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Figure 1: The proposed method trained using only hundreds of images yields favorable results on unseen backlit images
captured in various scenarios, including the human face, natural landscape, animal, architecture, and night scene.

Abstract

We propose a novel unsupervised backlit image enhance-
ment method, abbreviated as CLIP-LIT, by exploring the po-
tential of Contrastive Language-Image Pre-Training (CLIP)
for pixel-level image enhancement. We show that the open-
world CLIP prior not only aids in distinguishing between
backlit and well-lit images, but also in perceiving hetero-
geneous regions with different luminance, facilitating the
optimization of the enhancement network. Unlike high-level
and image manipulation tasks, directly applying CLIP to
enhancement tasks is non-trivial, owing to the difficulty in
finding accurate prompts. To solve this issue, we devise a
prompt learning framework that first learns an initial prompt
pair by constraining the text-image similarity between the
prompt (negative/positive sample) and the corresponding im-
age (backlit image/well-lit image) in the CLIP latent space.
Then, we train the enhancement network based on the text-
image similarity between the enhanced result and the ini-

tial prompt pair. To further improve the accuracy of the
initial prompt pair, we iteratively fine-tune the prompt learn-
ing framework to reduce the distribution gaps between the
backlit images, enhanced results, and well-lit images via
rank learning, boosting the enhancement performance. Our
method alternates between updating the prompt learning
framework and enhancement network until visually pleasing
results are achieved. Extensive experiments demonstrate that
our method outperforms state-of-the-art methods in terms of
visual quality and generalization ability, without requiring
any paired data.

1. Introduction

Backlit images are captured when the primary light source
is behind some objects. The images often suffer from highly
imbalanced illuminance distribution, which affects the visual
quality or accuracy of subsequent perception algorithms.

Correcting backlit images manually is a laborious task

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8094



given the intricate challenge of preserving the well-lit re-
gions while enhancing underexposed regions. One could
apply an automatic light enhancement approach but will find
that existing approaches could not cope well with backlit
images [15]. For instance, many existing supervised light
enhancement methods [27, 28, 34] cannot precisely perceive
the bright and dark areas, and thus process these regions us-
ing the same pipeline, causing over-enhancement in well-lit
areas or under-enhancement in low-light areas. Unsuper-
vised light enhancement methods, on the other hand, either
rely on ideal assumptions such as average luminance and
a gray world model [10, 16] or directly learn the distribu-
tion of reference images via adversarial training [11]. The
robustness and generalization capability of these methods
are limited. As for conventional exposure correction meth-
ods [1, 30], they struggle in coping with real-world backlit
images due to the diverse backlit scenes and luminance in-
tensities. The problem cannot be well resolved by collecting
backlit images that consist of ground truth images that are
retouched by photographers [21], since these images can
never match the true distribution of real backlit photos.

In this work, we propose an unsupervised method for
backlit image enhancement. Different from previous unsu-
pervised methods that learn curves or functions based on
some physical hypothesis or learn the distribution of well-lit
images via adversarial training that relies on task-specific
data, we explore the rich visual-language prior encapsulated
in a Contrastive Language-Image Pre-Training (CLIP) [3]
model for pixel-level image enhancement. While CLIP can
serve as an indicator to distinguish well-lit and backlit im-
ages to a certain extent, using it directly for training a backlit
image enhancement network is still non-trivial. For example,
for a well-lit image (Fig. 2 top left), replacing similar con-
cepts “normal light” with “well-lit” brings a huge increase in
CLIP score. In the opposite case (Fig. 2 top right), “normal
light” becomes the correct prompt. This indicates the opti-
mal prompts could vary on a case-by-case basis due to the
complex illuminations in the scene. In addition, it is barely
possible to find accurate ‘word’ prompts to describe the
precise luminance conditions. Prompt engineering is labor-
intensive and time-consuming to annotate each image in the
dataset. Moreover, the CLIP embedding is often interfered
by high-level semantic information in an image. Thus, it is
unlikely to achieve optimal performance with fixed prompts
or prompt engineering.

