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Abstract

Decomposing a single mixed image into individual im-
age layers is the common crux of a classical category of
tasks in image restoration. Several unified frameworks have
been proposed that can handle different types of degrada-
tion in superimposed image decomposition. However, there
are always undesired structural distortions in the separated
images when dealing with complicated degradation pat-
terns. In this paper, we propose a unified framework for
superimposed image decomposition that can cope with in-
tricate degradation patterns adaptively. Considering the
different mixing patterns between the layers, we introduce
a degeneration representation in the latent space to mine
the intrinsic relationship between the superimposed im-
age and the degeneration pattern. Moreover, by extracting
structure-guided knowledge from the superimposed image,
we further propose structural guidance refinement to avoid
confusing content caused by structure distortion. Extensive
experiments have demonstrated that our method remark-
ably outperforms other popular image separation frame-
works. The method also achieves competitive results on re-
lated applications including image deraining, image reflec-
tion removal, and image shadow removal, which validates
the generalization of the framework.

1. Introduction
Single superimposed image decomposition aims to de-

compose a given superimposed image into the correspond-

ing source images. It involves many critical research tasks,

such as image deraining, reflection removal, and shadow re-

moval, etc. The key feature of this type of task is that the

input degraded image can be viewed as a superimposing of

two layers. For example, image deraining can be treated as

decomposing a rainy image into a rain-free image and rain

streaks.

In superimposed image decomposition, the degradation
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Figure 1. Image decomposition results on the Stanford-Dogs [23]

+ VGG-Flowers [29] dataset. We only present one output here. It

can be observed that both DAD [51] and GIP [52] contain blurred

edges of “flower”, and BIDeN [14] produces slight blur and color

distortion. Our result preserve finer geometric structures.

model is formulated as follows:

I = g (x1) + f (x2) , (1)

where g (·) and f (·) represent various degradation repre-

sentations for x1 and x2, which act as crucial components

to model the degradation. A challenge of this task is deal-

ing with various and complicated degradation patterns pro-

duced in different degradation processes, like the mixing

factor of two layers in Eq. (1). These degradation pat-

terns are extremely difficult to identify, therefore, previ-

ous methods usually formulate these tasks as individual re-

search problems, making great progress [8, 42, 15]. How-

ever, the model well-designed for one task is hard to apply

directly to another, due to the degradation changes. There

is a high expectation to handle all the above tasks within a

unified framework.

In recent years, existing studies have exploited the Unet-

based [33] single lane structure to restore source images in

a unified framework (see Figure 2). While high-fidelity re-

sults can be generated, this structure always suffers from
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Figure 2. Image decomposition paradigms. (a) Single lane structure with single encoder and decoder. (b) Multi-lane structure with shared

encoder and multiple decoders. (c) our proposed variational degradation module to jointly learn degeneration representation R and image

decomposition.

structural inconsistency including geometric distortions and

texture copy. As Figure 1 shows, one layer contains arti-

facts and residuals from another layer, since the single lane

may introduce unstable factors and is insufficient to han-

dle complicated degradation patterns [21]. Subsequently,

a multi-lane structure with two branches can split the de-

composition problem into sub-problems [30]. The struc-

ture performs the decomposition via the explicitly sepa-

rated decoders. However, the intrinsic problem is not al-

leviated, since existing models neglect to model the degen-

eration representations and directly complete the decompo-

sition task, which fails to preserve structural information in

the complex degradation patterns.

In this paper, we propose a novel unified framework

for single superimposed image decomposition, which is

named as Variational Degeneration to Structural Refine-

ment (VDSR). On the one hand, the layers in the super-

imposed image are combined in sophisticated degradation

ways. Considering the intrinsic relationships between the

superimposed image and the degradation patterns, we in-

troduce a variational degradation module to describe the

relationship by learning the degradation representations in

the latent space. Such additional prior enables the net-

work to handle various degradation processes adaptively.

On the other hand, different structural information is stored

in the various layers of the superimposed image. To pre-

serve the gradient structure of individual layers, we pro-

pose a structure-guided learning strategy that focuses on the

structure with superimposed edges by extracting structure-

guided knowledge from superimposed images.

