This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Your Diffusion Model is Secretly a Zero-Shot Classifier

Alexander C. Li  Mihir Prabhudesai

Shivam Duggal

Ellis Brown Deepak Pathak

Carnegie Mellon University

Abstract

The recent wave of large-scale text-to-image diffusion
models has dramatically increased our text-based image
generation abilities. These models can generate realistic
images for a staggering variety of prompts and exhibit im-
pressive compositional generalization abilities. Almost all
use cases thus far have solely focused on sampling; how-
ever, diffusion models can also provide conditional density
estimates, which are useful for tasks beyond image gener-
ation. In this paper, we show that the density estimates
from large-scale text-to-image diffusion models like Stable
Diffusion can be leveraged to perform zero-shot classifi-
cation without any additional training. Our generative
approach to classification, which we call Diffusion Clas-
sifier, attains strong results on a variety of benchmarks
and outperforms alternative methods of extracting knowl-
edge from diffusion models. Although a gap remains be-
tween generative and discriminative approaches on zero-
shot recognition tasks, our diffusion-based approach has
stronger multimodal compositional reasoning abilities than
competing discriminative approaches. Finally, we use Dif-
fusion Classifier to extract standard classifiers from class-
conditional diffusion models trained on ImageNet. These
models approach the performance of SOTA discrimina-
tive classifiers and exhibit strong “effective robustness”
to distribution shift. Overall, our results are a step to-
ward using generative over discriminative models for down-
stream tasks. Results and visualizations on our website:
diffusion—-classifier.github.io/

1. Introduction

To Recognize Shapes, First Learn to Generate Im-
ages [31]—in this seminal paper, Geoffrey Hinton empha-
sizes generative modeling as a crucial strategy for training
artificial neural networks for discriminative tasks like image
recognition. Although generative models tackle the more
challenging task of accurately modeling the underlying data
distribution, they can create a more complete representation
of the world that can be utilized for various downstream
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tasks. As a result, a plethora of implicit and explicit gen-
erative modeling approaches [26, 42, 45, 21, 76, 69, 78]
have been proposed over the last decade. However, the
primary focus of these works has been content creation
[18,8, 39,40, 75, 34] rather than their ability to perform dis-
criminative tasks. In this paper, we revisit this classic gen-
erative vs. discriminative debate in the context of diffusion
models, the current state-of-the-art generative model fam-
ily. In particular, we examine how diffusion models com-
pare against the state-of-the-art discriminative models on
the task of image classification.

Diffusion models are a recent class of likelihood-based
generative models that model the data distribution via an
iterative noising and denoising procedure [09, 35]. They
have recently achieved state-of-the-art performance [20]
on several text-based content creation and editing tasks
[24, 66, 34, 65, 58]. Diffusion models operate by per-
forming two iterative processes—the fixed forward process,
which destroys structure in the data by iteratively adding
noise, and the learned backward process, which attempts to
recover the structure in the noised data. These models are
trained via a variational objective, which maximizes an evi-
dence lower bound (ELBO) [5] of the log-likelihood. For
most diffusion models, computing the ELBO consists of
adding noise € to a sample, using the neural network to pre-
dict the added noise, and measuring the prediction error.

Conditional generative models like diffusion models can
be easily converted into classifiers [53]. Given an input x
and a finite set of classes c that we want to choose from,
we can use the model to compute class-conditional likeli-
hoods pp(x | ¢). Then, by selecting an appropriate prior
distribution p(c) and applying Bayes’ theorem, we can get
predicted class probabilities p(c | x). For conditional diffu-
sion models that use an auxiliary input, like a class index for
class-conditioned models or prompt for text-to-image mod-
els, we can do this by leveraging the ELBO as an approxi-
mate class-conditional log-likelihood log p(x | c). In prac-
tice, obtaining a diffusion model classifier through Bayes’
theorem consists of repeatedly adding noise and computing
a Monte Carlo estimate of the expected noise reconstruction
losses (also called e-prediction loss) for every class. We call
this approach Diffusion Classifier. Diffusion Classifier can
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Figure 1. Overview of our Diffusion Classifier approach: Given an input image x and a set of possible conditioning inputs (e.g., text
for Stable Diffusion or class index for DiT), we use a diffusion model to choose the one that best fits this image. Diffusion Classifier
is theoretically motivated through the variational view of diffusion models and uses the ELBO to approximate log pg(x | c). Diffusion
Classifier chooses the conditioning c that best predicts the noise added to the input image. Diffusion Classifier can be used to extract a
zero-shot classifier from Stable Diffusion and a standard classifier from DiT without any additional training.

extract zero-shot classifiers from text-to-image diffusion
models and standard classifiers from class-conditional dif-
fusion models, without any additional training. We develop
techniques for appropriately choosing diffusion timesteps to
compute errors at, reducing variance in the estimated prob-
abilities, and speeding up classification inference.

