
Unleashing the Potential of Spiking Neural Networks with Dynamic Confidence

Chen Li*

The University of Manchester
Manchester, United Kingdom
chen.li@manchester.ac.uk

Edward G Jones*

The University of Manchester
Manchester, United Kingdom

edward.jones-3@manchester.ac.uk

Steve Furber
The University of Manchester
Manchester, United Kingdom

steve.furber@manchester.ac.uk

Abstract

This paper presents a new methodology to alleviate the
fundamental trade-off between accuracy and latency in
spiking neural networks (SNNs). The approach involves de-
coding confidence information over time from the SNN out-
puts and using it to develop a decision-making agent that
can dynamically determine when to terminate each infer-
ence.

The proposed method, Dynamic Confidence, provides
several significant benefits to SNNs. 1. It can effectively op-
timize latency dynamically at runtime, setting it apart from
many existing low-latency SNN algorithms. Our experi-
ments on CIFAR-10 and ImageNet datasets have demon-
strated an average 40% speedup across eight different set-
tings after applying Dynamic Confidence. 2. The decision-
making agent in Dynamic Confidence is straightforward to
construct and highly robust in parameter space, making it
extremely easy to implement. 3. The proposed method en-
ables visualizing the potential of any given SNN, which sets
a target for current SNNs to approach. For instance, if an
SNN can terminate at the most appropriate time point for
each input sample, a ResNet-50 SNN can achieve an accu-
racy as high as 82.47% on ImageNet within just 4.71 time
steps on average. Unlocking the potential of SNNs needs
a highly-reliable decision-making agent to be constructed
and fed with a high-quality estimation of ground truth. In
this regard, Dynamic Confidence represents a meaning-
ful step toward realizing the potential of SNNs. Code is
available1.

*These authors contributed equally to this work.
1https://github.com/chenlicodebank/

Dynamic-Confidence-in-Spiking-Neural-Networks

Figure 1. The upper-bound performance of SNNs when fully uti-
lizing dynamic strategies at runtime, as shown by the red curves
in a. ResNet18 on CIFAR-10 and b. ResNet-50 on ImageNet.
The black curves represent baseline SNN performance without
dynamic strategies. Additional figures with other settings can be
found in the Supplementary Material. c. The diagram of the pro-
posed Dynamic Confidence, which can be implemented on-the-fly.

1. Introduction

Deep artificial neural networks (ANNs) have achieved
remarkable success in computer vision tasks [24, 37, 30].
These improvements have been accompanied by ever-
growing model complexity and neural network depth.
Though the classification accuracy has improved dramati-
cally, the latency and energy cost have also increased, which
poses a challenge for real-world AI applications on edge de-
vices, such as mobile phones, smartwatches, and IoT hard-
ware.

Deep spiking neural networks (SNNs) are promising to
offer power and latency advantages over counterpart deep
artificial neural networks during inference. However, when

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

13350



their power (e.g. averaged spike counts per inference) or
latency (e.g. averaged inference time steps per inference)
are strictly constrained, SNNs suffer huge accuracy degra-
dation. In recent years, much scholarly attention has been
paid to the conflict between accuracy and latency in SNNs,
growing the field of low-latency SNNs (also known as fast
SNNs). The primary goal of fast SNN research is achiev-
ing equivalent or slightly-lower accuracy than the baseline
ANN accuracy with as few inference time steps as possi-
ble. With the reduction in the number of inference time
steps, the spike counts required for each inference can po-
tentially be reduced as well, if the firing rates can be kept
the same when latency decreases. In hardware that can take
scale power with spike processing operations, this research
on low-latency SNNs can contribute to reducing the power
requirements of SNNs.

In this paper, we detail a runtime optimization method
called Dynamic Confidence and show that it can effec-
tively reduce the inference latency in low-latency SNNs on
CIFAR-10 and ImageNet, without the need to sacrifice ac-
curacy or to increase firing rates. Our paper has several new
contributions:

• We propose a method (Dynamic Confidence) to de-
code a temporal series of confidence values from the
inference results of an SNN, and utilize this confidence
information to dynamically guide inference. It is the
first study to formulate confidence in SNNs and in-
troduce the formal concept of dynamic strategies to
SNNs.

• Dynamic Confidence can further reduce the inference
latency by 40% on average on the state-of-the-art low-
latency SNNs (QFFS[26] and QCFS[3]) on CIFAR-10
and ImageNet. By reducing the inference latency and
maintaining the same firing rates, the power consump-
tion of SNN inference is reduced consequently.

• We provide a method to calculate the upper-bound per-
formance that an SNN can achieve when applying dy-
namic strategies at runtime. Our findings shed light
on the vast untapped potential within current SNNs,
providing valuable insights to answer the fundamental
question of why to use SNNs instead of ANNs.

• Dynamic Confidence is a lightweight, parameter-
insensitive, on-the-fly method. These features make
Dynamic Confidence extremely easy to be applied on
a variety of low-latency SNN algorithms whenever fur-
ther latency and power reductions are desirable.

2. Motivation
• A main research method adopted in current SNN

studies is improving SNNs by leveraging knowledge

from ANNs. Some successful examples of this in-
clude, but are not limited to, straight-through estima-
tors [32], quantization [26], Backpropagation through
time (BPTT) [2], network architectures [28], neural ar-
chitecture search [22], and neural network simulation
tools [39]. The primary concern during this process
is how to make ANN knowledge applicable to SNNs,
which usually requires additional optimization of spike
dynamics in SNNs to ensure smooth knowledge trans-
fer. The study presented in this paper also follows this
research method. Specifically, this study is intended to
explore whether confidence, a key concept in Bayesian
neural networks and interpretable AI can be applied to
SNNs to help reduce inference latency as well as in-
ference power. We discovered that the temporal di-
mension of SNNs provides richer information in con-
fidence compared to ANNs. This paper exemplifies a
simple way to leverage the information in SNN confi-
dence to further boost the performance of SNNs.