To demonstrate the proposed model’s effectiveness, we

first use five image decomposition methods on two datasets

for comparison. Subsequently, we apply our method to a

variety of computer vision tasks. Extensive experiments are

conducted on three different tasks, including image derain-

ing, image reflection removal, and image shadow removal.

2. Related Work

2.1. Superimposed image decomposition

Superimposed Image decomposition is a general task

that covers a wide range of computer vision and computer

graphics tasks. An unsupervised method named “Double-

DIP” [10] was proposed for image decomposition via cou-

pled “Deep-image-Prior” (DIP) networks [35]. Deep Gen-

erative Priors [20] presented a Bayesian approach to image

decomposition using a generative model as a prior. How-

ever, their methods are limited to handling the input with

regular mixed patterns. Deep Adversarial Decomposition

(DAD) [51] introduced a novel discriminative network to

improve the layer separation. A crossroad L1 loss was intro-

duced to calculate the loss in a cross-wise manner. G-DPS

[41] proposed a dual decoupling network with a perceptual-

based training strategy for separation. However, there is

still some residual information between the two separated

images when using a single-lane structure. BIDeN [14] pro-

posed a multi-lane structure, which separates superimposed

images by using one encoder and multiple decoders. Deep-

Masking Generative Network [7] presented iterative utiliza-

tion of residual deep-masking cells to control information

propagation, and further a refinement strategy for gener-

ation. While showing convincing improvements in many

low-level vision tasks, they fail to preserve structural infor-

mation during complicated degradation.

2.2. Learning degradation representations

Since image restoration involves dealing with various

complicated degradation patterns, degradation representa-

tions have been developed and employed as an essential

component in image denoising and super-resolution. For

image denoising, noise variance is commonly used to repre-

sent degradation. Many methods [49, 45, 24] were proposed

to first estimate the noise variance conditioned on the input

noise image. Similarly, for image super-resolution, degen-

eration representations include Gaussian blur, motion blur,

noise, etc. In order to model the blurring process, the model

[1, 25] with linear convolutional layers was used, trained

with an adversarial loss. Recently, the method [46] elab-
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Figure 3. An overview of our method. Our method sequentially performs three stages. Firstly, a variational degradation module is

proposed to estimate the degradation representation R, which is constrained by three losses: Lrec, Lpre, and DKL. Secondly, the feature

learning head (FLH) first extracts features from the input image and the predicted degeneration prior. The features are fused together, then

roughly divided into two branches through the coarse feature separation (CFS). Then a degeneration injection network is introduced to

perform more accurate feature decomposition with the residual decomposition cell (RDC) in the branch. Thirdly, the structural guidance

refinement module is responsible for refining the separated images with structure guidance maps.

orately modeled the degradation process based on the per-

spectives of blur kernels and noise. Although explicit de-

generation representations show convincing improvements,

they are only task-specific and lack generalization to differ-

ent tasks. In contrast, our method estimates degeneration

representations in the unified framework.

3. Method
3.1. Overview

Given a single superimposed image I ∈ [0, 1]H×W×3

containing two image views, we aim to separate it into the

corresponding source images x1 and x2. Figure 3 shows the

overall pipeline of our proposed image separation model -

Variational Degenerate to Structural Refinement (VDSR).

Our VDSR sequentially performs three stages: (1) esti-

mation of degradation representations. (2) image separa-

tion with learned degradation representations. (3) structural

guidance refinement.

3.2. Variational Degradation Module

Different degradation processes can result in varying de-

grees of damage to the texture, color, and contrast of the

image [22]. Hence, the superimposed image should have an

inherent relationship with the degradation patterns. To ad-

dress this issue, we propose a variational degradation mod-

ule (VDM), which is capable of adapting to various com-

plex degradation patterns by fully digging the degradation

representations in the latent space. Specifically, we first

describe the VDSR using the joint distribution p(x, I) be-

tween the source x and superimposed images I . Then we

introduce a degeneration representation R which contains

prior information about the superposition process. We learn

such degeneration representation through a posterior infer-

ence p(R|x, I). However, this inference is intractable.