We highlight the surprising effectiveness of our pro-
posed Diffusion Classifier on zero-shot classification, com-
positional reasoning, and supervised classification tasks by
comparing against multiple baselines on eleven different
benchmarks. By utilizing Stable Diffusion [64], Diffu-
sion Classifier achieves strong zero-shot accuracy and out-
performs alternative approaches for extracting knowledge
from the pretrained diffusion model. Our approach also
outperforms SOTA contrastive methods on the challenging
Winoground compositional reasoning benchmark [74]. Fi-
nally, we use Diffusion Transformer, an ImageNet-trained
class-conditional diffusion model, to perform standard clas-
sification. Our generative approach achieves 80.1% accu-
racy on ImageNet using only weak augmentations and ex-
hibits better robustness to distribution shift than competing
discriminative classifiers trained on the same dataset.

2. Related Work

Generative Models for Discriminative Tasks: Machine
learning algorithms designed to solve common classifi-
cation or regression tasks generally operate under two
paradigms: discriminative approaches directly learn to
model the decision boundary of the underlying task, while
generative approaches learn to model the distribution of the
data and then address the underlying task as a maximum
likelihood estimation problem. Algorithms like naive Bayes
[53], VAEs [42], GANs [26], EBMs [23, 45], and diffu-
sion models [69, 35] fall under the category of generative
models. The idea of modeling the data distribution to bet-
ter learn the discriminative feature has been highlighted by

several seminal works [31, 53, 62]. These works train deep
belief networks [32] to model the underlying image data as
latents, which are later used for image recognition tasks.
Recent works on generative modeling have also learned ef-
ficient representations for both global and dense prediction
tasks like classification [28, 33, 13, 8, 19] and segmentation
[46, 82, 10, 3, 9]. Moreover, such models [27, 50, 37] have
been shown to generalize better, be more robust, and be bet-
ter calibrated. However, most of the aforementioned works
either train jointly for discriminative and generative model-
ing or fine-tune generative representations for downstream
tasks. Directly utilizing generative models for discrimina-
tive tasks is a relatively less-studied problem, and in this
work, we particularly highlight the efficacy of directly using
recent diffusion models as zero-shot image classifiers.

Diffusion Models: Diffusion models [35, 69] have re-
cently gained significant attention from the research com-
munity due to their ability to generate high-fidelity and di-
verse content like images [06, 54, 24], videos [68, 34, 77],
3D [58, 49], and audio [43, 51] from various input modal-
ities like text. Diffusion models are also closely tied to
EBMs [45, 23], denoising score matching [71, 79], and
stochastic differential equations [72, 83]. In this work, we
investigate to what extent the impressive high-fidelity gen-
erative abilities of these diffusion models can be utilized for
discriminative tasks (namely classification). We take ad-
vantage of the variational view of diffusion models for ef-
ficient and parallelizable density estimates. The prior work
of Dhariwal & Nichol [20] proposed using a classifier net-
work to modify the output of an unconditional generative
model to obtain class-conditional samples. Our goal is the
reverse: using diffusion models as classifiers.

Zero-Shot Image Classification: Classifiers thus far
have usually been trained in a supervised setting where
the train and test sets are fixed and limited. CLIP [60]
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showed that exploiting large-scale image-text data can re-
sult in zero-shot generalization to various new tasks. Since
then there has been a surge towards building a new category
of classifiers, known as zero-shot or open-vocabulary clas-
sifiers, that are capable of detecting a wide range of class
categories [25, 47, 48, 1]. These methods have been shown
to learn robust representations that generalize to various dis-
tribution shifts [38, 16, 73]. Note that in spite of them being
called “zero-shot,” it is still unclear whether evaluation sam-
ples lie in their training data distribution. In contrast to the
discriminative approaches above, we propose extracting a
zero-shot classifier from a large-scale generative model.

3. Method: Classification via Diffusion Models

We describe our approach for calculating class condi-
tional density estimates in a practical and efficient manner
using diffusion models. We first provide an overview of dif-
fusion models (Sec. 3.1), discuss the motivation and deriva-
tion of our Diffusion Classifier method (Sec. 3.2), and fi-
nally propose techniques to improve its accuracy (Sec. 3.3).