• Dynamic strategies have received considerable critical
attention in ANNs due to their effectiveness in bring-
ing considerable speedup and computational savings
without degrading prediction accuracy [40]. In con-
trast, there is not any research studying the applica-
tion of dynamic strategies to SNNs and the evalua-
tion of possible speed and power gains on nontrivial
datasets such as CIFAR-10 and ImageNet. This paper
seeks to address an existing gap by sharing the prelim-
inary findings of implementing a dynamic strategy in
SNNs. Different from other dynamic strategy research
in ANNs, we found in this paper that spikes make it
convenient to apply a dynamic strategy explicitly in
the dimension of precision. This task has been notably
challenging in existing ANN dynamic strategy litera-
ture.

• Information is in the central position in SNN research.
For example, a primary concern in directly-trained
SNNs is whether better spatial-temporal information
representation and computing can be achieved by sur-
rogate gradients. This paper also emphasizes the sig-
nificance of the information, but from a different per-
spective. Instead of seeking more spatial-temporal in-
formation by replacing ANN-to-SNN conversion with
spatial-temporal training by surrogate gradients, we
stick to using ANN-to-SNN conversion but try to seek
if any information in the SNN output is missed by
other research and has not been fully exploited. Our
results show that confidence in SNN outputs contains
valuable information and can be leveraged to improve
SNN performance on latency and power.

13351



3. Related Work
Spiking Neural Networks (SNNs). Spiking neural net-
works (SNNs) are biologically-inspired models that have
time-evolving states, unlike artificial neural networks
(ANNs) [31, 25, 9, 11]. SNNs use spikes, binary pulses
that model action potentials in biology, to transmit infor-
mation between neurons. Because data processing in SNNs
need only take place when spikes are received, SNNs can
be implemented in an event-based manner and can bene-
fit from improved power efficiency over ANNs, especially
when sparsity can be exploited in hardware [21, 5, 20].

The potential for increased efficiency and biological
plausibility that SNNs promise has led to ANN-to-SNN
conversion being an active area of research. Converting
ANN activations to spike rates in SNNs has proven pos-
sible [8] with marginal loss in accuracy when data-based
normalisation techniques are applied [38]. The significant
downsides to these kinds of rate-coding approaches are that
they require long integration times, which can impact the
potential latency benefits of SNNs.
Low-latency SNNs (fast SNNs). SNN latency optimiza-
tions have received increasing scholarly attention in recent
years [36, 7, 3, 26, 10], and they can be coarsely divided
to two categories: methods based on ANN-to-SNN conver-
sion, and methods based on surrogate gradients. This re-
search falls into the first category. Deng and Gu combine
threshold balancing and soft-reset to correct conversion er-
rors and show a significant reduction in the number of SNN
simulation time steps needed [7]. The QCFS method [3]
uses a quantized activation function to achieve ultra-low la-
tency in SNNs. The QFFS method [26] proposes to reduce
accuracy loss in low-latency SNNs by compressing infor-
mation and suppressing noise.
Dynamic Strategies. Dynamic strategies [40, 19, 4, 13,
1, 18, 29], also known as dynamic networks, are network
optimization algorithms that are input-dependent and can
dynamically decide which part of the network to execute
at runtime on a per-input basis. The basic assumption in a
dynamic strategy is that in real-world applications, exam-
ples are not equal for a given network model. Novel ex-
amples require the full model capacity to generate a reliable
inference result, while simple examples can be solved confi-
dently with fewer computing resources. Dynamic strategies
optimize the inference of an ANN by taking both the model
and input examples into considerations, and are promising
for achieving fast and energy-efficient edge computing.

Compared to these studies on dynamic strategies, our
method does not require any modifications to the internal
structure of standard models or the addition of heavy aux-
iliary sub-networks as a dynamic controller to generate in-
structions. Instead, the proposed Dynamic Confidence can
simply be calculated based on the neural network output
during inference, bringing lower overhead and higher porta-

bility than other dynamic strategies. Also, most of the ex-
isting dynamic strategy research optimizes the number of
channels and layers, while our method implicitly optimizes
the activation precision, thanks to the event-based nature of
SNNs. A visualization illustrating the dimensions of dy-
namic strategies can be found in the Supplementary Mate-
rial.

4. SNN preliminaries
The detailed equations that describing spiking neuronal

dynamics and ANN-to-SNN conversion are provided in the
Supplementary Material. The following sections focus on
introducing the main ideas of the proposed method in a
comprehensive manner.

5. Approach
The goal of our method is to allocate computing re-

sources (specifically, inference latency) dynamically for
each inference by using a confidence metric determined by
model output. By this way, the time steps required for each
inference are heterogeneous, and the averaged time steps
per inference can potentially be reduced compared to using
homogeneous time steps for all inferences. The dynamic
resource allocation mentioned above can be modeled as a
decision-making agent with two main points to consider:

1. The decisions made regarding the allocation of com-
puting resources to the model needs to facilitate fast
and efficient inference while maintaining a model ac-
curacy that is as high as possible. In other words, there
is a minimal trade-off of accuracy for decreased la-
tency.

2. The decision-making mechanism itself needs to be
lightweight and intelligible so as not to add unneces-
sary overhead and complexity to the model and to en-
able it to allow users to balance accuracy against la-
tency.

