) for spatiotemporal learning [63, 59,
39, 31], researchers have proposed a series of plug-and-play
modules for ViTs, such as split space-time attention [4], to-
ken shift module [23], and motion-enhanced decoder [40].
Thanks to powerful image pretraining [66, 55, 50], these
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ViT-based video learners surpass CNNs by a considerable
margin on traditional scene-related benchmarks [32, 9, 10],
which can be recognized easily by a single frame. However,
when faced with complex temporal-related tasks [22], they
perform much worse than CNN-based ones [34, 62]. The
substantial domain gap between image and video presents a
challenge to adapt image ViTs for video understanding.

Another prevalent paradigm is to design specialized ViTs
[42, 37, 35], which can be effortlessly transferred to the
video domain via simple technique, i.e., inflating spatial
convolution or attention to spatiotemporal ones. In the ad-
vanced UniFormer [35], the authors unify convolution and
self-attention as Multi-Head Relation Aggregator (MHRA)
in a transformer format. By modeling local and global rela-
tions respectively in shallow and deep layers, it can not only
handle both scene-related and temporal-related tasks effec-
tively, but also significantly reduce the computation burden.
However, as a unique architecture, UniFormer lacks image
pretraining as a starting point. To obtain a robust visual rep-
resentation, it has to go through prolonged pretraining on
images before finetuning on videos, which makes it difficult
to scale up. Considering the emergence of powerful open-
source image ViTs [66, 3, 50], a natural question arises:
Can we unlock the potential of image ViTs for video un-
derstanding with an efficient UniFormer design?

In this paper, we propose a simple yet effective paradigm
for constructing powerful video networks, by arming the
image-pretrained ViTs with efficient UniFormer designs
(see Figure 1). We call the resulting model UniFormerV2,
since it inherits the concise style of UniFormer but equips
local and global UniBlocks with new MHRA. In the local
UniBlock, we incorporate a local temporal MHRA before
the spatial ViT block. Thus we can largely reduce temporal
redundancy and leverage the well-pretrained ViT block, for
learning local spatiotemporal representation effectively. As
for the global UniBlock, we introduce a query-based cross
MHRA. Unlike the costly global MHRA in the original
UniFormer, our cross MHRA can summarize all the spa-
tiotemporal tokens into a video token, for learning global
spatiotemporal representation efficiently. Finally, we reor-
ganize local and global UniBlocks as a multi-stage fusion
architecture, which can adaptively integrate multi-scale spa-
tiotemporal representation to capture complex dynamics.

We apply our paradigm on ViTs that are pretrained on
three popular supervision, including supervised learning
[55, 56], contrastive learning [50], and mask image mod-
eling [24, 3]. Our results reveal that all enhanced models
exhibit superior performance compared to previous ViT-
based approaches, showcasing the generic nature of our
UniFormerV2. In addition, we have constructed a com-
pact Kinetics-710 benchmark, combining the action classes
of Kinetics-400/600/700, and have removed repeated and
leaked videos in the training sets of these benchmarks for

enhanced fairness. As a result, the number of training
videos has been reduced from 1.14M to 0.66M. After train-
ing on K710, our model can simply achieve higher accuracy
on K400/600/700 via only 5-epoch finetuning.

To verify the robustness of our approach, we con-
duct experiments on 8 large-scale video benchmarks as
shown in Figure 1, including scene-related datasets (i.e.,
Kinetics-400/600/700 [32, 9, 10], a heterogeneous dataset
that contains complex inter-class and inter-class variation
(i.e., Moments in Time [44]), temporal-related datasets
(i.e., Something-Something V1/V2 [22]), and untrimmed
datasets (i.e., ActivityNet [25] and HACS [78]). Our Uni-
FormerV2 based on CLIP-ViT [50] achieves state-of-the-art
results on all the benchmarks. It is worth mentioning that
our model is the first to elicit a top-1 accuracy of 90.0% on
Kinetics-400, to the best of our knowledge.