3.1. Diffusion Model Preliminaries

Diffusion probabilistic models (“diffusion models” for
short) [69, 35] are generative models with a specific Markov
chain structure. Starting at a clean sample xg, the fixed for-
ward process ¢(x; | x¢—1) adds Gaussian noise, whereas
the learned reverse process pg(x;—1 | x¢, ¢) tries to denoise
its input, optionally conditioning on a variable c. In our set-
ting, x is an image and c represents a low-dimensional text
embedding (for text-to-image synthesis) or class index (for
class-conditional generation). Diffusion models define the
conditional probability of xg as:

T
po(xo | ) = / p(x7) Hpe(xt—1 | x¢,¢) dxy.r (1)
X1.T t=1

where p(xr) is typically fixed to N'(0, I). Directly maxi-
mizing py(Xg) is intractable due to the integral, so diffusion
models are instead trained to minimize the variational lower
bound (ELBO) of the log-likelihood:

logps (xo | ) > E, [log W(XOT")} @)

q(x1.7 | %0)

Diffusion models parameterize pp(x:—1 | X, c) as a Gaus-
sian and train a neural network to map a noisy input x; to a
value used to compute the mean of py(x;—1 | X¢, c). Using
the fact that each noised sample x; = /&, x + /1 — &y, €;
can be written as a weighted combination of a clean input x
and Gaussian noise € ~ N (0, I), diffusion models typically
learn a network e (x;, ¢) that estimates the added noise. Us-

Algorithm 1 Diffusion Classifier

1: Input: test image x, conditioning inputs {c;}?_, (e.g.,
text embeddings), # of trials T" per input
Initialize Errors]c;] = list() for each c;
for trial j = 1,...,7T do
Sample ¢ ~ [1,1000]; € ~ N(0,1)
X = /ax + /1 — aze
for conditioning ¢, € {c;}?"_; do
Errors[cy].append(|le — ea(x¢, ci)|?)
end for
end for

return argmin mean(Errors|c;])
c;eC

R A A A o

_.
=4

ing this parameterization, the ELBO can be written as:

T
“E. |3 wille — eolxi, 0)|? ~ logpo(xo | x1,¢) | +C
t=2

3)

where C'is a constant term that does not depend on c. Since
T = 1000 is large and log pg(xo | x1, ¢) is typically small,
we choose to drop this term. Finally, [35] find that removing
wy improves sample quality metrics, and many follow-up
works also choose to do so. We found that deviating from
the uniform weighting used at training time hurts accuracy,
so we set wy = 1. Thus, this gives us our final expression
for the ELBO:

“Euc [l = eo(xr,0)f°] +C @)

3.2. Classification with diffusion models

In general, classification using a conditional generative
model can be done by using Bayes’ theorem on the model
predictions and the prior p(c) over labels {c;}:

= p(ci) po(x | ci)
po(c; | x) Zj p(Cj) Po(x | cj)

A uniform prior over {c;} (i.e., p(c;) = =) is natural and
leads to all of the p(c) terms cancelling. For diffusion mod-
els, computing pg(x | c) is intractable, so we use the ELBO
in place of log pp(x | ¢) and use Eq. 4 and Eq. 5 to obtain a
posterior distribution over {c;}¥ ;:

exp{—Ey [[le — eo(x¢, i) |°]}
225 exp{ =By e[lle — e (x4, ¢;)[1?]}
We compute an unbiased Monte Carlo estimate of each ex-
pectation by sampling N (¢;, ¢;) pairs, with ¢; ~ [1,1000]
and € ~ N(0,I), and computing

1N
=

&)

po(ci | x) = (6)

2
Gi—ﬁﬁ(ﬁx+ 1_@ti€i’cj)H @)
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Figure 2. We show the e-prediction error for a fixed image of a
Great Pyrenees dog and two prompts. Each subplot corresponds to
a single ¢, with the error evaluated for every 1 < ¢ < 1000. Errors
are normalized to be zero-mean at each timestep across the 4 plots,
and lower is better. Variance in e-prediction error is high across
different €, but the variance in relative error between prompts at
each ¢ is much smaller for the same e.

By plugging Eq. 7 into Eq. 6, we can extract a classifier
from any conditional diffusion model. We call this method
Diffusion Classifier. Diffusion Classifier is a powerful,
hyperparameter-free approach to extracting classifiers from
pretrained diffusion models without any additional train-
ing. Diffusion Classifier can be used to extract a zero-shot
classifier from a text-to-image model like Stable Diffusion
[64], to extract a standard classifier from a class-conditional
diffusion model like DiT [57], and so on. We outline our
method in Algorithm 1 and show an overview in Figure 1.

3.3. Variance Reduction via Difference Testing

At first glance, it seems that accurately estimating
Ei e [|le — €o(xs,c)||?] for each class ¢ requires pro-
hibitively many samples. Indeed, a Monte Carlo estimate
even using thousands of samples is not precise enough to
distinguish classes reliably. However, a key observation is
that classification only requires the relative differences be-
tween the prediction errors, not their absolute magnitudes.
We can rewrite the approximate py(c; | x) from Eq. 6 as:

1
225 exp{Es [lle — ea(xs, €i)|[2 — [le — eo (%, ¢5) 1]}
®)

Eq. 8 makes apparent that we only need to estimate the dif-
ference in prediction errors across each conditioning value.
Practically, instead of using different random samples of

N
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Figure 3. Pets accuracy, evaluating only a single timestep per
class. Small ¢ corresponds to less noise added, and large ¢ corre-
sponds to significant noise. Accuracy is highest when an interme-
diate amount of noise is added (t = 500).