In our approach, we calculate the confidence associated
with network output at runtime and use this confidence in-
formation to decide when to end inference in advance to get
lower average latency per example without accuracy degra-
dation. A confidence threshold is adopted to balance ac-
curacy and latency. Section 5.1 describes the preliminary
confidence concept, the quality of confidence, and confi-
dence calibration. Section 5.2 explains the difference be-
tween confidence in SNNs and ANNs, highlights the chal-
lenges that must be addressed before utilizing confidence
in SNNs, and presents our proposed solution. Section 5.3
presents how to construct a decision-making agent and ex-
emplifies to use a Pareto Front to compute its threshold,
which can be done with minimal cost.

13352



Figure 2. The trend of the averaged Ŷt = Y and the averaged
P̂t over time t on the test set of CIFAR-10. a. P̂t saturates to
100% quickly with time. b.. After introducing a scalar regulation
parameter α, P̂t is softened.

5.1. Confidence

In multi-class classification problems, for a given input
example X , a label Y , and an artificial neural network f(·),
the outputs are f(X) = (Ŷ , P̂ ). Ŷ is the predicted out-
put label and P̂ ∈ [0, 1] is the confidence of this prediction.
Confidence P̂ is an estimate of the ground truth inference
correctness likelihood P (Ŷ = Y ), and it is usually calcu-
lated by Softmax in the multi-class classification problems
discussed above. In some application scenarios where the
safety and trustworthiness of the neural network models are
central, such as medical diagnosis and autonomous driving,
the confidence of the prediction is as crucial as its accuracy.
The confidence can also be used to understand the inter-
pretability and explainability of the neural network and can
interact with other probabilistic models such as Bayesian
neural networks.

Recognising the significance of P̂ , there is a growing
body of literature that delivers calibration algorithms to im-
prove the reliability of P̂ [33]. Note that calibration can
only improve the quality of confidence; a perfectly cali-
brated model is impossible to achieve. Our approach ap-
plies temperature scaling [15], a post-training calibration
algorithm, to guarantee P̂ to be of high quality and to keep
the overhead of calibration low.

5.2. Dynamic Confidence in Spiking Neural Net-
works

After conducting ANN-to-SNN conversion, an ANN
model f(·) will be converted into an SNN model fs(·). Un-
like a non-spiking neural network that only generates a sin-
gle pair (Ŷ , P̂ ), a spiking neural network fs(·) with inputs
Xt will generate a series of outputs (Ŷt, P̂t) during infer-
ence, where t ∈ T = {1, . . . , T} represents a time step
during SNN inference. One feature of SNNs is that their
prediction accuracy in the test set will increase with more
time steps [36]. This feature is associated with the event-
based computing nature of SNNs: in each time step, only a
fraction of the information is represented by spikes and pro-
cessed by spiking neurons in an event-based manner; with
more time steps, more information is accumulated and more

reliable decision can be made. This well-known SNN fea-
ture means that: Ŷt2 = Y is more likely to happen than
Ŷt1 = Y when t2 > t1. Here, we go one more step fur-
ther and state that: If P̂t is a good estimate of Ŷt = Y ,
P̂t2 should also be more likely to be higher than P̂t1 when
t2 > t1.

To further clarify these, we plot the trend of Ŷt = Y
and P̂t over time t in Figure 2.a., averaged on 10,000
test samples in CIFAR-10. The blue curve (the averaged
Ŷt = Y ) actually corresponds to the traditional accuracy-
vs-latency response curve in SNNs [36]. The orange curve
(the averaged P̂t) is an estimate of the correctness likelihood
P (Ŷt = Y ), averaged on 10,000 test samples. We can see
that both these curves show a monotonic increase with time
t with minor fluctuations, which is in line with the state-
ments above. The same trend of these two curves suggests
that P̂t is a good estimator of Ŷt = Y : A low confidence
value P̂t indicates a low likelihood of correctness Ŷt = Y ,
and vice versa. Note that during SNNs inference, Ŷt = Y
is unknown because it needs to access the ground truth Y .
However, this ground truth information can be implicitly
fetched by estimating it by the confidence information P̂t.
This provides a huge opportunity on optimizing SNNs by
utilizing confidence.

One obstacle must be overcome before optimizing SNNs
with confidence. As shown in Figure 2.a., the orange curve
saturates to 100% quickly with time t. In other words, an
overconfident averaged P̂t is produced after only a few time
steps, after which there is little room for further improve-
ment. We call this problem confidence saturation. Confi-
dence saturation has a detrimental effect on our proposed
method, as we want the P̂t to act as a high-quality estimate
of Ŷt = Y . A saturated P̂t can no longer provide a good
estimate of Ŷt = Y since the saturated confidence is too
trivial to distinguish from each other. The saturated confi-
dence will also make the decision-making agent we are con-
structing later more sensitive to its parameter, which will be
discussed in the following sections.

The confidence saturation problem is caused by the for-
mat of the SNN outputs. The outputs of a rate-coded
SNN are accumulated spikes [26] or, in some cases that
need higher output precision, the membrane potential of
integrate-but-not-fire neurons [27, 3]. In both situations,
the output logits of SNNs fs(Xt) increase with t contin-
uously, which causes the saturated confidence P̂t after ap-
plying Softmax to the SNN outputs. To prevent saturated
confidence we introduce a scalar regulation parameter α to
restrict the scale of the output logits in the SNNs, and cal-
culate confidence according to

P̂t = max(
ez

i
t/α∑K

j=1 e
zj
t/α

) for i = 1, 2, . . . ,K. (1)

13353



zt is the output logits of the SNN, that is

zt = fs(Xt) (2)