To overcome the problems, we present a new pipeline to
tailor the CLIP model for our task. It consists of the follow-
ing components: 1) Prompt Initialization. We first encode
the backlit and well-lit images along with a learnable prompt
pair (positive and negative samples) into the latent space
using the pre-trained CLIP’s image and text encoder. By nar-
rowing the distance between the images and text in the latent
space, we obtain an initial prompt pair that can effectively
distinguish between backlit and well-lit images. 2) CLIP-

Figure 2: Motivation. CLIP scores of proper prompts demon-
strate alignment with human annotations (e.g., well-lit im-
ages), suggesting that CLIP can serve as an indicator to
differentiate between well-lit and backlit images. However,
the best wordings could differ on a case-by-case basis due
to complex illumination. In contrast, the learnable posi-
tive/negative prompts are more robust and consistent with
the labels.
aware Enhancement Training. With the initialized prompt,
we train an enhancement network using the text-image simi-
larity constraints in the CLIP embedding space. 3) Prompt
Refinement. We introduce a prompt fine-tuning mechanism,
in which we update the prompt by further distinguishing the
distribution gaps among backlit images, enhanced results,
and well-lit images via rank learning. We iteratively update
the enhancement network and prompt learning framework
until achieving visually pleasing results.

Our method stands apart from existing backlit image en-
hancement techniques as we leverage the intrinsic perceptual
capability of CLIP. Rather than solely utilizing CLIP as a
loss objective [8, 36], we incorporate prompt refinement as
an essential component of the optimization process to further
enhance performance. Our method is the first work to utilize
prompt learning and the CLIP prior into the low-level vision
task. Our approach surpasses state-of-the-art methods in
both qualitative and quantitative metrics, without requiring
any paired training data. We demonstrate the generalization
capability and robustness of our method through the preview
of our results shown in Fig. 1, and we compare our results
with existing methods in Fig. 3.

2. Related Work
Backlit Image Enhancement. Several approaches have
been proposed in the literature. Li and Wu [19] employ a re-
gion segmentation technique in combination with a learning-
based restoration network to separately process the back-
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Figure 3: Visual comparison between our method and the state-of-the-art light enhancement methods, including exposure correction method
(Afifi et al. [1]), backlit enhancement method (ExCNet [32]), low-light image enhancement methods (SCI [22], Zero-DCE [10], SNR-aware
[29], EnlightenGAN [11]). Our method effectively enhances the backlit image without introducing artifacts and over-/under-enhancement.
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Figure 4: Our proposed method involves two main stages. (a) The first stage constitutes prompt initialization and the initial
training of an enhancement network. (b) The second stage involves prompt refinement and enhancement model fine-tuning.
The two components here are updated in an alternating manner. The prompt refinement in the second stage aims at learning
accurate prompts that distinguish among backlit images, enhanced results, and well-lit images. By employing these learned
prompts, the enhancement network produces enhanced results that are similar to well-lit images and distinct from backlit
images in the CLIP embedding space, ultimately leading to visually pleasing results.

lit and front-lit areas of an image. Buades et al. [4] and
Wang et al. [25] use fusion-based techniques to combine
pre-processed images. Zhang et al. [32] learn a parametric
“S-curve” using a small image-specific network, ExCNet, to
correct ill-exposed images. More recently, Lv et al. [21]
have created the first paired backlit dataset, named BAID, in
which the ground truth images are edited by photographers
so that the quality is still sub-optimal, shown in Fig. 8.
Light Enhancement. Backlit image enhancement is closely
related to low-light image enhancement and exposure correc-
tion. Traditional methods for low-light image enhancement
[9, 18] typically employ the Retinex model to restore normal-
light images. With the availability of paired data [17, 27]
and simulated data [39], several supervised methods [28, 29]
have been proposed, which design various networks for low-
light image enhancement. Despite their success, supervised
methods suffer from limited generalization capability. Con-
sequently, unsupervised methods[10, 10, 16, 20, 22] have
garnered increasing attention. Since low-light image en-
hancement cannot effectively process both underexposed and
overexposed regions, exposure correction methods [1, 6, 30]
have also been proposed. For example, Afifi et al. [1] pro-
pose an exposure correction network based on Laplacian
pyramid decomposition and reconstruction.
CLIP and Prompting in Vision. CLIP [3] has shown re-

markable performance in zero-shot classification, thanks to
the knowledge learned from large-scale image-text data. Its
generalizability has been shown in high-level tasks[31, 13,
36]. A recent study[24] shows that the rich visual language
prior encapsulated in CLIP can be used for assessing both
the quality and abstract perception of images in a zero-shot
manner. These studies inspire our work to exploit CLIP for
backlit image enhancement. Prompt learning, as the core of
vision-and-language models, is a recent emerging research
direction. CoOp [38] introduces prompt learning into the
adaptation of vision-language models for downstream vision
tasks. CoCoOp [37] further improves the generalizability by
allowing a prompt to be conditioned on each input instance
rather than fixed once learned. Existing prompt learning
methods focus solely on obtaining better prompts for high-
level vision tasks. In contrast, our approach uses prompt
learning to extract more accurate low-level image representa-
tions, such as color, exposure, and saturation, while ignoring
high-level semantic information in CLIP.