(t;,€;) to estimate the ELBO for each conditioning input
¢, we simply sample a fixed set S = {(¢;,¢;)} and use the
same samples to estimate the e-prediction error for every c.
This is reminiscent of paired difference tests in statistics,
which increase their statistical power by matching condi-
tions across groups and computing differences.

In Figure 2, we sample 4 fixed ¢;’s and evaluate ||¢; —
eo(v/arx + /T — aue;, c)||? for every t € 1,...,1000,
two prompts (“Samoyed dog” and “Great Pyrenees dog”),
and a fixed input image of a Great Pyrenees. Even for
a fixed prompt, the e-prediction error varies wildly across
the specific € used. However, the error difference between
each prompt is much more consistent. Thus, by using the
same (t;,€;) for each conditioning input, our estimate of
po(c; | X) is much more accurate.

4. Practical Considerations

Our Diffusion Classifier method requires repeated error
prediction evaluations for every class in order to classify
an input image. These evaluations naively require signif-
icant inference time, even with the technique presented in
Section 3.3. In this section, we present further insights and
optimizations that reduce our method’s runtime.

4.1. Effect of timestep

Diffusion Classifier, which is a theoretically principled
method for estimating p(c; | x), uses a uniform distribu-
tion over the timestep ¢ for estimating the e-prediction er-
ror. Here, we check if alternate distributions over ¢ yield
more accurate results. Figure 3 shows the Pets accuracy
when using only a single timestep evaluation per class. Per-
haps intuitively, accuracy is highest when using intermedi-
ate timesteps (¢ ~ 500). This begs the question: can we
improve accuracy by oversampling intermediate timesteps
and undersampling low or high timesteps?

We try a variety of timestep sampling strategies, in-
cluding repeatedly trying ¢ = 500 with many random e,
trying N evenly spaced timesteps, and trying the middle
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t—N/2,...,t+ N/2timesteps. The tradeoff between dif-
ferent strategies is whether to try a few ¢, repeatedly with
many e or to try many ¢; once. Figure 4 shows that all strate-
gies improve when taking using average error of more sam-
ples, but simply using evenly spaced timesteps is best. We
hypothesize that repeatedly trying a small set of ¢; scales
poorly since this biases the ELBO estimate.

4.2. Efficient Classification

A naive implementation of our method requires C' x [NV
trials to classify a given image, where C' is the number of
classes and N is the number of (¢, €) samples to evaluate for
each conditional ELBO. However, we can do better. Since
we only care about arg max, p(c | x), we can stop comput-
ing the ELBO for classes we can confidently reject. Thus,
one option to classify an image is to use an upper confi-
dence bound algorithm [2] to allocate most of the compute
to the top candidates. However, this would require mak-
ing the assumption that the distribution of |le — ey (x¢, ¢;)||?
is the same across timesteps t. We found that a simpler
method works just as well. We split our evaluation into a
series of stages, where in each stage we try each remaining
¢; some number of times and then remove the ones that have
the highest average error. This allows us to efficiently elimi-
nate classes that are almost certainly not the final output and
allocate more compute to reasonable classes. For example,
on the Pets dataset, we have Ny,ges = 2 stages. We try each
class 25 times in the first stage, then prune to the 5 classes
with the smallest average error. Finally, in the second stage
we try each of the 5 remaining classes 225 additional times.
In Algorithm 2, we write this as KeepList = (5,1) and
TriallList = (25,250). With this evaluation strategy,
classifying one Pets image requires 18 seconds on a RTX
3090 GPU. As our work focuses on understanding diffusion
model capabilities and does not propose a practical infer-
ence algorithm, we do not significantly tune the evaluation
strategies. Details are in Appendix D.2.

Reducing inference time could be a valuable avenue for
future work. Inference is still impractical when there are
many classes. Classifying a single ImageNet image, with
1000 classes, takes about 1000 seconds with Stable Diffu-
sion at 512 x 512 resolution, even with our adaptive strat-
egy. Table 6 shows inference times for each dataset, and we
discuss promising approaches for speedups in Section 7.

5. Experimental Details

We provide setup details, baselines & datasets for zero-
shot and supervised classification.

5.1. Zero-shot Classification

Diffusion Classifier Setup: We build Diffusion Classifier
on top of Stable Diffusion [64], a text-to-image latent diffu-
sion model trained on a filtered subset of LAION-5B [67].
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Figure 4. Zero-shot scaling curves for different timestep sam-
pling strategies. We evaluate a variety of strategies for choosing
the timesteps at which we evaluate the e-prediction error. Each
strategy name indicates which timesteps it uses— e.g., “0” only
uses the first timestep, “0, 500, 1000” uses only the first, middle
and last, “Even 10” uses 10 evenly spaced timesteps. We allocate
more € evaluations at the chosen timesteps as the number of trials
increases. Strategies that repeatedly sample from a restricted set
of timesteps, like “475, 500, 5257, scale poorly with trials. Using
timesteps uniformly from the full range [1, 1000] scales best.