2. Related Works

Vision Transformer. Following the groundbreaking suc-
cess of Transformer in NLP [60, 16], Vision Transformer
(ViT) [18] has shown great promise in a variety of visual
tasks, including object detection [7, 81], semantic segmen-
tation [70, 13], low-level image processing [38, 15], ac-
tion recognition [4, 1, 72], temporal localization [76, 61]
and multi-modality learning [50, 64]. To further enhance
the efficiency and effectiveness of ViT, researchers have
explored various methods for modeling locality, including
multi-scale architectures [65, 19], local window [41], early
convolution embedding [69, 74] and convolutional position
encoding [14, 17]. Alternatively, UniFormer [35] unifies
convolution and self-attention as relation aggregator in a
transformer manner, thus reducing large local redundancy.
Video Learning. 3D Convolutional Neural Networks
(CNNs) once played a dominant role in video understand-
ing [57, 11]. However, the optimization of 3D CNNs
can be problematic, hence great efforts have been made to
factorize 3D convolution in the spatiotemporal dimension
[59, 49, 21] or channel dimension [58, 20, 33]. Other ad-
vanced methods propose plug-and-play modules to enhance
the temporal modeling capability of 2D CNNs [39, 31, 36,
34, 62]. However, due to the restricted local receptive field,
CNNs are apt to miss long-range dependencies. The suc-
cess of global attention [18] motivates researchers to adapt
image ViTs for video tasks [4, 45, 77, 1, 6, 48]. To make
the video transformer more efficient, prior works introduce
hierarchical structure with pooling self-attention [19], local
self-attention [42] or unified attention [35]. Though these
novel models are adept at temporal modeling, they rely
on tiresome image pretraining. In contrast, various well-
pretrained ViTs with rich supervision are open-sourced
[66, 3, 50]. In this paper, we aim to extend efficient Uni-
Former designs to ViT, arming it as a strong video learner.
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3. Method
3.1. Revisit UniFormer

UniFormer [35] is originally proposed for efficient video
understanding. It unifies convolution and self-attention as
Multi-Head Relation Aggregator (MHRA) in a transformer
format as shown in the bottom-left in Figure 2, along with
Dynamic Position Embedding (DPE) and Feed-Forward
Network (FFN). Specifically, the DPE is instantiated as
3×3×3 depth-wise spatiotemporal convolution to integrate
3D position information. And the FFN includes two linear
layers for pointwise enhancement. Similar with Multi-Head
Self-Attention (MHSA) [60], the MHRA learns token rela-
tion via multi-head fusion:

Rn(X) = AnVn(X), (1)
MHRA(X) = Concat(R1(X); · · · ; RN (X))U, (2)

where Rn(·) refers to the relation aggregator in the n-th
head. An is an affinity matrix that describes token rela-
tion and Vn(·) is a linear projection, while U ∈ RC×C is
a learnable fusion matrix. The crucial MHRA flexibly ap-
plies local and global spatiotemporal token affinity in the
shallow and deep layers, respectively, tackling both video
local redundancy and global dependency.

However, like other specialized video backbones [19, 37,
42], UniFormer is difficult to scale up due to the necessity
of costly image pretraining. Considering the emergence of
powerful image ViTs [66, 3, 50], it is preferable to arm those
well-prepared models for video understanding.

3.2. Overall Framework of UniFormerV2

To fully utilize the exceptional pretraining capabilities
of the image ViTs, it is imperative to retain the spatial
modeling while significantly improving temporal modeling.
Hence, we have redesigned UniFormer into efficient plug-
and-play modules to make ViT a robust video learner. We
call the resulting model UniFormerV2 in Figure 2.

Firstly, we apply 3D convolution (i.e., 3×16×16) to
project the input video as L spatiotemporal tokens Xin ∈
RL×C , where L corresponds to the product of time, height,
and width (T , H , and W , respectively) of the input video.
Following the original ViT design [18], we perform spatial
downsampling by a factor of 16. Additionally, to enhance
temporal modeling, temporal downsampling is performed
by a factor of 2. Next, we construct both local and global
UniBlocks. Our local UniBlock leverages the spatial rep-
resentation of ViT while efficiently reducing local temporal
redundancy by inserting a local temporal MHRA before the
image-pretrained ViT block. To capture full spatiotempo-
ral dependency, we introduce a global UniBlock on top of
each local UniBlock. Additionally, for computational effi-
ciency, we design a query-based cross MHRA to aggregate

all the spatiotemporal tokens as a global video token. Fi-
nally, all tokens with different-level global semantics from
multiple stages are fused together to form a discriminative
video representation.

3.3. Local UniBlock

To efficiently model temporal dependency upon the well-
learned spatial representation, we insert the novel local tem-
poral MHRA before the standard ViT block,

XT = LT MHRA
(
Norm

(
Xin

))
+Xin, (3)

XS = GS MHRA
(
Norm

(
XT

))
+XT , (4)

XL = FFN
(
Norm

(
XS

))
+XS . (5)

LT MHRA and GS MHRA refer to MHRA with lo-
cal temporal affinity and global spatial affinity respectively.
FFN consists of two linear projections separated by GeLU
[26]. Additionally, following the normalization in Uni-
Former [35], we adopt Batch Norm (BN) [28] before local
MHRA, and Layer Norm (LN) [2] before global MHRA
and FFN. Note that GS MHRA and FFN come from the
image-pretrained ViT block. Driven by the architectural in-
sight of UniFormer, we incorporate LT MHRA to mitigate
local temporal redundancy effectively. Hence, the affinity
in LT MHRA is local with a learnable parameter matrix
an ∈ Rt×1×1 in the temporal tube t× 1× 1,