α serves to regulate the SNN’s confidence level, ensuring
it does not become overly saturated P̂t ≍ 1 before the end
of the SNN simulation at time T . While various alpha val-
ues can fulfill this purpose, our selected alpha is intended
to align the SNN’s confidence value at T with that of the
ANN. This alignment guarantees a one-to-one match be-
tween the ANN and SNN models, allowing tools designed
for ANN confidence to be applied to SNNs. With this con-
sideration, α is set as 2b − 1 when SNNs are built by QFFS
[26], where b is the bit precision in all hidden layers. How-
ever, when SNNs are built by QCFS [3], deriving an ex-
act alpha value becomes challenging because of the lack of
existing research that can accurately estimate the effect of
occasional noise [26] (also called unevenness error [3]) on
SNN output without accessing ground truth. The empiri-
cal solution we propose sets alpha to the same value as the
number of simulation time steps T when using QCFS. We
plot the averaged P̂t after applying scaling factor α in Fig-
ure 2.b. It can be seen from this figure that after scaling the
average P̂t is softened.

5.3. Optimizing Latency by Pareto Front

5.3.1 Optimization Targets

Before conducting any optimization, we first clarify the tar-
gets of SNN latency optimization research. Certainly, the
primary target of this type of research is achieving low la-
tency in an SNN. On the other hand, we do not wish this
low-latency SNN to have a low accuracy or to even be non-
functional, which means that high accuracy should be con-
sidered as one of the optimization objectives as well. Hence,
the goals of SNN latency optimization research should be
at least twofold: achieving low latency and maintaining
high accuracy. This is a typical multi-objective optimiza-
tion problem, which allows a Pareto Front to be used to find
efficient solutions.

5.3.2 Proposed Method and Upper Bound

In our proposed method, we dynamically optimize SNN la-
tency based on the estimated correctness likelihood P̂t for
each example, while trying to ensure that Ŷt = Y . To ac-
complish this goal, we develop a simple decision-making
agent that determines the optimal time step for terminating
inference on a given sample. At runtime, a decision-making
agent is placed at the output layer and it compares whether
the estimated correctness likelihood P̂t is higher than a con-
fidence threshold thc. If it is, a decision to terminate SNN
inference will be made. For example, if thc = 0.6 and
P̂t = [0.1, 0.3, 0.5, 0.7, 0.9] at the first 5 time steps for a

Figure 3. The Pareto Front of ResNet-18 on CIFAR-10 as well as
the baseline performance (without a dynamic strategy) and the op-
timal solution (Assuming the ground truth is accessible). Note that
unlike the general form of Pareto Front, SNNs have a temporal di-
mension so their outputs are curves instead of points. The different
settings of thc have different accuracy-vs-latency response curves.

given example, the SNN will be terminated in advance at
the fourth time step as P̂4 = 0.7, higher than thc = 0.6.
Different examples will have different termination times.

The optimal performance that can be achieved by our
proposed dynamic strategy can be calculated in the follow-
ing way: Firstly, assuming the ground truth label Y is ac-
cessible during inference. In Dynamic Confidence, this cor-
responds to the assumption that our formulated confidence
P̂t is highly reliable and is a perfect estimate of Ŷt = Y .
Secondly, the SNN inference will always be terminated for
a given example at t as soon as Ŷt = Y . This scenario repre-
sents the perfect capture of the correct termination time by
the constructed decision-making agent. This upper-bound
performance fully exploits dynamic strategies at runtime
and represents the best possible performance that a given
SNN can achieve.

We compared this upper-bound performance to the base-
line performance on CIFAR-10 and ImageNet as displayed
in Figure 1. On CIFAR-10, the optimal solution achieved
95.1% accuracy in 1.28 time steps and 96.7% accuracy in
1.43 time steps, which is substantially better than the base-
line that took 4 time steps to achieve 94.11% accuracy. On
ImageNet, the baseline performance was 72.68% accuracy
in 14 time steps, and it only surpassed 70% accuracy in
4 time steps. In contrast, the optimal performance achieved
82.47% accuracy in only 4.71 time steps. This significant
performance gap suggests that there is potential for further
improvements in SNNs by enabling runtime optimization.

13354



5.3.3 Calculating thc by Pareto Front

The value of the confidence threshold thc is crucial for the
final inference performance. Intuitively, a high thc is a con-
servative dynamic strategy. It makes P̂t > thc happen less
frequently and fewer examples will terminate early, limiting
the latency improvements. In contrast, a low thc is a radi-
cal dynamic strategy, and making it easy for P̂t to surpass
thc and more examples will terminate early even though
their output confidence P̂t is low, bringing low latency but
large accuracy drops. In other words, the selection of thc re-
flects the fundamental latency-accuracy trade-off in SNNs.
To compute the precise confidence threshold thc, we pro-
pose using a low-cost Pareto Front method.

The optimization problem we are solving is essentially
finding a series of thc values that achieve the highest accu-
racy for each latency. Computing a Pareto Front requires
the search space to be finite, but there are infinitely many
choices of thc in [0, 1]. To address this, we use a searching
resolution of 0.1 to discretize the search space of thc, which
is sufficient to get an appropriate thc that significantly re-
duces SNN inference time according to our experimental
results. This suggests that our developed decision-making
agent is highly robust to its parameter thc. After discretiz-
ing the search space, there are only 11 settings of thc. Then
we draw the accuracy-vs-latency curve of fs(·) with these
11 thc in Figure 3 (The setting of thc = 0 is the same as
thc = 0.1 on CIFAR-10 and they are both terminated at the
first time step with a very low accuracy of 78.76%, and the
setting of thc = 1 is equivalent to the baseline that does not
apply any dynamic strategy. Thus, we only show 8 candi-
date solutions in this figure.), by which a series of Pareto
efficient choices of thc can be obtained. Then a thc which
can give the lowest latency and no accuracy loss compared
to the baseline solution is chosen from these 8 candidate
solutions and used in Dynamic Confidence. For example,
thc = 0.6 will be selected in Figure 3.