Additionally, instead of using the squared ¢ norm to com-
pute the e-prediction error, we leave the choice between /1
and /5 as a per-dataset inference hyperparameter. See Ap-
pendix A for more discussion.

Baselines: We provide results using two strong discrim-
inative zero-shot models: (a) CLIP ResNet-50 [59] and
(b) OpenCLIP ViT-H/14 [11]. We provide these for refer-
ence only, as these models are trained on different datasets
with very different architectures from ours and thus can-
not be compared apples-to-apples. We further compare
our approach against two alternative ways to extract class
labels from diffusion models: (c) Synthetic-Labeled-SD:
We train a ResNet-50 classifier on synthetic data generated
using Stable Diffusion (with class-names as prompts), (d)
Real-Labeled-SD: This baseline is not a zero-shot classi-
fier, as it requires a labeled dataset of real-world images
and class-names. Inspired by Label-DDPM [3], we extract
Stable Diffusion features (mid-layer U-Net features at a res-
olution [8 x 8 x 1024] at timestep ¢ = 100), and then fit
a ResNet-50 classifier on the extracted features and corre-
sponding ground-truth labels. Details are in Appendix D.5.

Datasets: We evaluate the zero-shot classification perfor-
mance across eight datasets: Food-101 [6], CIFAR-10 [44],
FGVC-Aircraft [52], Oxford-IIIT Pets [56], Flowers102
[55], STL-10 [12], ImageNet [17] and ObjectNet [4]. Due
to computational constraints, we evaluate on 2000 test im-
ages for ImageNet. We also evaluate zero-shot composi-
tional reasoning ability on the Winoground benchmark [74].
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Zero-shot? Food CIFARIO Aircraft Pets Flowers STL10 ImageNet ObjectNet
Synthetic SD Data 12.6 353 9.4 31.3 22.1 38.0 18.9 52
X
Diffusion Classifier (ours) 719 87.1 24.3 86.2 59.4 95.3 58.9 38.3
CLIP ResNet-50 81.1 75.6 19.3 85.4 65.9 94.3 58.2 40.0
OpenCLIP ViT-H/14 92.7 97.3 423 94.6 79.9 98.3 76.8 69.2

Table 1. Zero-shot classification performance. Our zero-shot Diffusion Classifier method (which utilizes Stable Diffusion) significantly
outperforms the zero-shot diffusion model baseline that trains a classifier on synthetic SD data. Diffusion Classifier also generally out-
performs the baseline trained on Stable Diffusion features, especially on complex datasets like ImageNet, in spite of the fact that “SD
Features” uses the entire training set to train a classifier. Finally, although it is difficult to make an apples-to-apples comparison due to
architecture, our generative approach surprisingly matches CLIP ResNet-50 performance and is competitive with OpenCLIP ViT-H.

5.2. Supervised Classification

Diffusion Classifier Setup: We build Diffusion Clas-
sifier on top of Diffusion Transformer (DiT) [57], a
class-conditional latent diffusion model trained only on
ImageNet-1k [17]. We use DiT-XL/2 at resolution 256 X
256 and evaluate each class 250 times per image.

Baselines: We compare against the following discrimi-
native models trained with cross-entropy on ImageNet-1k:
ResNet-18, ResNet-34, ResNet-50, and ResNet-101 [29],
as well as ViT-L/32, ViT-L/16, and ViT-B/16 [22].

Datasets: We evaluate models on their in-distribution ac-
curacy on ImageNet [ 1 7] and out-of-distribution generaliza-
tion to ImageNetV2 [63], ImageNet-A [30], and ObjectNet
[4]. ObjectNet accuracy is computed on the 113 classes
shared with ImageNet. Due to computational constraints,
we evaluate Diffusion Classifier accuracy on a subset of
each test set (2000 images for ImageNet, 1000 for Ima-
geNetV2, 5000 for ImageNet-A, and 1000 for ObjectNet).
We compute the baseline accuracies on the same subsets.

