
A Parse-Then-Place Approach for Generating Graphic Layouts
from Textual Descriptions

Jiawei Lin1*, Jiaqi Guo2, Shizhao Sun2, Weijiang Xu2, Ting Liu1,
Jian-Guang Lou2, Dongmei Zhang2

1Xi’an Jiaotong University, 2Microsoft Research Asia
kylelin@stu.xjtu.edu.cn, tingliu@mail.xjtu.edu.cn,

{jiaqiguo, shizsu, weijiangxu, jlou, dongmeiz}@microsoft.com

Abstract

Creating layouts is a fundamental step in graphic de-
sign. In this work, we propose to use text as the guidance
to create graphic layouts, i.e., Text-to-Layout, aiming to
lower the design barriers. Text-to-Layout is a challeng-
ing task, because it needs to consider the implicit, com-
bined, and incomplete layout constraints from text, each of
which has not been studied in previous work. To address
this, we present a two-stage approach, named parse-then-
place. The approach introduces an intermediate representa-
tion (IR) between text and layout to represent diverse layout
constraints. With IR, Text-to-Layout is decomposed into a
parse stage and a place stage. The parse stage takes a tex-
tual description as input and generates an IR, in which the
implicit constraints from the text are transformed into ex-
plicit ones. The place stage generates layouts based on the
IR. To model combined and incomplete constraints, we use
a Transformer-based layout generation model and carefully
design a way to represent constraints and layouts as se-
quences. Besides, we adopt the pretrain-then-finetune strat-
egy to boost the performance of the layout generation model
with large-scale unlabeled layouts. To evaluate our ap-
proach, we construct two Text-to-Layout datasets and con-
duct experiments on them. Quantitative results, qualitative
analysis, and user studies demonstrate our approach’s ef-
fectiveness.

1. Introduction
Graphic design is ubiquitous in our daily life. Layout,

the sizes and positions of design elements, is fundamental
to a graphic design. However, creating layouts is a com-
plex task that requires design expertise and consumes much
time. While we may not have design knowledge and be
unfamiliar with design tools, we have a strong linguistic

*Work done during an internship at Microsoft Research Asia.

Title

Image

Description
Title

Image

Description
Title

Image

Description
Title

I want to show several pieces
of news, each of which has a
title and a brief summary. It
would be better to display a
heading at the top.

(b)

(c)(a)

Figure 1. An example of Text-to-Layout. (a) A user describes the
desired layout in natural language. (b) A visually appealing layout
is automatically generated. (c) The layout is a fundamental ingre-
dient of the final graphic design.

ability to express our requirements. That is also what we
are doing in the communication with designers. Thus, we
propose to use text as the guidance to create graphic lay-
outs, i.e., Text-to-Layout (see Figure 1). This enables people
without expertise to participate in the design. Moreover, it
helps professional designers create drafts more efficiently,
thereby reducing their workloads. Besides, it also makes
the discussion between users and designers much smoother.

While automatic layout generation has been intensively
studied [23, 1, 9, 20], Text-to-Layout is rarely investigated
and remains a challenging task due to its unique way to
specify layout constraints. (i) Implicit Constraint. Textual
description tends to be abstract and vague, and thus layout
constraints from the text are often specified in an implicit
and vague way. Consider the description in Figure 1. It
describes the elements in a layout by their functional roles
(e.g., news title and summary) rather than their primitive el-
ement types (e.g., text box). It also states a vague, subjective
position constraint (e.g., heading at the top) and implicitly
poses a hierarchy constraint (e.g., news should be organized
in a list). This characteristic makes Text-to-Layout dras-
tically different from other conditional layout generation