ALT
n (Xi,Xj) = ai−j

n , where j ∈ Ωt×1×1
i . (6)

This allows to efficiently learn the local temporal relation
between one token Xi and other tokens Xj in the tube. Al-
ternatively, GS MHRA belongs to the original ViT block.
Therefore, the affinity in GS MHRA refers to a global spa-
tial self-attention in the single frame 1×H ×W ,

AGS
n (Xi,Xj) =

exp{Qn(Xi)
TKn(Xj)}∑

j′∈Ω1×H×W
exp{Qn(Xi)TKn(Xj′)}

,

(7)

where Qn(·) and Kn(·) ∈ RL× C
N are different linear pro-

jections in the n-th head.
Comparison to UniFormer: In the UniFormer [35],

the local token affinity is jointly spatiotemporal, i.e.,
Alocal

n (Xi,Xj)=ai−j
n , where j belongs to a 3D tube

Ωt×h×w
i . And the parameter matrix has to learn from

scratch, which inevitably increases the training cost. In con-
trast, the spatiotemporal affinity in our local UniBlock is de-
composed as local temporal one ALT

n in Eq. (6), and global
spatial one AGS

n in Eq. (7). In this case, we can not only
leverage the efficient video processing design of UniFormer
but also inherit the effective image pretraining of ViT.

Comparison to ST-Adapter: ST-Adapter [47] is moti-
vated by Adapter [27], thus it simply treats temporal depth-
wise convolution as adaptation and introduces an extra ac-
tivation function. In contrast, inspired by UniFormer [35],
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Figure 2: Overall framework of UniFormerV2. There are three key blocks, i.e., local and global UniBlocks, and multi-
stage fusion block. All these designs are efficient and effective. Detailed explanations can be found in Section 3.

we treat temporal depth-wise convolution as a local tempo-
ral relation aggregator, thus introducing extra BatchNorm
[28] before the first linear projection V(·) without any acti-
vation function. As evidenced by Table 2, our local MHRA
outperforms ST-Adapter (69.1% vs. 68.0%).

3.4. Global UniBlock

To explicitly conduct long-range dependency modeling
on the spatiotemporal scale, we present the global UniBlock
as follows,

XC = DPE
(
XL

)
+XL, (8)

XST = C MHRA
(
Norm (q) ,Norm

(
XC

))
, (9)

XG = FFN
(
Norm

(
XST

))
+XST . (10)

Following UniFormer [35], we apply DPE to dynamically
integrate 3D position information. Moreover, we redesign
the global C MHRA in a cross-attention style to efficiently
construct a video representation,

RC
n (q,X) = AC

n (q,X)Vn(X), (11)

C MHRA(q,X) = Concat(RC
1 (q,X); · · · ; RC

N (q,X))U.
(12)

RC
n (q, ·) is the cross relation aggregator, which can con-

vert a learnable query q ∈ R1×C into a video representa-
tion, via modeling dependency between q and all the spa-
tiotemporal tokens X. First, it computes the cross affinity
matrix AC

n (q,X) to learn relation between q and X,

AC
n (q,Xj) =

exp{Qn(q)
TKn(Xj)}∑

j′∈ΩT×H×W
exp{Qn(q)TKn(Xj′)}

.

(13)

Then, it uses the linear projection to transform X as spa-
tiotemporal context Vn(X). Subsequently, it aggregates
such context Vn(X) into the learnable query, with guidance
of their affinity AC

n (q,X). Finally, the enhanced query to-
kens from all the heads are further fused as a final video
representation, by linear projection U ∈ RC×C . Note the
query token is zero-initialized for stable training.

Comparison to UniFormer: The global spatiotempo-
ral MHRA present in UniFormer [35] is computationally
heavy due to the quadratic complexity it entails. In con-
trast, our global MHRA in cross-attention style significantly
reducing the computation complexity from O(L2) to O(L),
where L is the number of tokens. More importantly, through
the learnable query q, our global MHRA can adaptively in-
corporate spatiotemporal context from all L tokens to en-
hance video recognition. Furthermore, we add the global
UniBlock on top of the local UniBlock, extracting multi-
scale spatiotemporal representations in token form. This
design helps strengthen the discriminative video represen-
tation without compromising the pretrained architecture.

Comparison to DETR style: The methods inspired
by DETR [7, 29] incorporate self-attention, cross-attention,
and FFN. And they employ multiple queries with identical
keys and values in cross-attention. On the other hand, our
global block introduces DPE without self-attention. Mean-
while, only one query interacts with keys and values from
distinct layers in our cross-attention.