3. Methodology

Overview. Our proposed approach consists of two stages,
as illustrated in Fig. 4. In the first stage, we learn an
initial prompt pair (negative/positive prompts referring to
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Figure 5: Illustration of the prompt learning framework. 1. Prompt Initialization. A cross-entropy loss constrains the learned
prompts, maximizing the distance between the representation of negative and positive samples in the CLIP latent space. 2.
Adding the enhanced results from the current round It into the ranking process (i.e., ranking loss) to make the enhanced
results It closer to the representation of the well-lit images Iw in the CLIP latent space and far from the representation of the
input image Ib. 3. Adding the images inferred from the previous round It−1 to constrain the result of updated enhancement
network. It being closer to the representation of positive samples than the previous round It−1, and far from the representation
of negative ones Ib in CLIP latent space.

backlit/well-lit images) by constraining the text-image simi-
larity between the prompt and the corresponding image in
the CLIP embedding space. With the initial prompt pair, we
use a frozen CLIP model to compute the text-image similar-
ity between the prompts and the enhanced results to train the
initial enhancement network. In the second stage, we refine
the learnable prompts by utilizing backlit images, enhanced
results, and well-lit images through rank learning. The re-
fined prompts can be used to fine-tune the enhancement
network for further performance improvement. We alternate
the prompt refinement and fine-tuning of the enhancement
network until we achieve visually pleasing results. It should
be noted that the CLIP model remains fixed throughout the
learning process, and our method does not introduce any
additional computational burden apart from prompt initial-
ization and refinement. We provide further details on the key
components of our approach below.

3.1. Initial Prompts and Enhancement Training

The first stage of our approach involves the initialization
of negative and positive (learnable) prompts to roughly char-
acterize backlit and well-lit images, as well as the training
of the initial enhancement network.
Prompt Initialization. The process of prompt initial-
ization is depicted in Fig. 5(a). Given a backlit image
Ib ∈ RH×W×3 and a well-lit image Iw ∈ RH×W×3

(as reference), we randomly initialize a positive prompt
Tp ∈ RN×512 and a negative prompt Tn ∈ RN×512. N
represents the number of embedded tokens in each prompt.
Then, we feed the backlit and well-lit images to the image
encoder Φimage of the pre-trained CLIP to obtain their la-
tent code. Meanwhile, we also extract the latent code of the
positive and negative prompts by feeding them to the text
encoder Φtext. Based on the text-image similarity in the

CLIP latent space, we use the binary cross entropy loss of
classifying the backlit and well-lit images to learn the initial
prompt pair:

Linitial = −(y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ)), (1)

ŷ =
ecos(Φimage(I),Φtext(Tp))∑

i∈{n,p} e
cos(Φimage(I),Φtext(Ti))

, (2)

where I ∈ {Ib, Iw} and y is the label of the current image, 0
is for negative sample Ib and 1 is for positive sample Iw.
Training the Initial Enhancement Network. Given the
initial prompts obtained from the first stage, we can train an
enhancement network with a CLIP-aware loss. As a baseline
model, we use a simple Unet [23] to enhance the backlit im-
ages, though more complex networks can also be employed.
Inspired by the Retinex model [14], which is widely used for
light enhancement, the enhancement network estimates the
illumination map Ii ∈ RH×W×1 and then produces the final
result via It = Ib/Ii. To train the enhancement network, we
employ CLIP-Enhance loss Lclip and identity loss Lidentity .