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23622

tasks where constraints are explicitly specified [24, 21, 20].
(ii) Combined Constraint. Various types of layout con-
straints are often jointly specified in text. For example, the
description in Figure 1 poses 4 different kinds of constraints
in total, including element type constraint (e.g., news title),
size constraint (e.g., brief summary), position (e.g., heading
at the top) and hierarchy (e.g., all news arranged in a list).
However, existing conditional layout generation approaches
only tackle one certain kind of constraint at a time. Hence,
how to model the combined constraints and create visually
appealing layouts that satisfy all constraints simultaneously
remains to be explored. (iii) Incomplete Constraint. Users
tend not to describe all the elements in a layout, because do-
ing so is extremely tedious. For instance, the description in
Figure 1 does not specify the image in each piece of news,
but the images are indispensable for engaging audiences’
attention. Thus, it is necessary to auto-complete the omit-
ted yet important elements. While previous work [9, 15]
has studied the task of layout completion, it has not been
jointly considered with other conditional layout generation
tasks. In addition to the above challenges, Text-to-Layout
also faces the serious problem of scarcity of labeled data.
Unlike the Text-to-Image task that has billions of text-image
pairs from the Internet [31, 30, 33], it is prohibitively expen-
sive to collect a similarly sized dataset for Text-to-Layout.

To tackle the challenging Text-to-Layout, our intuition is
three-fold. First, implicit layout constraints in a text could
be transformed into explicit ones. Considering the descrip-
tion in Figure 1, the functional roles of elements can be
transformed to corresponding primitive element type con-
straints. Since this transformation does not require any lay-
out generation capability, we can take advantage of pre-
trained language models (PLM) that have achieved impres-
sive natural language understanding performance even in a
low-data regime [3, 29, 34]. In addition, generating layouts
conditioned on explicit constraints is a well-studied setting
in prior work [1, 20, 15]. We can learn from their successful
experience to address the problem. Second, the state-of-the-
art approach [15] has formulated conditional layout genera-
tion as a sequence-to-sequence transformation problem and
demonstrated the superiority of representing constraints and
layouts as sequences. This motivates us to take the same
formulation and seek a way to represent combined and in-
complete constraints in Text-to-Layout as sequences. Third,
graphic designs are ubiquitous and their layouts are often
abundantly available [2, 22]. Though these layouts do not
have corresponding textual descriptions, their large quantity
and rich layout patterns are highly valuable for learning to
generate high-quality, diverse layouts, especially when only
scarce labeled data is available.

Motivated by the intuitions, we propose a two-stage
approach for Text-to-Layout, called parse-then-place (see
Figure 2). The approach introduces an intermediate repre-

sentation (IR) between text and layout to formally repre-
sent diverse layout constraints, such as element type, size,
and hierarchy. By introducing IR, our approach decom-
poses Text-to-Layout into two stages: parse and place. The
parse stage takes a textual description as input and outputs
IR. Since IR is a representation of layout constraints spec-
ified in the text, we formulate the parse stage as a natural
language understanding problem and finetune the T5 [29]
PLM to map the text to IR. The place stage generates lay-
outs according to the constraints stated in IR. Inspired by
UniLayout [15], we use a Transformer-based layout gener-
ation model and carefully design an input-output sequence
format to represent combined, incomplete constraints and
layouts. In addition, owing to the two-stage design of our
approach, we can leverage large-scale unlabeled layouts to
pretrain the layout generation model and then finetune it
with labeled data.

To evaluate our approach, we construct two Text-to-
Layout datasets: Web5K and RICO2.5K. Web5K targets
Web page layouts and contains 4,790 ⟨text,IR,layout⟩
samples, while RICO2.5K targets Android UI layouts and
includes 2,412 samples. The quantitative and qualitative
results on both datasets show that parse-then-place signifi-
cantly outperforms baseline approaches in terms of percep-
tual quality and consistency. We also conduct a user study
to evaluate our approach more comprehensively. Compared
to the baseline approaches, users find that our generated lay-
outs better match textual descriptions in 47.6% and 56.0%
of trials, and have higher quality in 52.2% and 62.5% of
trials in Web5K and RICO2.5K, respectively.