6. Experiment
6.1. Experimental Setup

Datasets. The proposed Dynamic Confidence is validated
on CIFAR-10 and ImageNet. CIFAR-10 [23] contains
60,000 images, divided into 10 classes. There are 50,000
training images and 10,000 test images. The size of each
image is 32x32 pixels and their format is RGB. ImageNet
[6] is a large object recognition dataset, and the version we
use in our experiments is ILSVRC-2012. ILSVRC-2012
has over one million labeled RGB examples, and 1000 ob-
ject classes. It has 50,000 images for validation.
Network Architectures. For CIFAR-10 we experiment
with VGG-16 and ResNet-18 and for ImageNet we exper-
iment with VGG-16 and ResNet-50. Max-pooling is re-
placed by average-pooling to facilitate ANN-to-SNN con-

version.
QCFS and QFFS. One of the essential features of the pro-
posed Dynamic Confidence can be applied to a wide range
of ANN-to-SNN conversion methods on the fly including
the standard data-based normalization [8] and 99.9% data-
based normalization [38], resulting in significant reductions
in inference latency. However, this paper is focused on ex-
ploiting the fast-response potential of SNNs, so we only
highlight the results on ANN-to-SNN conversion methods
that achieve ultra-low inference latency. Specifically, Dy-
namic Confidence is demonstrated on SNNs built using
QCFS [3] and QFFS [26], both of which have demonstrated
ultra-low latency with competitive accuracy on nontrivial
datasets. For example, QCFS and QFFS have reported la-
tencies of 64 and 4 time steps, respectively, achieving 72%
accuracy on ImageNet. Both methods reduce SNN latency
by reducing the information in the ANN model (refer to [26]
for a comprehensive introduction to why reducing ANN ac-
tivation precision can lead to a reduction in SNN latency)
and suppressing noise in the SNN model. QCFS achieves
noise suppression by simulating longer to amortize the neg-
ative impact of noise, while QFFS generates negative spikes
to correct noise. Some recent low-latency SNN algorithms
[16, 17] also follow these two methods to amortize or cor-
rect noise.

In our experiments, we duplicate QCFS and QFFS by
quantizing the activation in ANNs to 2-bit by LSQ [12] in
all hidden layers and keeping the output layer at full pre-
cision. All weights are in full precision. We adopt the
soft-reset IF neuron and its variant in SNNs as described
in [3, 26], and the neurons in the output layer only accu-
mulate input currents [27]. Detailed equations about LSQ,
QCFS, and QFFS are provided in Supplementary Material.
Dynamic Confidence. As described in the approach sec-
tion, there are three steps to configure Dynamic Confidence:

1. Calibration using an ANN.

2. Scaling the output logits by α in the SNN converted
from the calibrated ANN.

3. Calculating the confidence threshold thc from the
Pareto Front.

Steps 1 and 3 are conducted on the same validation set.
The validation set is collected randomly from the training
set and its size is 5,000 on CIFAR-10 and 50,000 on Ima-
geNet.

During inference, the confidence is calculated in SNN
outputs and sent to the decision-making agent whose thresh-
old is thc. A binary decision of terminating the inference in
advance is made if the confidence value surpasses thc.
Training Configurations. The quantized ANNs are fine-
tuned on the pre-trained full-precision ANN models for 60
epochs, with a momentum of 0.9 and a weight decay of

13355



Table 1. Latency advantages brought by Dynamic Confidence in 8 different experimental settings.

Dataset Architecture Method Acc(ANN)(%) Acc(SNN)(%) Averaged time steps Latency saving(%)

CIFAR-10

VGG-16

QCFS 92.41 92.50 30
QCFS + Dynamic Confidence 92.41 92.50 12.69 58%

QFFS 92.41 92.41 6
QFFS + Dynamic Confidence 92.41 92.41 3.17 47%

ResNet-18

QCFS 93.79 94.27 27
QCFS + Dynamic Confidence 93.79 94.27 11.51 57%

QFFS 93.79 94.11 4
QFFS + Dynamic Confidence 93.79 94.11 2.52 41%

Best Reported[3] 95.52 93.96 4
Best Reported[26] 93.12 93.14 4

ImageNet

VGG-16

QCFS 72.40 73.30 74
QCFS + Dynamic Confidence 72.40 73.30 49.54 33%

QFFS 72.40 72.52 4
QFFS + Dynamic Confidence 72.40 72.52 2.86 29%

ResNet-50

QCFS 72.60 70.72 128
QCFS + Dynamic Confidence 72.60 70.72 81.81 36%

QFFS 72.60 73.17 6
QFFS + Dynamic Confidence 72.60 73.17 4.42 26%

Best Reported[3] 74.29 72.85 64
Best Reported[26] 71.88 72.10 4

*A concurrent research [17] based on QCFS reported a higher accuracy. However, note that Dynamic Confidence is a runtime latency optimization
method and can also apply to this SNN algorithm to further reduce its latency.

2.5 × 10−5, and a loss function of cross entropy. The ini-
tial learning rate is 0.01 with an exponential learning rate
decay. The batch size is 32. The training is implemented in
PyTorch.