We solve the inference problem based on the variational

approximation since the potential distribution of degrada-

tion can be significantly controlled and modeled. Accu-

rately, we construct a new encoding distribution, q(R|I),
to approximate p(R|x, I). Then, the joint probability distri-

bution p(x, I) can be expressed as follows:

log p(x, I) = Lb +DKL(q(R|I)‖p(R|x, I)), (2)

where Lb represents the variational lower bound and DKL

stands for the Kullback-Leibler (KL) divergence.

Due to the non-negative nature of the KL divergence, Lb

constitutes the lower bound of logp(x, I), which is com-

monly called the evidence lower bound (ELBO). It can be

formulated as log p(x, I) ≥ Lb. In this way, by maximiz-

ing ELBO, we can naturally approximate the true posterior

probability p(R|x, I) by using q(R|I). ELBO is defined as:

Lb = −DKL(q(R|I)‖p(R)) + ER∼q(R|I)[log p(I|R)].
(3)

Here ER [·] denotes the expectation. We employ three pa-

rameterized convolutional neural networks E (·), D (·) and

Dp (·) to jointly train the objective function.

The first term is a regularization term that encourages

the learned distribution q(R|I) to resemble the true prior

distribution p(R). The distribution of p(R) is set to follow a

unit Gaussian distribution with zero mean and unit variance.
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Figure 4. The structure of the three submodules.

DKL(q(R|I)‖p(R)) = DKL(N (μ,Σ)‖N (0, I))

=
1

2

[
n∑

i=1

(− log σ2
i − 1 + σ2

i + μ2
i

)]
,

(4)

where σ and μ2 represent the mean and variance, respec-

tively. n refers to the random variable’s dimension.

The second term represents the reconstruction likeli-

hood. We first adopt the standard L1 loss and an adver-

sarial loss [12] as Lrec, measuring the distance between the

reconstructed output and the superimposed input. Further-

more, for the known degeneration priors, we introduce a

prediction loss to constrain the degeneration representation.

Specifically, we perform the loss by Dp (·), which consists

of two layers of convolution and adaptive max pooling. The

prediction loss is described as:

Lpre = ‖Y −Dp(R)‖1, (5)

where Y represents the degradation prior. For example, in

the linear superposition , Y ∈ R
1×N denotes the mixing

factor multiplied in front of the N source images. When we

don’t have the degeneration prior, like a rainy image, we do

not use it.

Overall, the total degradation loss for is the sum of three

terms, as follows, we empirically set β1 = 0.005.

Lde = β1DKL + Lrec + Lpre (6)

3.3. Image Separation with Learned Degradation
Representations

In the stage of image separation, we combine the degra-

dation representation R of the previous stage to roughly di-

vide the input features into two branches that produce indi-

vidual layers for downstream processing.

Formally, given a degradation representation R and an

input image polluted by superimposing. We recover R to

the input dimensions using nearest neighbor interpolation.

Both of them are then projected into the deep embedding

feature space through the Feature Learning Head (FLH),

which employs a hypercolumn technique to enhance useful

features [50]. Subsequently, their fused features
(
F 1
i,j , F

2
i,j

)
are obtained by summation operation and fed into Coarse

Feature Separation (CFS) to be separated into the corre-

sponding constituents of the two branches. To estimate

the relevant regions corresponding to various constituents,

CFS employs a spatial attention mechanism [19] (see Figure

4(a)). The attention map A is acquired using the attention’s

nonlinear function fatt and sigmoid function σ.

A =σ (fatt (Fi,j))

F 1
i,j = Fi,j �A, F 2

i,j = Fi,j − F 1
i,j ,

(7)

where F 1
i,j and F 2

i,j denote the separated features of two

branches. i and j represent pixel positions.

Furthermore, RDC utilizes the success of the Residual

Deep-Masking Cell [7] to progressively reconstruct the im-

ages of two layers. It is customized as the core operating

unit, sharing structure but not parameters in two branches.