2. Related Work
Graphic layout generation. The automatic generation of
aesthetic layouts has fueled growing interest. Early work in
this field primarily studies unconditional layout generation
using advanced generative models, such as Generative ad-
versarial Network (GAN) [23] and Variational Autoencoder
(VAE) [1, 16, 38]. To enable more practical usages, re-
cent work explores conditional layout generation, where the
goal is to generate layouts conforming to certain constraints.
Li et al. [24] introduce a GAN-based approach to incorpo-
rate the meta attributes of elements, e.g., reading order, ex-
pected area, and aspect ratio, for layout generation. Jyothi et
al. [17] present LayoutVAE, a two-stage VAE-based frame-
work that generates layouts given a set of element types.
Lee et al. [21] propose Neural Design Network, a three-
stage VAE-based method that generates layouts based on a
set of elements and their partial geometric relations. Gupta
et al. [9] propose LayoutTransformer for layout comple-
tion. Given an initial layout with only one element, Lay-
outTransformer leverages self-attention to complete it au-
toregressively. Kong et al. [20] observe that LayoutTrans-
former’s pre-defined generation order hinders it from per-

23623

Parse Stage

Text: I want to show three pieces of news, each of
which has a title and a brief summary. It would be
better to display a heading at the top.

Pretrained Language Model
IR: [[group [prop:repeat"3"] [item [e:title]
[e:description [prop:size"small"]]]]
[e:title [prop:position"top"]]]

Place Stage

Constraints: title top | [description small | title]
| [description small | title] | [description small |
title]

Layout Generation Model

Hierarchy ConstraintPosition Constraint Size ConstraintType Constraint

Title

Image

Description
Title

Image

Description
Title

Image

Description
Title

Layout:

Pointwise Constraint Groupwise Constraint

Figure 2. An illustration of our approach. We decompose Text-to-Layout into a parse stage and a place stage. The parse stage maps a
textual description into an intermediate representation (IR), in which implicit and vague constraints are transformed into explicit ones. The
place stage generates visually pleasing layouts according to the combined constraints. Meanwhile, the place stage completes reasonable
elements (the three images in the generated layout) automatically.

forming tasks where the constraints disagree with the pre-
defined order. To alleviate this issue, they report Bidirec-
tional Layout Transformer to generate layouts in a non-
autoregressive manner. The above work adopts customized
model architectures and optimization methods for different
conditional layout generation tasks. Jiang et al. [15] instead
propose UniLayout, which formulates conditional layout
generation as a sequence-to-sequence transformation prob-
lem and adopts the Transformer encoder-decoder architec-
ture to address it. They further design an input sequence for-
mat to represent diverse constraints in a unified way so that
the model can handle various tasks. Albeit effective, these
methods cannot be directly adopted to Text-to-Layout. On
the one hand, they all require explicit constraints as input,
but the constraints from text are implicit and vague. On the
other hand, they only tackle one certain kind of constraint at
a time, but the constraints from text are often combined and
incomplete, requiring an ability to take into consideration
various kinds of constraints. To bridge this gap, our ap-
proach’s parse stage transforms implicit constraints in the
text to explicit ones, and the place stage extends UniLayout
to enable layout generation conditioned on combined and
incomplete constraints.

Text-to-Layout in other scenarios. There has been several
attempts at using text as the guidance to create other types
of layouts. House Plan Generative Model (HPGM) is a pi-
oneering work on generating building layouts from textual
descriptions [4]. Given a description, HPGM first parses it
into a structural graph representation and then predicts room
attributes according to the graph. Tan et al. [35] study scene
layout generation from text and propose Text2Scene, an
end-to-end approach that sequentially generates objects and
their attributes. Radevski et al. [28] target the same problem
and present SR-BERT. It is built upon BERT [6], and it gen-
erates layouts in an iterative and non-autoregressive manner.
Hong et al. [12] introduce semantic layout generation from
text and regard it as an intermediate step for Text-to-Image.