6.2. Speed and Power Advantages of Using Dynamic
Confidence

While compromising accuracy can lead to even greater
latency gains (by adopting a lower thc, related results are
shown in the Supplementary Material), our primary focus
in the following sections is to optimize latency without sac-
rificing accuracy. Table 1 reports how much the average
latency can be reduced by Dynamic Confidence in 8 dif-
ferent settings respectively. Note that after applying Dy-
namic Confidence to SNNs, the inference latency is hetero-
geneous for different examples, so the averaged latency is
not necessarily an integer. The results show that Dynamic
Confidence can bring a latency reduction of 41% to 58%
on CIFAR-10, and a latency reduction of 26% to 36% on a
more challenging dataset ImageNet without sacrificing ac-
curacy. These substantial improvements in latency suggest
the obvious benefits of adopting Dynamic Confidence to al-
low heterogeneous terminating time. Moreover, note that
both QCFS and QFFS already provide ultra-fast solutions
on rate-coded SNNs. Even though, applying Dynamic Con-
fidence on top of these two fast SNN solutions can still ren-
der significant latency reduction.

The power cost of an SNN is roughly kept stable for each
time step for a given SNN run on GPUs. Given this ob-

servation, reducing the averaged time steps required by an
SNN at runtime can also bring nontrivial gains in power effi-
ciency. For example, by reducing the averaged latency from
30 time steps to 12.69 time steps in CIFAR-10; the power
consumption of SNN simulations can be roughly reduced
by 58%. The overhead of applying Dynamic Confidence
may dilute this gain in power a little bit, which is discussed
in Section 6.5.

6.3. Comparison with State-of-the-Art Methods

State-of-the-art performance of fast SNNs on CIFAR-10
and ImageNet is listed in Table 1. From this table, we can
see that on CIFAR-10, the performance achieved by apply-
ing Dynamic Confidence in QFFS (94.11% in 2.52 time
steps) outperforms the state-of-the-art results both in accu-
racy and latency. On ImageNet, we report an accuracy of
72.52% in 2.86 time steps, outperforming state-of-the-art
results as well.

Not all neuromorphic hardware and SNN algorithms
support the negative spikes used in QFFS. Thus, we also
benchmark Dynamic Confidence on QCFS which does not
use negative spikes. As shown in this table, even with-
out negative spikes, Dynamic Confidence can still achieve
an accuracy of 73.30% on ImageNet with an averaged la-
tency of 49.54 time steps, outperforming the state-of-the-art
method (72.85% in 64 time steps) by a significant margin.

13356



Figure 4. The distributions of terminating time after applying Dy-
namic Confidence on CIFAR-10. The network architecture is
ResNet-18. We can see that instead of a fixing inference latency
for each sample, different samples can have heterogeneous termi-
nating times when adopting Dynamic Confidence.

6.4. Latency Distributions After Enabling Hetero-
geneous Terminating Time

We record the distributions of terminating time in Fig-
ure 4, to visualize how many samples are terminated by Dy-
namic Confidence early and facilitate a better understand-
ing of Dynamic Confidence. The purple histogram shows
the percentage of samples terminated at a time point t and
the green histogram is the total terminated samples before
t and at t. The dataset is CIFAR-10 and the network ar-
chitecture is ResNet-18. It is apparent that the terminating
time varies for different samples. There is a significant per-
centage of samples terminated at the time point 10 and 11
(26% and 29%), and up to 94.97% samples are terminated
before the time point 22. Even though Dynamic Confidence
terminates such a large percentage of samples at very early
time steps, its inference accuracy is still guaranteed to be as
high as 94.27%. This suggests that the terminating decision
made by Dynamic Confidence is highly reliable.

6.5. Overhead of Dynamic Confidence

Dynamic Confidence has been demonstrated to provide
significant improvements in terms of latency, as discussed
in previous sections. Also, Dynamic Confidence is on-the-
fly so it is a promising tool for further optimizing latency
and spike counts on other low-latency SNN algorithms as
well. However, to ensure that its benefits are maximized,
it is important to be mindful of the potential overhead in-
troduced by implementing Dynamic Confidence, as exces-
sive costs can offset the benefits it provides. The overhead
of Dynamic Confidence at the configuration phase is triv-

ial, which is illustrated in the Supplementary Material. This
section focuses on analyzing the overhead of Dynamic Con-
fidence at runtime, particularly in the context of real-world
applications where it holds greater significance.

At runtime, the main computational overhead of Dy-
namic Confidence is confidence calculation by Softmax,
whose computational complexity is O(TL). T is the time
step during SNN simulation and L is the number of output
neurons. Benefiting from the rapid developments of low-
latency SNN algorithms, T has been reduced significantly
in recent years. For example, when conducting Dynamic
Confidence with QFFS and CIFAR-10, T can be as small
as 4. As for L, since the main application scenario of SNNs
is small-scale edge-computing tasks, L is limited in most
cases. For instance, L is 10 in CIFAR-10 and 11 in DVS-
Gesture. Therefore, compared to the 26% to 58% gains in
latency reported in previous sections, the runtime overhead
of Dynamic Confidence is insignificant, especially when ap-
plying Dynamic Confidence on low-latency SNNs and edge
AI applications. While low overhead is crucial to our dis-
cussion, it can be justifiable to tolerate higher overhead if a
dynamic strategy can achieve performance that approaches
the upper bound of an SNN, such as the 82.47% accuracy
on ImageNet in 4.71 time steps depicted in Figure 1.

6.6. Actual Inference Latency Reduction Recorded
on GPUs

Table 2 presents the average latency per inference for
SNN simulations on GPUs. The simulations were con-
ducted on a NVIDIA-V100 GPU, with a batch size of 1. It
is important to note that the reported latency in this table is
a measurement of the actual inference speed of SNN mod-
els on GPUs, whereas the latency gains shown in Table 1
are calculated by recording the average simulated time step
required per inference.

Table 2. Latency per inference with/without Dynamic Confidence.
The unit is seconds. The lower the better.