3.5. Multi-Stage Fusion Block

We propose a multi-stage fusion block to integrate all
video tokens from each global block as in Figure 3. For sim-
plicity, we denote the i-th global block as XG

i =Gi(qi,X
L
i ).

Given the tokens XL
i from the local UniBlock, the global
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Figure 3: Multi-Stage Fusion Block.

block transforms the learnable query q into a video token
XG

i . In this paper, we explore four fusion strategies to inte-
grate the video tokens from all the global blocks {XG

i }Ni=1

into a final video representation F, and employ the sequen-
tial way to conduct fusion regarding efficacy and efficiency.

(a) Sequential: We sequentially use the video token
from the previous global block XG

i−1 as the query token in
the current global block qi, where XG

i =Gi(X
G
i−1,X

L
i ).

(b) Parallel: We concatenate all the tokens {XG
i }Ni=1 in

parallel, and use a linear projection UF∈RN×C to obtain
the final token, where F=Concat(XG

1 , ...,X
G
N )UF .

(c) Hierarchical KV: We use the video token from the
previous global block XG

i−1 as a part of contextual tokens in
the current global block, where XG

i =Gi(qi, [X
G
i−1,X

L
i ]).

(d) Hierarchical Q: We use the video token from the
previous global block XG

i−1 as a part of query tokens in the
current global block, i.e., XG

i =Gi([X
G
i−1,qi],X

L
i ).

Finally, we extract the class token FC from the final lo-
cal UniBlock, and add it with the video token F by weighted
sum, i.e., Z=αF+(1−α)FC , where α is a learnable param-
eter processed by the Sigmoid function.

4. Experiments

Datasets. To evaluate the learning capability of our
UniFormerV2, we conduct experiments on 8 popular video

Global Local T-Down GFLOPs K400 SSV2
✗ ✗ ✗ 141 83.1 45.1
✓ ✗ ✗ 148 84.4 63.3
✗ ✓ ✗ 170 83.6 67.7
✓ ✓ ✗ 186 84.4 68.7
✓ ✓ ✓ 187 84.4 69.5

Table 1: Different components. The global block is crucial
for scene-related benchmarks, while the local one is critical
for temporal-related benchmarks.

benchmarks, including the trimmed videos less than 10 sec-
onds, and the untrimmed videos more than 1 min. The
trimmed video benchmarks include: (a) Scene-related Ki-
netics, i.e., Kinetics-400, 600 and 700; (b) Heterogeneous
Moments in Time V1 [44]; (c) Temporal-related Something-
Something V1/V2 [22]. For the untrimmed video recog-
nition, we choose ActivityNet [25] and HACS [78]. More
dataset details can be found in supplemental materials.

Kinetics-710 for Post-Pretraining We propose a uni-
fied video benchmark for post-pretraining UniFormerV2.
Different from [72] that exploits a web-scale video dataset
(i.e., 60M video-text pairs), we build a much smaller video
benchmark based on the Kinetics-400/600/700. Concretely,
we merge the training set of these Kinetics datasets, and
then delete the repeated videos based on Youtube IDs. Note
that we have removed testing videos from different Kinetics
datasets leaked in our combined training set for correctness.
As a result, the total number of training videos is reduced
from 1.14M to 0.66M. Additionally, we merge the action
categories in these three datasets, which leads to 710 classes
in total. Hence, we call this video benchmark Kinetics-
710. In our experiments, we demonstrate the effectiveness
of Kinetics-710. For post-pretraining, we simply use 8 in-
put frames and adopt the same hyperparameters as training
on the individual Kinetics dataset. After that, no matter how
many frames are input (16, 32, or even 64), we only need
5-epoch finetuning for more than 1% top-1 accuracy im-
provement on Kinetics-400/600/700 (see Table 6).

Implement Details. Unless stated otherwise, we follow
most of the training recipes in UniFormer [35], and the de-
tailed training hyperparameters can be found in supplemen-
tal materials. We build UniFormerV2 based on ViTs pre-
trained with various supervisions (see Table 5), showing the
generality of our design. For the best result, we adopt CLIP-
ViT [50] as the backbone by default, due to its robust rep-
resentation pretrained by vision-language contrastive learn-
ing. For most datasets, we insert the global UniBlocks in the
last 4 layers of ViT-B/L to perform the multi-stage fusion.
But for Sth-Sth V1/V2, we insert the global UniBlocks in
the last 8/16 layers of ViT-B/L for better temporal model-
ing. The corresponding ablation studies are shown in Table
1, 2, 3. Finally, we adopt sparse sampling [63] with the
resolution of 224 for all the datasets.