Similarly, Huang and Canny [13] propose to generate sketch
layouts from text. They use the layouts as bottleneck rep-
resentations for Text-to-Sketch. These methods are highly
customized for their targeted scenarios. Adapting them to
graphic layouts is non-trivial and of inferior performance,
as shown in our experiments.

3. Methodology
In this section, we elaborate on our parse-then-place ap-

proach for generating a layout y from a textual description
x. As illustrated in Figure 2, our approach introduces an
intermediate representation (IR) and decomposes the gen-
eration into the following two stages:

1. Parse Stage: Translate the textual description x into
IR z. As IR is a formal representation of layout
constraints, we formulate this stage as a natural lan-
guage understanding problem and take advantage of
pretrained language models (PLM) to address it.

2. Place Stage: Generate a layout y conditioned on IR
z. We formulate this stage as a sequence-to-sequence
transformation problem and use a Transformer-based
layout generation model. To support combined and
incomplete constraints, we carefully design an input-
output sequence format to represent constraints and
layouts. In addition, we adopt a pretrain-then-finetune
strategy to improve the layout generation model with
large-scale unlabeled layout data.

In what follows, we first introduce the IR and then elab-
orate on the parse and place stages, respectively.

3.1. Intermediate Representation

As a bridge between text and layout, IR should meet the
following two requirements. (i) Expressiveness. IR should
be expressive to represent diverse user constraints on lay-
outs. Otherwise, the mapping from text to IR will incur
undesired information loss, and consequently, the gener-
ated layouts will fail to satisfy user constraints. (ii) For-

23624

Textual Description Intermediate Representation

1 a news heading [e:title]
2 a news heading at the top [e:title [prop:position"top"]]
3 a brief news summary [e:description [prop:size"small"]]
4 3 news pieces. each has a title and summary [group [prop:repeat"3"] [item[e:title][e:description]]]

Table 1. Illustrative examples of intermediate representation.

malism. IR should have a good formalism so that existing
natural language understanding techniques can exhibit ac-
curate understanding performance. This is because previous
studies [8, 11] show that the formalism of formal languages
could significantly impact understanding performance.

To this end, we design an IR based on the above require-
ments. Table 1 shows 4 illustrative examples of our de-
signed IR. In our preliminary study on Text-to-Layout,1 we
found that users tend to describe layouts by specifying the
functional roles (Table 1 #1), positions (#2), sizes (#3), and
hierarchies (#4) of elements. Hence, our IR currently sup-
ports these constraints2. In terms of formalism, the IR fol-
lows the hierarchical representation scheme [10], which has
exhibited accurate understanding performance [32]. More
details and examples of the IR can be found in the appendix.

3.2. Parse Stage

The parse stage aims to map a description x to IR z,
so that implicit constraints in text are transformed into ex-
plicit constraints. We use T5 [29], a Transformer encoder-
decoder based PLM to address this natural language under-
standing problem. While T5 is pretrained on text data, it has
been shown to be effective at translating natural language to
formal language even in a low-data regime [37, 34]. Specif-
ically, the encoder takes a description x = {x1, · · · , xn}
as input, where xi is the i-th token in the description,
and it outputs the contextualized representations hx =
{hx

1 , · · · , hx
n}. Then the decoder autoregressively predicts

the tokens of IR Pθ (zj |z<j , x) by attending to previously
generated tokens z<j (via self-attention) and the encoder
outputs hx (via cross-attention). During training, we fine-
tune T5 parameters θ by minimizing the negative log-
likelihood of labeled IR z given input text x:

Lθ = − 1

|D|
∑

(x,z,y)∈D

|z|∑
j=1

logPθ(zj |z<j , x). (1)

3.3. Place Stage

The goal of the place stage is to generate a layout y
according to the combined constraints specified in IR z.
Inspired by UniLayout [15], we formulate this stage as

1We invited people without professional graphic design skills to de-
scribe a set of layouts and studied their descriptions’ characteristics.