The CLIP-Enhance loss measures the similarity between
the enhanced result and the prompts in the CLIP space:

Lclip =
ecos(Φimage(It),Φtext(Tn))∑

i∈{n,p} e
cos(Φimage(It),Φtext(Ti))

. (3)

The identity loss encourages the enhanced result to be
similar to the backlit image in terms of content and structure:

Lidentity =

4∑
l=0

αl · ||Φl
image(Ib)− Φl

image(It)||2, (4)

where αl is the weight of the lth layer of the image encoder
in the ResNet101 CLIP model. The final loss for training the
enhancement network is the combination of the two losses:
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Lenhance = Lclip + w · Lidentity, (5)

where w is the weight to balance the magnitude of differ-
ent loss terms and is set to 0.9 empirically. We divide the
training schedule into two parts. First, we use the identity
loss to implement self-reconstruction as it encourages the
enhanced result to be similar to the backlit image in the pixel
space. Then, we use both the identity loss and the CLIP-
Enhance loss to train the network. For the identity loss, we
set αl=0,1,...,4 in Eq. (4) to 1.0 during the self-reconstruction
stage. During the training of the backlit enhancement net-
work, we set αl=0,1,2,3 = 1.0 and αl=4 = 0.5. This is
because we found that the features of the last layer are more
related to the color of the images, which is what we want to
adjust.

3.2. Prompt Refinement and Enhancement Tuning

In the second stage, we iteratively perform prompt re-
finement and enhancement network tuning. The prompt
refinement and the tuning of the enhancement network are
conducted in an alternating manner. The goal is to improve
the accuracy of learned prompts for distinguishing backlit
images, enhanced results, and well-lit images, as well as
perceiving heterogeneous regions with different luminance.
Prompt Refinement. We observed that in some cases, us-
ing only the initial prompts obtained from the backlit and
well-lit images is insufficient for enhancing the color and
illuminance. This is because the initial prompts may fail
to capture the fine-grained differences among the backlit
images, enhanced results, and well-lit images. To address
this, we propose a further refinement of the learnable posi-
tive and negative prompts. Given the result It ∈ RH×W×3

enhanced by the current enhancement network, we use a
margin ranking loss to update the prompts. The process of
prompt refinement is illustrated in Fig. 5(b).

Formally, we define the negative similarity score between
the prompt pair and an image as:

S(I) =
ecos(Φimage(I),Φtext(Tn))∑

i∈{n,p} e
cos(Φimage(I),Φtext(Ti))

, (6)

Then, the margin ranking loss can be expressed as:

Lprompt1 = max(0, S(Iw)− S(Ib) +m0)

+ max(0, S(It)− S(Ib) +m0)

+ max(0, S(Iw)− S(It) +m1),

(7)

where m0 ∈ [0, 1] represents the margin between the score
of well-lit/enhanced results and the backlit images in the
CLIP embedding space. We set m0 to 0.9 to extend the dis-
tance between backlit images and well-lit images as much as
possible. Meanwhile, m1 represents the margin between the
score of the enhanced results and the well-lit images in the
CLIP embedding space. We set m1 to 0.2 to ensure that the

Figure 6: Attention map changes with iterative learning.

Figure 7: Enhanced results of different iteration rounds.
enhanced results are similar to well-lit images. These hyper-
parameters are chosen empirically based on the performance
of the algorithm on the validation set.

To ensure that the iterative learning can improve the per-
formance in each iterative round, we preserve the previous
enhanced results It−1 obtained by the previous enhancement
network in the ranking process. We add the two groups of
enhanced results, It−1 and It, into the constraints, enabling
the newly learned prompts to focus more on the light and
color distribution of images, rather than high-level content
in the image (see Fig. 10). The loss function is modified as:

Lprompt2 = max(0, S(Iw)− S(Ib) +m0)

+ max(0, S(It−1)− S(Ib) +m0)

+ max(0, S(Iw)− S(It) +m1)

+ max(0, S(It)− S(It−1) +m2),

(8)

where m2 represents the margin between the newly enhanced
results and previously enhanced results. We set m2 = m1