1636



Design SSV2
Temporal MHSA [4] 65.2
Temporal Convolution 67.5
ST-Adapter [47] 68.0
Local MHRA 69.1
Local MHRA + DPE 69.1
Local MHRA × 2 69.5

(a) Module design.

Layer Reduction SSV2
1-4 1.5 67.6
1-8 1.5 67.9

1-12 1.5 69.5
1-12 4.0 68.9
1-12 2.0 69.1
1-12 1.0 69.5
(b) Location & Reduction.

Table 2: Local UniBlock. Our local MHRA outperforms
its counterparts and we insert it in all the layers.

Layer DPE K400 SSV2
9-12 ✗ 84.2 68.1
9-12 ✓ 84.4 68.5
5-12 ✓ 84.4 69.5
1-12 ✓ 84.4 69.4

Table 3: Global UniBlock.
Deep layers are crucial for
temporal modeling.

Query Design SSV2
1 Sequential 69.5
4 Sequential 69.1

16 Sequential 68.6
1 Parallel 69.1
1 Hierarchical KV 68.9
1 Hierarchical Q 69.5

Table 4: Fusion block.

Type Method Data K400 SSV2
TimeSformer[4] IN-21K 78.7 59.5

SL ViT IN-21K 81.6 67.5
DeiT III IN-21K 82.7 66.5

CL DINO IN-1K 78.7 65.8
CLIP CLIP-400M 84.4 69.5

MIM MAE IN-1K 78.8 65.1
BeiT IN-22K 82.2 67.7

Table 5: Different pretrained ViTs. Our UniFormerV2
based on different open-source ViTs beats TimeSformer.

4.1. Ablation Studies

To evaluate the effectiveness of UniFormerV2, we in-
vestigate each key structure design. All the models are di-
rectly finetuned from CLIP-ViT-B/16 by default. We utilize
“8×4×3” and “16×1×3” testing strategies for Kinetics and
Something-Something respectively.

Different Components. Table 1 indicates that the
global UniBlock is crucial for the scene-related bench-
mark (e.g., K400), since it can effectively provide holistic
video representation for classification. Alternatively, the lo-
cal UniBlock is critical for the temporal-related benchmark
(e.g., SthSthV2), as it can efficiently describe detailed video
representation. Furthermore, using temporal downsampling
with double input frames (similar FLOPs) enlarges the tem-
poral receptive field, which is also helpful for distinguishing
complex temporal-related actions.

Local UniBlock. To explore the structure of local
UniBlock, we conduct experiments in Table 2. It reveals
that convolution is superior to self-attention for temporal
modeling, and our local MHRA outperforms both methods.
Following ST-Adapter [47], we add another local MHRA
after the spatial MHRA for better performance. To achieve

Pretraining Finetuning Cost K400 K600 K700
None Individual 1.00× 84.4 85.0 75.8
K400+K600+K700 K400+K600+K700 0.98× 85.6 86.0 75.6
K710 K400+K600+K700 0.67× 85.6 86.3 76.1
K710 Individual 0.67× 85.6 86.3 76.3

Table 6: Different training scripts. Our K710 pretraining
saves 33% of costs with consistent improvement.
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Figure 4: Visualization comparisons. The frames are sam-
pled from Kinetics-400 [32] according to different sampling
strategies in different methods.

the best accuracy-FLOPs trade-off, local MHRA is incorpo-
rated in all layers while reducing the channel by 1.5 times.

Global UniBlock and Multi-stage Fusion. Table 3 re-
veals that the features in the deep layers are critical for cap-
turing long-term dependency, while the DPE and the middle
information are necessary for identifying the motion differ-
ence. Furthermore, Table 4 shows that the simplest sequen-
tial fusion is adequate for integrating multi-stage features.

Pretraining Sources. To demonstrate the generality of
our UniFormerV2 design, we apply it to the ViTs with
various pertaining methods, including supervised learning
[18, 56], contrastive learning[8, 50] and mask image model-
ing [24, 3]. Table 5 indicates that all the models beat TimeS-
former [4], especially for SthSth V2 which relies on robust
temporal modeling. The findings also suggest that a well-
pretrained ViT enhances video performance.

Training Recipes. We compare different training and
finetuning methods in Table 6. Note that when co-training
with K400, K600 and K700, we remove the leaked videos
in the validation set and introduce three classification heads.
While K710 has only around 58% of the total training
videos (0.66M vs. 1.14M for K400+K600+K700), it sig-
nificantly enhances performances on Kinetics. Moreover, it
decreases training costs by about 33%. Furthermore, direct
training on K710 proves to be more effective than Kinet-
ics co-training, especially for K600 (+1.3% vs. +1.0%) and
K700 (+0.5 vs. -0.2%). Though co-finetuning shared the
backbone and saved parameters, we individually fine-tune
each dataset for better performance.