2Notably, it is easy to extend the IR for other types of constraints.

a sequence-to-sequence transformation problem and adopt
a Transformer encoder-decoder based layout generation
model to solve it. Given an IR z, we first deterministically
transform it into a constraint sequence s = π(z). The model
then takes the sequence s as input and generates a layout
sequence y. The parameters ϕ of the model are trained to
minimize the negative log-likelihood of the layout sequence
y given constraint sequence s:

LFT
ϕ = − 1

|D|
∑

(x,z,y)∈D

|y|∑
j=1

logPϕ(yj |y<j , π(z)). (2)

To support combined and incomplete constraints, we care-
fully design the constraint and layout sequences, as intro-
duced below.
Constraint Sequence. To represent combined constraints,
we serialize each constraint as a sub-sequence and concate-
nate all of them in a certain order.

First, we divide layout constraints into the following two
categories, which have distinct characteristics and thus re-
quire different serialization strategies. (i) Pointwise con-
straint refers to the constraint specific to a single element.
The element type, position and size constraints in Figure 2
all fall into this category. (ii) Groupwise constraint denotes
the hierarchy between a group of elements. It includes con-
tainment (e.g., a toolbar with two icons and a textbox) and
arrangement (e.g., three news lists) relationships between
elements. It is worth noting that the layout constraints stud-
ied in prior work (see Section 2) are all within our consid-
eration.

For pointwise constraint, we denote it using a pre-
defined constraint token k ∈ Σ, where Σ is a vocabulary
that varies with different constraints (e.g., the vocabulary
for position constraint could be Σpos = {left, · · · , top}).
Multiple pointwise constraints on an element are repre-
sented as a concatenation of constraint tokens: Cpo =
{ktype kpos ksize}, where ktype, kpos and ksize are element
type, position and size constraints, respectively. For exam-
ple, we use image left large to express “a large image on the
left”. In terms of groupwise constraint, we take inspiration
from recent work that represents structural knowledge bases
(e.g., knowledge graph and table) as sequences [37, 25], and
use brackets to denote groups Cgp. For instance, the hier-
archy “a news piece with an image and a title at the top”
can be represented as [image | title top]. With these seri-

23625

alization strategies, we transform the combined constraints
into a sequence by sorting the sub-sequences in the alpha-
betic order of element types and concatenating them with a
separator |:

s =
{
Cpo

1 | · · · |Cpo
p |Cgp

1 | · · · |Cgp
q

}
.

We provide some examples of constraint sequences in the
appendix. Since IR is a formal language, it can be determin-
istically translated into corresponding constraint sequences.
Layout Sequence. To facilitate the model learning to com-
plete omitted elements given incomplete constraints, we in-
troduce a categorical attribute a ∈ {complete, null} for each
element to indicate whether it is auto-completed or not. It
helps the model better distinguish the auto-completed ele-
ments. Each element ei now has 6 attributes, including the
newly-introduced attribute ai, element type ci, left coordi-
nate li, top coordinate ti, width wi and height hi. Following
previous work [15, 9, 20], we represent an element as a se-
quence with 6 discrete tokens ei = {aicilitiwihi}, in which
the continuous attributes li, ti, wi and hi are discretized into
integers between [0, nbins − 1]. Then, we represent a lay-
out by sorting all the elements in the alphabetic order and
concatenating all their tokens using a separator |:

y = {a1c1l1t1w1h1| · · · |amcmlmtmwmhm} .

Exploiting Unlabeled Layouts. Learning to generate high-
quality, diverse layouts from combined, incomplete con-
straints is challenging, especially when only a small vol-
ume of labeled data is available. But fortunately, graphic
layouts are easily accessible in the wild. Though they do
not have corresponding textual descriptions, their wealthy
layout patterns are tremendously helpful for acquiring lay-
out generation skills. Therefore, we attempt to pretrain the
layout generation model with large-scale unlabeled layouts,
and then finetune it with labeled data.