as the margins m1 and m2 have the same target, keeping the
two image groups similar.
Tuning the Enhancement Network. The tuning of the
enhancement network follows the same process in Sec. 3.1
except we use the refined prompts to compute for the CLIP-
Enhance loss Lclip and generate the enhanced training data
from the updated network to further refine the prompt.
Discussion. To show the effectiveness of iterative learning,
following Chefer et al. [7], we visualize the attention maps in
the CLIP model for the interaction between the learned neg-
ative prompt and an input image at different alternate rounds.
The heatmap, as shown in Fig. 6, represents the relevance
between each pixel in the image and the learned prompt. The
heatmap shows that during iterations, the learned negative
prompt becomes increasingly relevant to the regions with
unpleasant lighting and color. We also show the enhanced
results with different iterative rounds in Fig. 7. At the in-
termediate round, the color in some enhanced regions of
the outputs is over-saturated. After enough iterations, the
over-saturation is corrected while the dark regions are closer
to the well-lit state compared with the previous outputs. The
observation here suggests the capability of our approach in
perceiving heterogeneous regions with different luminance.
We will provide the quantitative comparison in Sec. 4.3.
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Input Afifi et al. [1] Zero-DCE [10] EnlightenGAN [11] ExCNet [32] CLIP-LIT (Ours) Ground Truth

Figure 8: Visual comparison on the backlit images sampled from the Backlit300 test dataset.

4. Experiments

Dataset. For training, we randomly select 380 backlit im-
ages from BAID [21] training dataset as input images and
select 384 well-lit images from DIV2K [2] dataset as refer-
ence images. We test our methods on the BAID test dataset,
which includes 368 backlit images taken in diverse light
scenarios and scenes. To examine the generalization ability,
we collected a new evaluation dataset, named Backlit300,
which consists of 305 backlit images from Internet, Pexels,
and Flickr. The data will be made available.
Training. We implement our method with PyTorch on a
single NVIDIA GTX 3090Ti GPU. We use Adam optimizer
with β1 = 0.9 and β2 = 0.99. The number N of embedded
tokens in each learnable prompt is set to 16. We set the total
training iterations to 50K, within which, the number of self-
reconstruction iterations is set to 1K, the number of prompt
pair initialization learning iterations is set to 10K. We set
the learning rate for the prompt initialization/refinement and
enhancement network training to 5 · 10−6 and 2 · 10−5. The
batch size for prompt initialization/refinement and enhance-
ment network training is set to 8 and 16. During training, we
resize the input images to 512× 512 and use flip, zoom, and
rotate as augmentations.
Inference. The sizes of some input images from the BAID
and Backlit300 test datasets are large, and some methods
are unable to handle such high-resolution images directly.
To ensure a fair comparison, we resize all test images to
have a long side of 2048 pixels if their size is larger than
2048× 2048.
Compared Methods. As there are very few publicly avail-
able deep learning-based methods for backlit image enhance-
ment, we compare our approach with representative methods
that solve related tasks, including low-light image enhance-
ment methods such as Zero-DCE [10], Zero-DCE++ [16],
SCI [22], URetinex-Net [28], SNR-Aware [29], Zhao et
al. [35], and EnlightenGAN [11]; exposure correction meth-
ods such as Afifi et al. [1]; and backlit enhancement methods
such as ExCNet [32]. Some methods provide different mod-
els trained on different datasets. We compare our method

with all released models of different methods to ensure a fair
comparison. To further validate, we also provide retrained
supervised methods’ results in supplementary material. For
unsupervised methods, we retrained them on the same train-
ing data as our method to ensure that they were evaluated
under the same conditions.

4.1. Results

Visual Comparison. We present visual comparisons of
some typical samples from the BAID test dataset in Fig.
8. Due to space limitations, we only show the results of
the best-performing methods. The complete comparisons
of all methods can be found in the supplementary mate-
rial. Our method consistently produces visually pleasing
results with improved color and luminance without over- or
under-exposure. Moreover, our method excels in handling
challenging backlit regions, restoring clear texture details
and satisfactory luminance without introducing any artifacts,
while other methods may either fail to address such regions
or produce unsatisfactory results with visible artifacts.

We also evaluate our method on the Backlit300 test
dataset, and present the comparison results in Fig. 9. We can
see that compared to EnlightenGAN [11] and ExCNet [32],
our method produces results without visible distortion arti-
facts. Our method is also more effective in enhancing dark
regions, unlike Afifi et al. [1] and EXCNet [32]. Moreover,
our results exhibit better color contrast and input-output con-
sistency in well-lit regions. We emphasize that our method
achieves these results without the need for paired data, which
is not available in many real-world scenarios.
Quantitative Comparison. We use three full-reference im-
age quality evaluation (IQA) metrics, i.e., PSNR, SSIM [26],
and LPIPS [33] (Alex version) and one non-reference IQA
metric MUSIQ [12] to evaluate the quantitative results. As
current non-reference IQA metrics only evaluate the overall
image quality, they may not accurately measure the results of
backlit image enhancement. Hence, we primarily rely on the
state-of-the-art MUSIQ metric to evaluate the performance.