The structure of RDC is shown in Figure 4(b). Given an

input feature gained from the (m − 1)-th RDC, the feature

is first refined by H(·) containing convolutional layers and

ReLU. Then the mask with the interval [0,1] is learned by

M(·). In addition, a residual connection is used to avoid the

vanishing gradient problem. The RDC is expressed as:

F 1
i,j,m = F 1

i,j,m−1 +M(H(F 1
i,j,m−1))�H(F 1

i,j,m−1),

(8)

where � denotes the element-wise multiplication.

Injecting the degradation representations. Our RDC

introduces the degradation injection network (DInet) in or-

der to effectively incorporate the degradation representation

R to perform layer separation. Specifically, the orange ar-

row represents forward propagation in skip connections and

the blue arrow shows degenerate forward propagation in

Figure 4(c). Ri is obtained by performing upsampling and

convolution on Ri−1. DInet conducts affine transformation

by scaling and shifting feature with ω and θ obtained by

convolution.

Fn = ωn � fn + θn, (9)

where Fn is the modulated skip-connection Features fn in

the n-th skip-connection.

3.4. Structural Guidance Refinement

To preserve the gradient structure and refine the sepa-

rated images, we propose a structure-guided learning strat-

egy, which assists the network in focusing on the geomet-

ric structure by learning additional structure guidance maps.
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Concretely, the structure guide map is extracted from the in-

put image I , which is capable of detecting the pixel where

texture-copy or artifacts of superposition occurs. Based on

the assumptions that these pixels are sparse, we use the L0

norm rather than the L1 norm to penalize the number of

non-zero vectors in the structure guide map. The L0 norm

has been shown to be a good choice for image structure in

many methods [3, 2, 27]. By introducing a binary gate G,

the L0 regularization of the structure guidance map M can

be expressed as:

‖M‖0 =
∑
l

Gl, (10)

where l represents a pixel. Gl determines whether texture-

copy exists at pixel l (Gl = 1 means there exists). However,

the optimization is computationally intractable due to the

non-differentiability of the L0 norm.

Hard concrete distribution. Since L0 is difficult to con-

verge, we use a hard concrete distribution to relax the dis-

crete nature [28], which allows gradients to flow efficiently

in L0. Specifically, it is defined as H(s|φ) with parameters

φ = (�, τ), where s is a random variable distributed be-

tween 0 and 1. The probability of the gate opening (G = 1)

is determined by �. τ determines the approximate distribu-

tion of H(s|φ). We empirically set τ = 0.5. After stretching

such distribution into the interval (γ, ζ) with γ = −0.1 and

ζ = 1.1, we apply the hard-sigmoid on its random samples.

u ∼ U(0, 1), s = Sigmoid((log u− log(1− u) + �)/τ)

s̄ = s(ζ − γ) + γ,G = min(1,max(0, s̄)).

(11)

In this way, the original binary gate is represented as a soft

gate G ∈ [0, 1]. It provides a better approximation of dis-

crete properties and allows gradient-based optimization.

Structure guidance map. To get the map M, we pro-

pose the following losses to optimize, including sparse term

Lspa and structure term Lstr, where we set β2 = 0.2.

LM =β2Lspa + Lstr

Lspa =
∑
l

1

‖∇Il‖p (Gl �= 0) ,
(12)

where ∇ denotes the gradient operator. p (Gl �= 0) repre-

sents the likelihood that the gate at pixel l is non-zero.

The structure term is used to avoid all gates becoming 0.

In general, pixels with large gradients are assigned higher

since they are more likely to be caused by texture copy,

while pixels with small gradients are assigned lower since

they are more likely to arise from the same layer. The struc-

ture term is defined as follows.

Lstr =
∑
l

(
‖∇Il‖ (1− Gl) +

1

‖∇Il‖Gl

)
(13)

According to Eq. 11, we can calculate the value of the gate

G and obtain the structure guidance map M.

3.5. Overall Objective Function

The objective function of the VDSR contains four terms:

a degradation loss, a pixel loss, an adversarial loss, and a

refinement loss.

Degradation loss. To ensure that the degradation repre-

sentation R can learn the degradation information from the

superimposed images, the loss is applied to constrain R.

Pixel loss. Instead of implementing L1 loss in the cross-

road way [51], we present a fixed order of two outputs (both

two orders are feasible), then calculate the distance with

their corresponding ground-truths, where x̂i denotes output

and i ∈ {1, 2}.