Setting no DC DC
CIFAR-10, VGG-16, QCFS 0.097 0.047
CIFAR-10, VGG-16, QFFS 0.036 0.017

CIFAR-10, ResNet-18, QCFS 0.127 0.047
CIFAR-10, ResNet-18, QFFS 0.027 0.022
ImageNet, VGG-16, QCFS 0.315 0.213
ImageNet, VGG-16, QFFS 0.030 0.021

ImageNet, ResNet-50, QCFS 1.708 0.932
ImageNet, ResNet-50, QFFS 0.116 0.104

6.7. Spike Count Reduction

Similar to other SNN algorithm research, our proposed
method is demonstrated and evaluated through the simu-

13357



lations on GPUs, the real power saving when running on
neuromorphic hardware is unknown to us. Given that neu-
romorphic hardware’s energy consumption is dominated by
the multicast routing of spikes, we report the data on the
spike count reductions achieved by our method. This is to
provide insight into its potential power-saving benefits.

Table 3 reveals that the implementation of Dynamic Con-
fidence significantly lowers spike counts, most notably for
QCFS. In contrast, when using QFFS configurations, the
reduction is more modest. This indicates that although Dy-
namic Confidence invariably lowers spike counts, its effec-
tiveness can differ based on the chosen architecture and spe-
cific settings.

Table 3. Spike counts per neuron per inference with/without Dy-
namic Confidence. The lower the better.

Setting no DC DC
CIFAR-10, VGG-16, QCFS 3.21 1.35
CIFAR-10, VGG-16, QFFS 0.32 0.31

CIFAR-10, ResNet-18, QCFS 3.02 1.29
CIFAR-10, ResNet-18, QFFS 0.34 0.25
ImageNet, VGG-16, QCFS 12.94 8.66
ImageNet, VGG-16, QFFS 0.52 0.45

ImageNet, ResNet-50, QCFS 21.63 13.84
ImageNet, ResNet-50, QFFS 0.53 0.51

7. Towards Greater Opportunities

Visualizing and Approaching the “Potential” of SNNs.
Section 5.3.2 presents a method to calculate the upper-
bound performance of an SNN, which opens up numerous
exciting possibilities. With this approach, we can visualize
the potential of an SNN when its correct terminating time
is accurately captured and compare it with that of another
SNN. Figure 1 depicts that SNNs can achieve highly com-
petitive accuracy (in some cases, even surpass the capacity
of the original ANN model) in just a few time steps. This
potential can be explained by viewing the SNN as an en-
semble network. The input-output response curve of spik-
ing neurons in an SNN is highly dependent on its termi-
nating time point. By stopping the simulation at different
time steps, we effectively select a different subnetwork with
a distinct input-output response curve. For example, if an
SNN simulates 10 time steps, it is essentially an ensemble
of 10 subnetworks. These ten subnetworks share the same
weights, but their input-output response curve is different.
For different input samples, we can select the most appro-
priate subnetwork from these 10 subnetworks to do infer-
ence, simply by terminating this SNN at the corresponding
time point. Therefore, the temporal dimension makes SNNs
a highly efficient ensemble method.

SNNs have huge latent potential, the key question is
how to unleash this. In this paper, we exemplify a method
to partly unlock this potential by 1). formulating a high-
quality estimation of the ground truth and 2). constructing
a highly-reliable decision-making agent.
Further Applications of Dynamic Confidence. To im-
prove the implemented performance of Dynamic Confi-
dence on neuromorphic hardware, it may be desirable to
use an alternative mechanism to the Softmax function. One
option is to use a k-winners-take-all (k-WTA) spiking neu-
ral architecture whereby lateral inhibition between output
neurons gates outputs. This could make Dynamic Confi-
dence more amenable to implementation directly on neuro-
morphic hardware. Dynamic Confidence is possible to be
applied to SNNs with timing-based encoding methods such
as rank order coding [14], latency coding [34], and Time-to-
First-Spike Coding [35], and to SNNs with surrogate gradi-
ents training methods to further leverage the temporal infor-
mation in SNNs. In timing-based encoding methods, they
may need a new metric than Softmax to represent confi-
dence. It’s worth noting that, even when using a superior
confidence metric, the upper-bound performance achieved
with this metric still aligns with our calculations.

8. Conclusion
This study critically examines the ways of applying dy-

namic strategies to spike-based models to optimize infer-
ence latency by Dynamic Confidence. Essentially, we for-
mulate confidence in SNNs and use it to decide whether
terminate inference or wait more time steps to accumulate
more evidence and get a more reliable prediction. The ma-
jor challenge of introducing the concept of confidence to
SNNs is that, unlike confidence in ANNs, confidence in
SNNs evolves with time, so some modifications need to be
applied to leverage the information carried by confidence.
A simple decision-making agent is then constructed to de-
cide when to stop inference. Dynamic Confidence improves
the performance of SNNs in the aspect of latency and power
for exploring their potential on becoming a strong candidate
for low-power low-latency edge computing.

9. Acknowledgments
The authors would like to acknowledge numerous help-

ful comments from the reviewers. Chen Li thanks Luziwei
Leng and Zhaofei Yu for helpful feedback on the first draft
of this paper. We also recognize the support from Research
IT and the utilization of the Computational Shared Facility
at The University of Manchester.

References
[1] Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin

Zheng, Hugo Larochelle, and Aaron Courville. Dynamic ca-

13358



pacity networks. In International Conference on Machine
Learning, pages 2549–2558. PMLR, 2016.

[2] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias
Hajek, Darjan Salaj, Robert Legenstein, and Wolfgang
Maass. A solution to the learning dilemma for recurrent net-
works of spiking neurons. Nature communications, 11(1):1–
15, 2020.