Visualization. In Figure 4, we compared UniFormerV2
with TimeSformer [4] and UniFormerV1 [35]. We use
CAM [80] to show the most discriminative features that the

1637



Method Backbone Pretraining Data Frame× Param FLOPs K400
Crop×Clip (M) (T) Top-1 Top-5

Specialized backbone with supervised pretraining.
MViTv1-B [19] MViTv1-B 64×3×3 37 4.1 81.2 95.1
UniFormerV1-B [35] UniFormer-B IN-1K 32×3×4 50 3.1 83.0 95.4
VideoSwin-L Swin-L IN-21K 32×3×4 197 7.2 83.1 95.9
MViTv2-L 312↑ [37] MViTv2-L IN-21K 40×3×5 218 42.4 86.1 97.0
Vanilla ViT with self-supervised pretraining for 1600 epochs.
VideoMAE-B [54] ViT-B 16×3×5 87 2.7 81.5 95.1
VideoMAE-L [54] ViT-L 16×3×5 305 9.0 85.2 96.8
VideoMAE-L 320↑ [54] ViT-L 32×3×4 305 47.5 86.1 97.3
Well-prepared ViT with plug-and-play modules. Those models using in-house sources (data or models) are noted in gray.
TimeSformer-L [4] ViT-B IN-21K 96×3×1 121 7.1 80.7 94.7
ST-Adapter-B [47] ViT-B CLIP-400M 8×3×1 102 0.5 82.0 95.7
EVL-B [40] ViT-B CLIP-400M 8×3×1 119 0.4 82.9 -
EVL-L [40] ViT-L CLIP-400M 8×3×1 362 2.0 86.3 -
X-CLIP-B [46] ViT-B CLIP-400M 8×3×4 122 1.7 83.8 96.7
X-CLIP-L [46] ViT-L CLIP-400M 8×3×4 430 7.9 87.1 97.6
X-CLIP-L 336↑ [46] ViT-L CLIP-400M 16×3×4 430 37.0 87.7 97.4
CoCa 576↑ [73] ViT-g JFT-3B+ALIGN-1.8B N/A 1000+ N/A 88.9 -
MTV-H [72] ViT-H+B+S+T IN-21K+WTS-60M 32×3×4 1000+ 44.5 89.1 98.2
UniFormerV2-B ViT-B CLIP-400M 8×3×1 115 0.4 84.0 96.3
UniFormerV2-B ViT-B CLIP-400M 8×3×4 115 1.6 84.4 96.3
UniFormerV2-L ViT-L CLIP-400M 8×3×1 354 2.0 87.3 97.7
UniFormerV2-L ViT-L CLIP-400M 8×3×4 354 8.0 87.7 97.9
UniFormerV2-B ViT-B CLIP-400M+K710-0.66M 8×3×4 115 1.6 85.6 97.0
UniFormerV2-L ViT-L CLIP-400M+K710-0.66M 8×3×4 354 8.0 88.8 98.2
UniFormerV2-L ViT-L CLIP-400M+K710-0.66M 32×3×2 354 16.0 89.3 98.3
UniFormerV2-L 336↑ ViT-L CLIP-400M+K710-0.66M 32×3×2 354 37.6 89.7 98.3
UniFormerV2-L 336↑ ViT-L CLIP-400M+K710-0.66M 64×3×2 354 75.3 90.0 98.4

Table 7: Results on scene-related Kinetics-400. Our UniFormerV2 with public sources outperforms most of the current
methods in terms of accuracy and/or efficiency. And it firstly achieves 90.0% top-1 accuracy on Kinetics-400.

Method Frame× Param FLOPs K600
Crop×Clip (M) (T) Top-1 Top-5

SlowFast101 [21] 80×3×10 60 7.0 81.8 95.1
MoViNet-A5 320↑ [33] 120×1×1 16 0.3 82.7 95.7
MViTv2-L 352↑ [37] 40×3×4 218 45.5 87.9 97.9
X-CLIP-L [75] 16×3×4 430 7.9 88.3 97.7
CoVeR 448↑ [75] 16×3×1 431 17.6 87.9 -
CoCa 576↑ [73] N/A 1000+ N/A 89.4 -
MTV-H [72] 32×3×4 1000+ 44.5 89.6 98.3
UniFormerV2-L 32×3×2 354 16.0 89.5 98.3
UniFormerV2-L 336↑ 32×3×2 354 37.6 89.9 98.5
UniFormerV2-L 336↑ 64×3×2 354 75.3 90.1 98.5

Table 8: Results on scene-related Kinetics-600.

network locates. The red parts indicate where the models
focus more on, while the blue parts are ignored. It reveals
that both UniFormerV1 and UniFormerV2 are good at cap-
turing local details, but UniFormerV1 fails to activate dis-
criminative parts in deeper layers due to the shrinking reso-
lution. In contrast, TimeSformer only learns local features
in the shallow layers, struggling to focus on meaningful ar-
eas. As for UniFormerV2, it surprisingly maintains local
details in the deep layers and learns to focus on the woman’s
leg. These results demonstrate that UniFormerV2 is effec-
tive to capture local details and long-term dependency.