Lpixel = E(x̂i,xi)∼pi(x̂i,xi) {L1 (x̂1, x1) + L1 (x̂2, x2)}
(14)

Conditional Adversarial loss. The conditional adver-

sarial loss assists models in achieving high separation per-

formance. We adopt a similar structure of discriminator D
as Pix2Pix [18].

Ladv =− E(xi,I)∼pi(xi,I) {log (D (x̂i, I))}
LD =E(x̂i,I)∼pi(x̂i,I) {logD (x̂i, I)}−

E(xi,I)∼pi(xi,I) {logD (xi, I)}
(15)

Refinement loss. we propose a novel loss to preserve ge-

ometric structure information under the guidance of struc-

ture guide map M.

Lref = ‖M� (∇xi −∇x̂i)‖22 (16)

To sum up, our final loss function is formulated as

L = λ1Lde + λ2Lpixel + λ3Ladv + λ4Lref , (17)

where the coefficients are experientially set as λ3 = 0.01,

λ1 = λ2 = λ4 = 1.

3.6. Training details

Our VDSR is implemented by PyTorch with an NVIDIA

RTX 3080Ti. We use ADAM as the optimizers with β1 =
0.5, and β2 = 0.999, and the initial learning rate is set to

2 × 10−4. The learning rate is adjusted by the linear decay

strategy. We train our model for 200 epochs with a batch

size of 2. Our training process consists of two optimiza-

tion stages. First, we obtain the map M by minimizing

LM. The variable to be optimized is only the � in Eq. 11.

Then we use the total loss L to optimize the two prediction.

∇I in Eq. 12 is obtained following ∇I = max{∇I, ε},

the ε is set to 0.01 in the implementation. The code

will be released at https://github.com/lwyfish/Variational-

Degeneration-to-Structural-Refinement.
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Figure 5. Comparisons with the superimposed image decomposition methods on two mixing datasets. Above the dotted line is the Dogs

+ Flwrs dataset, and below the dotted line is the LSUN mixed dataset.

4. Experiments

We evaluate the proposed method on eight datasets for

four tasks, including 1) superimposed image decomposi-

tion, 2) single image deraining, 3) single image reflection

removal, and 4) single image shadow removal.

4.1. Superimposed Image Decomposition

Datasets: In our basic task, we use the following two

datasets for evaluations, i.e., 1) Stanford-Dogs (Dogs) [23]

+ VGG-Flowers (Flwrs) [29], 2) LSUN Classroom + LSUN

Church [44]. To be specific, we use the original train-

ing/testing split in these datasets [23, 29, 44] and follow

the same settings as in [51]. During training, we randomly

12211



(a) Input (b) JORDER (c) PreNet (d) VDSR (Ours) (f) Rain streak (Ours)(e) Ground truth

Figure 6. Qualitative comparison of different methods for single image deraining on Rain100H dataset.

Table 1. Performance (PSNR / SSIM) of different methods for su-

perimposed image decomposition on two mixing datasets

Methods Dogs+Flwrs Lsun

Pix2Pix [18] 24.04 / 0.703 23.89 / 0.755

DAD [51] 22.83 / 0.669 23.27 / 0.720

GIP [52] 23.28 / 0.6784 22.98 / 0.715

G-DPS [41] 23.11 / 0.685 23.95 / 0.759

BIDeN [14] 24.82 / 0.704 23.50 / 0.705

VDSR (Ours) 28.15 / 0.851 27.98 / 0.869

select two images (x1, x2) from two subsets of one group

and then linearly mix them as I = αx1 + (1− α)x2 with a

random linear mixing factor α, where α ∈ [0.4, 0.6]. Dur-

ing evaluation, we mix two images with a constant α value

of 0.5. In summary, we randomly generate 6000 pairs of

Dogs+Flwrs and 6000 pairs of LSUN Classroom+Church at

each epoch for training, and fixedly produce 1000 pairs of

Dogs+Flwrs and 300 pairs of LSUN Classroom+Church for

testing. Baselines: We compare the proposed model with

other five popular methods for single superimposed image

decomposition, including one well-known image transla-

tion methods Pixel-to-Pixel [18] and four recent methods

DAD [51], GAN for Inverse Problems (GIP) [52], G-DPS

[41], BIDeN [14]. Two popular metrics are used for quan-

titative comparisons [5, 9, 34], namely the Peak Signal-to-

Noise Ratio (PSNR) [17] and Structure Similarity (SSIM)

[39]. Higher scores indicate better.