6. Experimental Results

In this section, we conduct detailed experiments aimed
at addressing the following questions:

1. How does our model compare against zero-shot state-
of-the-art classifiers such as CLIP?

2. How does our method compare against alternative ap-
proaches for classification with diffusion models?

3. How well does our method compare to discriminative
models trained on the same dataset?

4. How robust is our model compared to state-of-art clas-
sifiers over various distribution shifts?

6.1. Zero-shot Classification Results

Table | shows that Diffusion Classifier significantly out-
performs Synthetic-SD-Data baseline, an alternate zero-
shot approach of extracting information from diffusion
models. Our method also achieves comparable performance
to SD-Features, which is a classifier trained supervised us-
ing the entire labeled training set for each dataset. In con-

trast, our method requires no additional training or labels.
Furthermore, while it is difficult to make a fair comparison
due to architectural differences, our method matches CLIP
ResNet-50 performance and is competitive with OpenCLIP
ViT-H. This is a major advancement in the performance of
generative approaches, and there are clear avenues for im-
provement. First, we perform no manual prompt tuning and
simply use the prompts used by the CLIP authors. Tun-
ing the prompts to the Stable Diffusion training distribution
should improve its recognition abilities.

Second, we suspect that Stable Diffusion classifier accu-
racy could improve with a wider training distribution. Sta-
ble Diffusion was trained on a subset of LAION-5B [67]
filtered aggressively to remove low-resolution, potentially
NSFW, or unaesthetic images. This decreases the likeli-
hood that it has seen relevant data for many of our datasets.
CIFAR10 and STL10, the datasets where Diffusion Classi-
fier has the largest relative gap with CLIP, use images that
are too small to pass the 256 x 256 size requirement.

Finally, another factor that affects performance is the
fact that the diffusion model optimization objective is cho-
sen for sample quality over good log-likelihoods. Ho et
al. [35] found that uniform weighting of the e-prediction
error over timesteps improves Inception score and FID at
the cost of lower log-likelihoods. Stable Diffusion [64],
having been trained on this uniformly weighted objective,
thus have worse log-likelihood estimation capabilities (and
hence potentially worse at classification) than if they had
been trained on the weighted variational objective.

6.2. Analyzing Diffusion Classifier for Zero-Shot
Classification

We now analyze why our proposed diffusion-based den-
sity estimator, Diffusion Classifier, works well.

Experiment Setup: Given an input image, we first
perform DDIM inversion [70, 41] (with 50 timesteps) us-
ing Stable Diffusion 2.1 and different captions as prompts:
BLIP [47] generated caption, human-refined BLIP gener-
ated caption, “a photo of {correct-class-name}, a type of
pet” and “a photo of {incorrect-class-name}, a type of pet.”.
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Figure 5. Analyzing Diffusion Classifier for Zero-Shot Classification: We analyze the role of different text/captions (BLIP, Human-
modified BLIP, correct class-name, incorrect class-name) for zero-shot classification using text-based diffusion models. To do so, we
invert the input image using the corresponding caption and then reconstruct it using deterministic DDIM sampling. The image inverted
and reconstructed using a human-modified BLIP caption aligns the most with the input image since this caption is the most descriptive.

The images reconstructed using correct class names as prompts (column 4) align much better with the input image in terms of class-

descriptive features of the underlying object than the images reconstructed using incorrect class names as prompts (columns 5 and 6) .

Row 3 (columns 4 and 5) demonstrates an example where the base Stable Diffusion does not distinguish the two cat breeds, Birman and
Ragdoll, and hence cannot invert/sample them differently. As a result, our classifier also fails.

Next, we leverage the inverted DDIM latent and the corre-
sponding prompt to attempt to reconstruct the original im-
age (using a deterministic diffusion scheduler [70]). The
underlying intuition behind this experiment is that the in-
verted image should look more similar to the original image
when a correct and appropriate/descriptive prompt is used
for DDIM inversion and sampling.

Experimental Evaluation: Figure 5 shows the results
of this experiment for the Oxford-IIIT Pets dataset. The im-
age inverted using a human-modified BLIP caption (column
3) is the most similar to the original image (column 1). This
aligns with our intuition as this caption is most descriptive
of the input image. The human-modified caption (column 2
in Figure 5) only adds the class name (Bengal Cat, Amer-
ican Bull Dog, Birman Cat) ahead of the BLIP predicted
“cat or dog” token for the foreground object and slightly en-
hances the description for the background. Comparing the
BLIP-caption results (column 2) with the human-modified
BLIP-caption results (column 3), we can see that by just
using the class-name as the extra token, the diffusion model
can inherit class-descriptive features (Bengal cat has stripes,
American Bulldog has a wider chin, Birman cat has a black
patch on the face) into the reconstructed image. This backs
our proposal of diffusion-based generative models as strong
zero-shot classifiers.

Compared to the image generated using the oracle

(human-generated) caption as a prompt, the images recon-
structed using only class names as prompts (columns 4,5,6)
align less with the input image (column 1). This is expected
as class names by themselves are not dense descriptions of
the input images. Comparing the results of column 4 (cor-
rect class names as prompt) with those of column 5,6 (in-
correct class names as prompt), we can see that the fore-
ground object has similar class-descriptive features (brown
and black stripes in row 1, white, and black face patches
in row 3) to the input image for the correct-prompt recon-
structions. This strongly highlights the fact that although
using class names as approximate prompts will not lead to
absolute perfect denoising or density estimation (Eq. 7), for
the global prediction task of classification, the correct class
names should provide enough descriptive features for de-
noising, relative to the incorrect class names.