[3] Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu,
and Tiejun Huang. Optimal ann-snn conversion for high-
accuracy and ultra-low-latency spiking neural networks.
In International Conference on Learning Representations,
2021.

[4] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong
Chen, Lu Yuan, and Zicheng Liu. Dynamic convolution:
Attention over convolution kernels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11030–11039, 2020.

[5] Manon Dampfhoffer, Thomas Mesquida, Alexandre Valen-
tian, and Lorena Anghel. Are SNNs Really More Energy-
Efficient Than ANNs? an In-Depth Hardware-Aware Study.
IEEE Transactions on Emerging Topics in Computational In-
telligence, pages 1–11, 2022.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[7] Shikuang Deng and Shi Gu. Optimal conversion of conven-
tional artificial neural networks to spiking neural networks.
arXiv preprint arXiv:2103.00476, 2021.

[8] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook,
Shih-Chii Liu, and Michael Pfeiffer. Fast-classifying, high-
accuracy spiking deep networks through weight and thresh-
old balancing. In 2015 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. ieee, 2015.

[9] Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian
Liu. Snn-rat: Robustness-enhanced spiking neural network
through regularized adversarial training. Advances in Neural
Information Processing Systems, 35:24780–24793, 2022.

[10] Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun
Huang. Optimal ann-snn conversion for fast and accurate
inference in deep spiking neural networks. arXiv preprint
arXiv:2105.11654, 2021.

[11] Jianhao Ding, Jiyuan Zhang, Zhaofei Yu, and Tiejun Huang.
Accelerating training of deep spiking neural networks with
parameter initialization. 2021.

[12] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. arXiv preprint
arXiv:1902.08153, 2019.

[13] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins,
and Cheng-zhong Xu. Dynamic channel pruning: Feature
boosting and suppression. arXiv preprint arXiv:1810.05331,
2018.

[14] Elena Garcia, Maria Antonia Jimenez, Pablo Gonzalez
De Santos, and Manuel Armada. The evolution of robotics
research. IEEE Robotics & Automation Magazine, 14(1):90–
103, 2007.

[15] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In International
conference on machine learning, pages 1321–1330. PMLR,
2017.

[16] Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang,
and Zhaofei Yu. Reducing ann-snn conversion error
through residual membrane potential. arXiv preprint
arXiv:2302.02091, 2023.

[17] Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and
Zhaofei Yu. Bridging the gap between anns and snns by
calibrating offset spikes. arXiv preprint arXiv:2302.10685,
2023.

[18] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang,
and G Edward Suh. Channel gating neural networks. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[19] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
Van Der Maaten, and Kilian Q Weinberger. Multi-scale
dense networks for resource efficient image classification.
arXiv preprint arXiv:1703.09844, 2017.

[20] Xiping Ju, Biao Fang, Rui Yan, Xiaoliang Xu, and Huajin
Tang. An FPGA Implementation of Deep Spiking Neural
Networks for Low-Power and Fast Classification. Neural
Computation, 32(1):182–204, 2020.

[21] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh
Yoon. Spiking-YOLO: Spiking Neural Network for Energy-
Efficient Object Detection. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(07):11270–11277, 2020.

[22] Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth
Venkatesha, and Priyadarshini Panda. Neural architecture
search for spiking neural networks. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXIV, pages 36–56.
Springer, 2022.

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012.

[25] Chen Li and Steve Furber. Towards biologically-plausible
neuron models and firing rates in high-performance deep
spiking neural networks. In International Conference on
Neuromorphic Systems 2021, pages 1–7, 2021.

[26] Chen Li, Lei Ma, and Steve B Furber. Quantization frame-
work for fast spiking neural networks. Frontiers in Neuro-
science, page 1055, 2022.

[27] Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and
Shi Gu. A free lunch from ann: Towards efficient, ac-
curate spiking neural networks calibration. arXiv preprint
arXiv:2106.06984, 2021.

[28] Yuhang Li, Shikuang Deng, Xin Dong, and Shi Gu. Con-
verting artificial neural networks to spiking neural networks
via parameter calibration. arXiv preprint arXiv:2205.10121,
2022.

[29] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime
neural pruning. Advances in neural information processing
systems, 30, 2017.

13359



[30] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015.

[31] Wolfgang Maass. Networks of spiking neurons: the third
generation of neural network models. Neural networks,
10(9):1659–1671, 1997.

[32] Emre O Neftci, Charles Augustine, Somnath Paul, and Geor-
gios Detorakis. Event-driven random back-propagation: En-
abling neuromorphic deep learning machines. Frontiers in
neuroscience, 11:324, 2017.

[33] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David
Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshmi-
narayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset
shift. Advances in neural information processing systems,
32, 2019.

[34] Zihan Pan, Jibin Wu, Malu Zhang, Haizhou Li, and Yansong
Chua. Neural population coding for effective temporal clas-
sification. In 2019 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2019.

[35] Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh
Yoon. T2fsnn: Deep spiking neural networks with time-to-
first-spike coding. In 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC), pages 1–6. IEEE, 2020.

[36] Michael Pfeiffer and Thomas Pfeil. Deep learning with spik-
ing neurons: opportunities and challenges. Frontiers in neu-
roscience, page 774, 2018.

[37] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[38] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu,
Michael Pfeiffer, and Shih-Chii Liu. Conversion of
continuous-valued deep networks to efficient event-driven
networks for image classification. Frontiers in neuroscience,
11:682, 2017.

[39] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Lup-
ing Shi. Direct training for spiking neural networks: Faster,
larger, better. In Proceedings of the AAAI conference on ar-
tificial intelligence, volume 33, pages 1311–1318, 2019.

[40] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic inference paths in residual networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 8817–8826, 2018.

13360