Results: Table 1 reports the quantitative comparison re-

sults of the five superimposed image decomposition meth-

ods in terms of PSNR and SSIM on two mixing datasets.

The results demonstrate that our model performs optimally

in terms of metrics on both datasets. Besides the dominance

in quantitative evaluations, VDSR also shows superiority

in qualitative comparisons as shown in Figure 5. It can be

Table 2. Ablation studies for each component of VDSR on two

mixing datasets. The performance is formatted as PSNR / SSIM.

Ablation Dogs+Flwrs Lsun

I 26.78 / 0.821 26.74 / 0.842

II 27.01 / 0.822 26.92 / 0.855

III 27.49 / 0.844 27.95 / 0.872

IV 27.60 / 0.838 27.71 / 0.861

V 27.87 / 0.842 27.82 / 0.863

VI 27.54 / 0.836 27.47 / 0.853

Ours 28.15 / 0.851 27.98 / 0.869

observed that our method generates results with rich and

credible image textures while unmixing the superimposed

images. For other comparison methods, they tend to blur

the image content or still leave some artifacts from another

layer. For instance, only our VDSR recovers believable im-

age details in the “dog” image, while competing methods

fail to perform a clean separation. Although BIDeN can

separate well, it still has obvious color distortion.

4.2. Ablation Study

We perform ablation experiments to analyze the effec-

tiveness of each component inside VDSR using five vari-

ants. (I) Base. Our base model, which only contains the

image separation stage with two separation branches, and

the loss functions are Lpixel and Ladv . (II) Base + stan-

dard gradient loss. In order to evaluate the importance of

the structure guidance map, we replace Lref with the stan-

dard gradient loss. (III) Base + Lref . We increase the stage

of structural guidance refinement, using structure guidance

maps. (IV) Base + VDM. The variational degradation mod-

ule is added on the base model I without using DInet to

inject the degradation representation. (V) Base + VDM +

DInet. To verify the importance of DInet, we increase the

12212



Figure 7. Visualization of structure guidance map (2nd row). Re-

fined maps provide better structural guidance information.

(c) Two mixing factors (b) Three mixing factors

Figure 8. T-SNE visualizations of degeneration representations.

Table 3. Quantitative results (PSNR / SSIM) of image deraining

on the Rain100H [43].

Methods Rain100H [43]

DDN [8] 22.26 / 0.693

JORDER [43] 23.45 / 0.749

RESCAN [26] 26.45 / 0.846

DID-MDN [48] 25.00 / 0.754

DAF-Net [15] 28.44 / 0.874

PreNet [32] 29.46 / 0.899

BIDeN [14] 29.65 / 0.876

Restormer [47] 31.46 / 0.904

VDSR (Ours) 30.89 / 0.905

injection process based on IV. (VI) Base + VDM + Lref .

The utilization of DInet alone is unsuccessful due to the lack

of degradation representation R. Evaluation is performed

on the basic task, i.e., superimposed image decomposition.

Table 2 shows the results of ablation experiments for

VDSR. All the ablation studies demonstrate the effective-

ness of our proposed structure guidance map and the degra-

dation representation. We visualize the structure guidance

map in Figure 7. The map preserves the structural informa-

tion of the mixing between layers. We also show T-SNE

[36] visualization of degradation representation R based on

the dataset 4.1 in Figure 8. As we can see, points with sim-

ilar mixing factors are compact in the latent representation

space, and the embedded points vary continuously from low

to high factors. It can be proved that R contains degenera-

tion prior, which is suitable for image decomposition.