Method Frame× Param FLOPs K700
Crop×Clip (M) (T) Top-1 Top-5

SlowFast101 [21] 80×3×10 60 7.0 71.0 89.6
MoViNet-A5 320↑ [33] 120×1×1 16 0.3 71.7 -
MViTv2-L 312↑ [37] 40×3×3 218 25.5 79.4 94.9
CoVeR 448↑ [75] 16×3×1 431 17.6 79.8 -
MTV-H [72] 32×3×4 1000+ 44.5 82.2 95.7
CoCa 576↑ [73] N/A 1000+ N/A 82.7 -
UniFormerV2-L 32×3×2 354 16.0 81.5 95.7
UniFormerV2-L 336↑ 32×3×2 354 37.6 82.1 96.1
UniFormerV2-L 336↑ 64×3×2 354 75.3 82.7 96.2

Table 9: Results on scene-related Kinetics-700.

4.2. Comparison to state-of-the-art

Kinetics. Table 7 reports the results on scene-related
Kinetics-400. (1) Compared with the advanced MViTv2-
L [37], which is specialized for video and requires pro-
longed image pertaining, our UniFormerV2-L achieves
1.2% higher performance with only 5% FLOPs. (2) Though
VideoMAE [54] demonstrates that the vanilla ViT can be a
strong video learner, it has to train the model from scratch
for 1600 epochs, while our method effectively utilizes well-
prepared ViTs to achieve significant improvement (87.3%
vs. 85.2% with similar FLOPs). (3) The third part lists
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Method Frame× Param FLOPs MiT V1
Crop×Clip (M) (T) Top-1 Top-5

AssembleNet101 [52] N/A 53 0.8 34.3 62.7
MoViNet-A5 320↑ [33] 120×1×1 16 0.3 39.1 -
ViViT-L [1] 32×3×1 612 11.9 38.5 64.2
CoVeR 448↑ [75] 16×3×1 431 17.6 46.1 -
MTV-H [72] 32×3×4 1000+ 44.5 45.6 74.7
UniFormerV2-B 8×3×4 115 1.8 42.7 71.5
UniFormerV2-L 8×3×4 354 8.0 47.0 76.1
UniFormerV2-L 336↑ 8×3×4 354 18.8 47.8 76.9

Table 10: Results on heterogeneous Moments in Time.

Method PT #F Param FLOPs SSV2
Data (M) (T) Top-1 Top-5

Specialized backbone with supervised pretraining.
MViTv1-B [19] K400 32 37 1.4 67.7 90.9
UniFormerV1-B [35] IN-1K+K400 32 50 0.8 71.2 92.8
VideoSwin-B [42] IN-21K+K400 32 89 1.0 69.6 92.7
MViTv2-L 312↑ [37] IN-21K+K400 40 213 8.5 73.3 92.7
Vanilla ViT with self-supervised pretraining for 2400 epochs.
VideoMAE-B [54] 16 87 1.1 70.8 92.4
VideoMAE-L [54] 16 305 3.6 74.3 94.6
Well-prepared ViT with plug-and-play modules.
TimeSformer-L [4] IN-21K 96 121 7.1 62.3 81.0
ViViT-L [1] IN-21K+K400 32 612 11.9 65.4 89.8
Mformer-L [4] IN-21K+K400 32 109 3.6 68.1 91.2
MTV-B [72] IN-21K+K400 32 310 11.2 68.5 90.4
EVL-B [40] CLIP-400M 32 182 2.0 62.4 -
EVL-L [40] CLIP-400M 32 484 9.6 66.7 -
ST-Adapter-B [40] CLIP-400M 32 102 2.0 69.5 92.6
CoVeR 448↑ [75] JFT-3B+KMI 16 431 17.6 70.8 -
UniFormerV2-B CLIP-400M 16 163 0.6 69.5 92.3
UniFormerV2-B CLIP-400M 32 163 1.1 70.7 93.2
UniFormerV2-L CLIP-400M 16 574 2.6 72.1 93.6
UniFormerV2-L CLIP-400M 32 574 5.2 73.0 94.5

Table 11: Results on temporal-related SthSth V2. “#F”
means the frame number. “KMI” means “K400+MiT+IN”.