The quantitative comparison on the BAID test dataset is
presented in Tab. 1. Our method outperforms all state-of-
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Input Afifi et al. [1] Zero-DCE [10] EnlightenGAN [11] ExCNet [32] CLIP-LIT (Ours)
Figure 9: Visual comparison on the backlit images sampled from the Backlit300 test dataset.

Table 1: Quantitative comparison on the BAID test dataset. The best and second
performance are marked in red and blue, respectively.

Type Methods PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑
Input 16.641 0.768 0.197 52.115

Supervised

Afifi et al. [1] 15.904 0.745 0.227 52.863
Zhao et al.-MIT5K [35] 18.228 0.774 0.189 51.457

Zhao et al.-LOL [35] 17.947 0.822 0.272 49.334
URetinex-Net [28] 18.925 0.865 0.211 54.402

SNR-Aware-LOLv1 [29] 15.472 0.747 0.408 26.425
SNR-Aware-LOLv2real [29] 17.307 0.754 0.398 26.438

SNR-Aware-LOLv2synthetic [29] 17.364 0.752 0.403 23.960

Unsupervised

Zero-DCE [10] 19.740 0.871 0.183 51.804
Zero-DCE++ [16] 19.658 0.883 0.182 48.573
RUAS-LOL [20] 9.920 0.656 0.523 37.207

RUAS-MIT5K [20] 13.312 0.758 0.347 45.008
RUAS-DarkFace [20] 9.696 0.642 0.517 39.655

SCI-easy [22] 17.819 0.840 0.210 51.984
SCI-medium [22] 12.766 0.762 0.347 44.176
SCI-diffucult [22] 16.993 0.837 0.232 52.369

EnlightenGAN [11] 17.550 0.864 0.196 48.417
ExCNet [32] 19.437 0.865 0.168 52.576

Unsupervised
(retrained)

Zero-DCE [10] 18.553 0.863 0.194 49.436
Zero-DCE++ [16] 16.018 0.832 0.240 47.253

RUAS [20] 12.922 0.743 0.362 45.056
SCI [22] 16.639 0.768 0.197 52.265

EnlightenGAN [11] 17.957 0.849 0.182 53.871
CLIP-LIT (Ours) 21.579 0.883 0.159 55.682

Table 2: Quantitative comparison on the
Backlit300 test dataset.

Methods MUSIQ↑
Input 51.900

Afifi et al. [1] 51.930
Zhao et al.-MIT5K [35] 50.354

Zhao et al.-LOL [35] 48.334
URetinex-Net [28] 51.551

SNR-Aware-LOLv1 [29] 29.915
SNR-Aware-LOLv2real [29] 30.903

SNR-Aware-LOLv2synthetic [29] 29.149
Zero-DCE [10] 51.250

Zero-DCE++ [16] 48.216
RUAS-LOL [20] 40.329

RUAS-MIT5K [20] 44.523
RUAS-DarkFace [20] 48.216

SCI-easy [22] 50.642
SCI-medium [22] 48.216
SCI-diffucult [22] 49.428

EnlightenGAN [11] 48.308
ExCNet [32] 50.278

Zero-DCE [10] 48.491
Zero-DCE++ [16] 46.000

RUAS [20] 45.251
SCI [22] 51.960

EnlightenGAN [11] 48.261
CLIP-LIT (Ours) 52.921

the-art methods in terms of the full-reference IQA metrics,
indicating that the results generated by our method preserve
the content and structure of the original images well and are
close to the reference images retouched by photographers.
Our method also performs the best in the non-reference
MUSIQ metric when compared to other methods, demon-
strating the good image quality of our results. We also report
the quantitative comparison on the Backlit300 test dataset in
Tab. 2, where our method continues to achieve the best per-
formance, further indicating the effectiveness of our method.