4.3. Application: Single Image Deraining

For image deraining, we conduct experiments on a dif-

fcult dataset, Rain100H (heavy-rain) [43], which consists

of 1254 images for training and 100 images for testing. We

compare our model with state-of-the-art methods for single

image deraining including JORDER [43], PreNet [32], and

Restormer [47], etc. The training and testing of all of these

methods follow the same training and testing split outlined

above. From Table 3 and Figure 6, one could observe that

VDSR achieves the best result in almost all tests. Rostormer

shows superior results in PSNR. In contrast, VDSR is bet-

ter in SSIM due to the structural guidance refinement. Our

approach yields promising results in removing rain streaks,

enhancing the visibility and preserving details. An addi-

tional benefit of our approach is that it enables estimation

of the rainstreak map.

(a) Focused (b) Defocused (c) Ghosting

Figure 9. Qualitative results of our method for image reflection

removal on the dataset [40]. 1st row: input. 2nd row: output.

4.4. Application: Single Image Reflection Removal

We perform the experiments on three popular bench-

mark datasets [40]. The dataset contains three types of re-

flections, including “focus”, “defocus” and “ghosting”, and

each reflection type includes 4000 training images and 100

testing images. Since the ground truths for blurred reflec-

tion images are usually not available, we simply set the

ground truth for the second output to “zero image” [51]

and train only one branch of the VDSR during training.

We compare our model with the following state-of-the-art

methods for image reflection removal in Table 4, including

RmNet [40], BIDeN [14], etc. Figure 9 shows some re-

sults which demonstrate that our method can recognize the

reflection artifacts and remove them.

4.5. Application: Single Image Shadow Removal

In this experiment, we validate the performance of the

proposed method on two commonly used datasets: SRD

[31] and ISTD [38]. These two datasets are composed of

3088 and 1870 shadow/shadow-free image pairs captured
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Table 4. Quantitative results (PSNR / SSIM) of image reflection

removal on the dataset [40].

Methods Focused set Defocused set Ghosting set

CEILNet [6] 19.524 / 0.742 20.122 / 0.735 19.685 / 0.753

Zhang et al. [50] 17.090 / 0.712 18.108 / 0.758 17.882 / 0.738

BDN [42] 14.258 / 0.632 14.053 / 0.639 14.786 / 0.660

RmNet [40] 21.064 / 0.770 22.896 / 0.840 21.008 / 0.780

BIDeN [14] 23.007 / 0.801 23.707 / 0.813 23.866 / 0.817

VDSR (Ours) 26.226 / 0.915 26.549 / 0.933 26.579 / 0.924

Table 5. Quantitative results of image shadow removal on SRD

[31] and ISTD [38], using root mean square error (RMSE) (lower

is better) [13].

Methods SRD [31] ISTD [38]

Gong et al. [11] 8.730 8.530

DeshadowNet [31] 6.640 7.830

ST-CGAN [38] 8.230 7.470

DSC [16] 6.210 6.670

ARGAN [4] 5.740 6.680

BIDeN [14] 6.610 7.750

SG-ShadowNet [37] 4.230 3.40
VDSR (Ours) 4.984 6.063

in real environments, respectively. In Table 5, we compare

our proposed method with some task-specific competitive

methods, including DSC [16] and SG-ShadowNet [37], etc.

Constrained by unified settings and the absence of priors for

shadow removal, VDSR does not show superior quantitative

results compared to SG-ShadowNet designed for shadow

removal tasks only. Figure 10 shows the qualitative compar-

ison of our methods with DSC+ on the above two datasets.

One can see that our proposed method can eliminate the

shadow without obvious artifacts.

(a) Input (b) DSC+ (c) Ours (d) Ground truth 

Figure 10. Qualitative comparison for image shadow removal on

the SRD [31] (1st row) and ISTD [38] (2nd row).

5. Conclusion
In this paper, a novel unified framework called VDSR

is proposed for single superimposed image decomposition.

Using degeneration representations in the latent space, we

propose a variational degradation module to mine the intrin-

sic relationship between superimposed images and degra-

dation patterns. This additional information can help adap-

tively handle various degradation patterns. Additionally, to

solve the problem of blurred edges caused by structural dis-

tortions, we propose the structure guidance map to assist

the model in learning an informative structural representa-

tion. Quantitative and qualitative results on four tasks have

shown the effectiveness of our proposed method.
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