our counterparts based on image ViTs. Compared with the
popular prompt tuning [47, 40], our method fully unlocks
the potential of pretraining ViTs with remarkable improve-
ment. For example, at similar FLOPs, our UniFormerV2-B
achieves 1.1% and 2.0% higher top-1 accuracy than EVL-
B [40] and ST-Adapter-B [47], respectively. Compared
with X-CLIP-L [46] that utilizes the extra language knowl-
edge, our UniFormerV2-L obtains 0.6% performance gain
(87.7% vs. 87.1%). It is noteworthy that our single model,
which only requires 1% video post-pretraining and 35% pa-
rameters, outperforms MTV-H [72] that uses in-house pre-
training data and model ensemble, achieving a new state-
of-the-art result of 90.0% on Kinetics-400. As for Kinetics-
600 and 700, our model also obtains the state-of-the-art per-
formances (90.1% and 82.7%, see Table 8 and 9).

Moments in Time. Due to complex inter-class and intra-
class variations, MiT is more challenging than Kinetics. As
shown in Table 10, our model beats most of the recent meth-
ods, e.g., compared with ViViT-L [1], UniFormerV2-B ob-

Method Backbone Frame Top-1 Top-5
TSN [63] ResNet-50 16 19.9 47.3
TSM [39] ResNet-50 16 47.2 77.1
TEA [36] ResNet-50 16 51.9 80.3
CT-Net [34] ResNet-50 16 52.5 80.9
TDN [62] ResNet-50 16 53.9 82.1
UniFormerV1-S [35] UniFormer-S 16 57.1 84.9
UniFormerV1-B [35] UniFormer-B 32 61.0 87.6
UniFormerV2-B ViT-B 16 56.8 84.2
UniFormerV2-B ViT-B 32 59.4 86.2
UniFormerV2-L ViT-L 16 60.5 86.5
UniFormerV2-L ViT-L 32 62.7 88.0

Table 12: Results on temporal-related SthSth V1.

Method #F ANet
DSN-R34 [79] 32 82.6
MARL-R152 [67] 32 85.7
NSNet-Swin-L [68] 32 90.2
UniFormerV2-L 16 94.3
UniFormerV2-L 32 94.7

Method #F HACS
CSN-R152 [58] 32 91.5
TimeSformer [4] 8 91.8
ViViT-B [1] 32 91.9
UniFormerV2-L 16 95.5
UniFormerV2-L 32 95.4

Table 13: Results on untrimmed ActivityNet and HACS.
“#F” means the frame number. Top-1 accuracy is reported.

tains 4.2% performance gain but only with 19% model pa-
rameters and 15% FLOPs. Compared with MTV-H [72],
UniFormerV2-L only uses 35% model parameters and 25%
FLOPs to achieve 2.2% top-1 accuracy improvement.

Something-Something. Table 11 presents the results
on temporal-related SthSth V2. It reveals that the exist-
ing state-of-the-art methods are specialized or based on
masked modeling, both of which require expensive pretrain-
ing. In contrast, our method is economically friendly, as it
uses open-source ViTs. UniFormerV2-L achieves compa-
rable performance with the latest MViTv2-L [37] (top-1:
73.0% vs. 74.3%) and VideoMAE-L [54] (top-5: 94.5%
vs. 94.6%). Furthermore, the results demonstrate that pre-
vious plug-and-play methods perform much worse on the
temporal-related task. For example, EVL-L [40] achieves
1.1% higher performance than VideoMAE-L on K400, but
obtains 7.6% lower accuracy on SthSthV2. However, our
method can arms image ViT for strong temporal model-
ing, delivering 6.4% performance gain than EVL with fewer
computation costs on SthSth V2. Additionally, for SthSth
V1 in Table 12, we achieve the new state-of-the-art perfor-
mance (62.7%). These results demonstrate the effective-
ness and efficiency of UniFormerV2 for temporal modeling.

ActivityNet and HACS. For the untrimmed videos, it is
essential to capture long-range temporal information, since
the action may occur multiple times at arbitrary moments.
As shown in Table 13, our UniFormerV2 significantly
outperforms the previous best methods on the large-scale
untrimmed benchmark ActivityNet and HACS by 4.5% and
3.6%, respectively. These results demonstrate the strong
long-term modeling capacity of our method.
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5. Conclusion

In this paper, we serve UniFormer as efficient plug-and-
play modules for image ViTs, enhancing their abilities as
strong video learners. Extensive experiments demonstrate
that our UniFormerV2 can unlock the full potentials of
image ViTs, achieving state-of-the-art performances on 8
large-scale benchmarks. To the best of our knowledge, it is
the first model to reach 90% top-1 accuracy on Kinetics-
400. As the research community becomes increasingly
open, we hope our method will be instrumental in building
powerful yet cost-effective video foundation models.
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