Row 3 of Figure 5 further highlights an example where
the base Stable Diffusion model generates very similar-
looking inverted images for correct Birman and incorrect
Ragdoll text prompts. As a result, our model also incor-
rectly classifies Birman cat with Ragdoll, although getting
the perfect zero-shot top-2 classification metric. This hap-
pens because Ragdolls and Birmans look extremely similar
(even to humans). Finally, we fine-tuned the Stable Diffu-
sion diffusion model on a dataset of Ragdoll/Birman cats
(175 images in total). Diffusion Classifier using this fine-
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(a) there is [a mug] in (c) a person [sits] anda  (e) it’s a [truck] [fire]
[some grass] dog [stands]

(b) there is [some (d) a person [stands] (f)it’s a [fire] [truck]
grass] in [a mug] and a dog [sits]

Object Relation Both

Figure 6. Example visualizations of Winoground swap types.
Each category corresponds to a different type of linguistic swap
in the caption. Object swaps noun phrases, Relation swaps verbs,
adjectives, or adverbs, and Both can swap entities of both kinds.

Model Object Relation Both Average
Random Chance 25.0 25.0 25.0 25.0
CLIP ViT-L/14 27.0 25.8 577 28.2
OpenCLIP ViT-H/14 39.0 26.6 577 33.0

Diffusion Classifier (ours)  41.8 25.3 69.2 34.0

Table 2. Zero-shot reasoning results on Winoground Object,
Relation and Both benchmarks. Diffusion Classifier improves
text score (Eq 9) whenever object swaps are involved (Both also
swaps the object). However, performance on Relation still remains
roughly at random chance for all three methods.

tuned model achieves a classification accuracy of 85%, sig-
nificantly higher than the initial zero-shot accuracy of 45%.

6.3. Improved Compositional Reasoning Abilities

Large text-to-image diffusion models are capable of gen-
erating samples with impressive compositional generaliza-
tion. In this section, we test whether this generative ability
translates to improved compositional reasoning.

Winoground Benchmark: We compare Diffusion
Classifier to contrastive models like CLIP [59] on
Winoground [74], a popular benchmark for evaluating
the visio-linguistic compositional reasoning abilities of
vision-language models. Each example in Winoground
consists of 2 (image, caption) pairs. Notably, both captions
within an example contain the exact same set of words, just
in a different order. Vision-language multimodal models
are scored on Winoground by their ability to match captions
C; to their corresponding images ;. Given a model that
computes a score for each possible pair score(C;, I;), the
text score of a particular example ((Co, Ip), (Cy,11)) is 1 if
and only if it independently prefers caption Cy over caption
C1 for image I and vice-versa for image /. Precisely, the

model’s text score on an example is:

I[score(Co, Ip) > score(Cy,Iy) AND

score(Cy, 1) > score(Cy, I1)] ©
Achieving a high text score is extremely challenging. Hu-
mans (via Mechanical Turk) achieve 89.5% accuracy on
this benchmark, but even the best models do barely above
chance. Models can only do well if they understand com-
positional structure within each modality. CLIP has been
found to do poorly on this benchmark since its embeddings
tend to be more like a “bag of concepts” that fail to bind
subjects to attributes or verbs [80].
Each example is tagged by the type of linguistic swap
(object, relation and both) between the two captions:
1. Object: reorder elements like noun phrases that typi-
cally refer to real-world objects/subjects.
2. Relation: reorder elements like verbs, adjectives,
prepositions, and/or adverbs that modify objects.
3. Both: a combination of the previous two types.
We show examples of each swap type in Figure 6.

Results Table 2 compares Diffusion Classifier to Open-
CLIP ViT-H/14 (whose text embeddings Stable Diffusion
conditions on) and CLIP ViT-L/14. For the “Relation”
swaps, all three models do about the same as a purely ran-
dom baseline. However, Diffusion Classifier clearly does
better than both discriminative approaches when object
swaps are involved (Object and Both). This indicates that
Diffusion Classifier exhibits better compositional general-
ization than these contrastive methods. Since Stable Dif-
fusion uses the same text encoder as OpenCLIP ViT-H/14,
this improvement must come from better cross-modal bind-
ing of concepts to images. Overall, we find it surprising
that Stable Diffusion, trained with only sampling in mind,
can be repurposed into such a good classifier and reasoner.