4.2. User Study
We conducted a user study to more comprehensively eval-

uate the visual quality of enhanced results obtained by differ-
ent methods. In addition to our results, we chose the results
obtained from the top-3 PSNR methods: Zero-DCE [10],
EXCNet [32], and URetinex [28], as well as EnlightenGAN
[11] since it is a related work to our method. We randomly
selected 20 images from the Backlit300 test partition as the
evaluation set. For each image, we provided the input backlit

image, the corresponding images enhanced by our method
and a baseline. A total of 40 participants were invited to
select their preferred image.

The statistics of the user study are summarized in Fig. 11.
The vote distribution shows that our results are the most fa-
vored by participants, with obvious advantages over the other
methods. For each image, over 60% of the participants voted
for our result, indicating that our method generates more
visually pleasing results when compared to other methods.

4.3. Ablation Studies
Effectiveness of Iterative Learning. In addition to the
observation provided in Sec. 3.2, to further validate the ef-
fectiveness of iterative learning, we provide the quantitative
comparison in Tab. 3. As presented, fine-tuning the prompts
using the loss functions Eq. (7) and Eq. (8) improve the
enhancement performance.
Necessity of Prompt Refinement. Compared to the se-
lected words or sentences, our learned prompts can better
distinguish between backlit and well-lit images (see Fig. 12).
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Figure 10: Comparison of similarity scores: learned positive prompt vs. the same images with gradually improved luminance
and color conditions, indicating the learned prompts’ sensitivity to light and color distribution rather than high-level content.

Figure 11: User Study. Voting statistics of different methods
versus our method.

Table 3: Quantitative comparisons of the iterative learning
on the BAID test set.

Method PSNR↑ SSIM↑
fixed prompts (backlit/well-lit) 14.748 0.823

w/o ranking losses (w/o Eqs. (7) and (8)) 20.884 0.865
w/o t− 1 outputs (w/o Eq. (8)) 20.146 0.866

Ours 21.579 0.883

Figure 12: The distribution of similarity scores between the
learned positive prompt and images across the BAID test
dataset. The upper part is the kernel density estimation curve,
and the lower part is the point and box plot. Our learned
prompts have a more precise presentation of the images’
luminance quality than text prompts, such as backlit/well-lit.
Results in Tab. 3 also indicate that the enhancement model
trained under the constraint of our refined prompts performs
better than fixed prompts.
Impact of Training Data. To investigate the impact of
the reference data (the well-lit images) on our method, we
conducted an experiment where we retrained our method
on another dataset containing 1000 images selected from
DIV2K[2] and MTI5K[5], which has more diverse well-lit
images. The results, as shown in Fig. 13 and Tab. 4, indicate
that the two sets of results obtained by our method using
different training data are similar, and the quantitative scores
only have slight differences. Such results demonstrate that
the number and variety of well-lit images used as training
data have little impact on the performance of our method.

Table 4: Comparison of training data impact. The quantita-
tive comparisons are conducted on the BAID test dataset.

Reference images PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑
MIT5K [5]+DIV2K [2] 21.413 0.881 0.162 56.494

DIV2K [2] 21.579 0.883 0.159 55.682

Figure 13: Visual comparisons of our method trained using
different reference images.

Table 5: Comparison between CLIP-Enhance loss and ad-
versarial loss on the BAID test dataset.

loss PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑
Adversarial loss 17.407 0.785 0.194 52.416

CLIP-Enhance loss 21.579 0.883 0.159 55.682

Advantage of CLIP-Enhance Loss over the Adversarial
Loss. To show the advantage of our CLIP-Enhance loss over
the adversarial loss, we trained our enhancement network on
the same unpaired training data using adversarial loss. We
used the same discriminator as EnlightenGAN [11]. The re-
sults in Tab. 5 indicate that our CLIP-Enhance loss achieves
better enhancement performance than adversarial loss. This
may be due to the fact that the CLIP prior is more sensitive
to color and luminance distribution, enabling it to differenti-
ate between images with varied lighting conditions (see Fig.
10) and perceive unbalanced luminance regions (see Fig. 6).
Visual comparison is provided in supplementary material.

5. Conclusion
We have introduced a novel approach for training a deep

network to enhance backlit images using only a few hundred
unpaired data. Our method exploits the rich priors embedded
in a CLIP model and leverages an iterative prompt learning
strategy to generate more precise prompts that can better
characterize both backlit and well-lit images. Our study is
the first attempt to use CLIP for low-level restoration tasks,
and we anticipate that this methodology will find additional
applications in the future.
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