6.4. Supervised Classification Results

We compare Diffusion Classifier, leveraging the
ImageNet-trained DiT-XL/2 model [57], to ViTs [22] and
ResNets [29] trained on ImageNet. Table 3 shows that
Diffusion Classifier matches the in-distribution accuracy of
ResNet-50 and ViT-L/32. To the best of our knowledge, we
are the first to show that a generative model can achieve Im-
ageNet classification accuracy comparable to highly com-
petitive discriminative methods. Diffusion Classifier has
stronger OOD performance on ImageNet-A than all of the
baselines, and Figure 7 shows that it achieves much higher
OOD accuracy on ImageNet-A than predicted based on its
in-distribution ImageNet accuracy. This “effective robust-
ness” [73] indicates that our generative appproach exhibits
better robustness to distribution shift, even when using the
same amount of labeled data as the discriminative baselines.
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Distribution Shift to Imagenet-A

Method 1D 00D
IN IN-v2 IN-A  ObjectNet

ResNet-18 70.6 58.3 0.3 26.6
ResNet-34 73.1 61.3 0.4 31.6
ResNet-50 77.6 63.2 0.0 35.6
ResNet-101 77.6 66.8 1.6 38.2
ViT-L/32 78.0 65.6 5.2 29.9
ViT-L/16 80.3 68.7 7.5 36.7
ViT-B/16 81.5 69.7 94 37.8
Diffusion Classifier  77.3 64.5 19.6 32.3

Table 3. Diffusion Classifier performs well ID and OOD.

We compare Diffusion Classifier (using DiT-XL/2 256 x 256) to
discriminative models trained on ImageNet. We highlight cells
where Diffusion Classifier does better. All models (generative and
discriminative) have only been trained on ImageNet-1k.

This is especially impressive since DiT was trained with
only random horizontal flips, unlike typical classifiers that
use RandomResizedCrop, Mixup [81], RandAugment [14],
and other tricks. Furthermore, [57] reports stable training
with fixed learning rate and no regularization other than
weight decay. These results indicate that it may be time
to revisit a generative approach to classification. Explicitly
training diffusion models to maximize their classification
accuracy is an exciting avenue for future work.

7. Conclusion and Discussion

We investigated diffusion models for zero-shot and su-
pervised classification by leveraging diffusion models as
conditional density estimators. By performing a simple un-
biased Monte Carlo estimate of the e-predictions at vari-
ous timesteps of diffusion sampling, we extract Diffusion
Classifier—a powerful, zero-shot, and hyper-parameter-
free classifier without any additional training. We find that
this classifier narrows the gap with SOTA discriminative ap-
proaches on zero-shot and standard classification and out-
performs them on multimodal reasoning.

Accelerating Inference While inference time is currently
a practical bottleneck, there are several clear ways to accel-
erate Diffusion Classifier. Decreasing resolution from the
default 512 x 512 (for SD) would yield a dramatic speedup.
Inference at 256 x 256 is at least 4 x faster, and inference
at 128 x 128 would be over 16x faster. Another option
is to use a weak discriminative model to quickly eliminate
classes that are clearly incorrect. Appendix B shows that
this would simultaneusly improve accuracy and reduce in-
ference time. Gradient-based search could backpropagate
through the diffusion model to solve arg max, log p(z | ¢),
which could eliminate the runtime dependency on the num-
ber of classes. New architectures could be designed to only
use the class conditioning c towards the end of the network,

50 Linear fit (piecewise)
—~ 40 Standard training &
 Q K . L Z3
° 30 Diffusion Classifier ¢ S
= At
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Figure 7. Effective robustness on ImageNet-A. Compared to
other models trained on the same amount of labeled data, Diffu-
sion Classifier achieves much higher ImageNet-A accuracy than
predicted by its ImageNet accuracy.

enabling reuse of intermediate activations across classes.
Finally, note that the error prediction process is easily par-
allelizable. With sufficient scaling or better GPUs in the
future, all Diffusion Classifier steps can be done in parallel
with the latency of a single forward pass.

Role of Diffusion Model Design Decisions Since we
don’t change the base diffusion model of Diffusion Clas-
sifier, the choices made during diffusion training affect the
classifier. For instance, Stable Diffusion [64] conditions
the image generation on the text embeddings from Open-
CLIP [38]. However, the language model in OpenCLIP is
much weaker than open-ended large-language models like
T5-XXL [61] because it is only trained on text data avail-
able from image-caption pairs, a minuscule subset of total
text data on the Internet. Hence, we believe that diffusion
models trained on top of T5-XXL embeddings, such as Im-
agen [06], should display better zero-shot classification re-
sults, but these are not open-source to empirically validate.
Other design choices, such as whether to perform diffusion
in latent space (e.g. Stable Diffusion) or in pixel space (e.g.
DALLE 2), can also affect the adversarial robustness of the
classifier and present interesting avenues for future work.

In conclusion, while generative models have previously
fallen short of discriminative ones for classification, today’s
pace of advances in generative modeling means that they
are rapidly catching up. Our strong classification, multi-
modal compositional reasoning, and generalization results
represent an encouraging step in this direction.
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