For pretraining, we curate a synthetic dataset Ds =

{(ẑi, yi)}|Ds|
i from unlabeled layouts, where IR ẑi is syn-

thesized from layout yi, and we use it to pretrain the model:

LPT
ϕ = − 1

|Ds|
∑

(ẑ,y)∈Ds

|y|∑
j=1

logPϕ(yj |y<j , π(ẑ)). (3)

This dataset is built upon the layout’s structural nature,
making it feasible to extract desired constraints from un-
labeled layouts through some heuristic rules. For example,
we can infer position constraints from the position property
of elements in the layout source code. In addition, the hi-
erarchical characteristics of source code also facilitate the
extraction of hierarchy constraints. With these constraints,
we can synthesize an IR from a layout and then build the
synthetic dataset. The details of IR synthesis are given in
the appendix.

After pretraining, we finetune the model with labeled
data (see Equation 2) to close the distribution gap between
synthetic and labeled data. There are two main reasons for
this gap. First, the characteristics of elements that are com-
monly omitted by users cannot be perfectly described in the
synthesized IR. Second, position and size constraints are
somewhat subjective, so there is an inevitable gap between
the constraints extracted by rules and human perception.

3.4. Inference

At inference time, our approach can generate multiple
layouts for a textual description. The parse stage takes as
input a description and generates an IR with the largest like-
lihood (argmax sampling). The place stage deterministi-
cally transforms the IR into a constraint sequence and gen-
erates multiple layouts via Top-K sampling, which samples
the next token from the top k most probable choices [7].

4. Experiments
4.1. Setups

Datasets. We conduct experiments on two graphic lay-
out datasets, including RICO [5] and WebUI. RICO is a
public dataset of Android UI layouts without textual de-
scriptions. As introduced in Section 3, our method uses
⟨text,IR⟩ labeled data during the parse stage. In the
place stage, it uses unlabeled layout data for pretrain-
ing and ⟨IR,layout⟩ labeled data for finetuning. Thus,
we labeled 2,412 ⟨text,IR,layout⟩ triplets (denoted as
RICO2.5K) for the RICO dataset, and left the other 40k lay-
outs in the dataset as unlabeled data (denoted as RICO40K).
WebUI is a dataset of web UI layouts crawled from the In-
ternet by ourselves. Similarly, we labeled 4,790 data (de-
noted as Web5K) and left 1.5 million layouts as unlabeled
data (denoted as Web1.5M). Moreover, we split the labeled
data (i.e., RICO2.5K and Web5K) into training, validation
and test sets by ratios of 80%, 10% and 10%.

Specifically, to ensure the coverage and quality of the la-
beled datasets, we create them by following steps: 1) sam-
pling from the original unlabeled set, 2) training annotators,
3) labeling the data by annotators, and 4) examining anno-
tation quality by experts. Please see the appendix for exam-
ples of labeled data and details of the annotation process.
Baselines. While there is no existing work in our scenario
(i.e., graphic layouts), there are strong methods in relevant
scenarios (e.g., scenes). We adapt them as our baselines.
MockUp [14] encodes a description with BERT [6] and
adopts Transformer decoder to generate a layout autore-
gressively. Text2Scene [35] leverages an RNN-based text
encoder to encode a description, and recursively predicts
the next element in a layout and its corresponding bound-
ing box by the proposed convolutional recurrent module.
SR-BERT [28] first obtains a description’s contextual rep-

23626

WebUI

Method FID ↓ Align. ↓ Overlap ↓ mIoU ↑ UM ↑ Type Cons. ↑ Pos & Size Cons. ↑ Hierarchy Cons. ↑

Mockup [14] 37.0123 0.0059 0.4348 0.1927 0.4299 0.6851 0.5508 -
Text2Scene [35] 27.1612 0.0042 0.4455 0.1899 0.4164 0.7515 0.5377 -
SR-BERT [28] 10.1640 0.0032 0.6501 0.2322 0.4127 0.8551 0.6423 -
Ours 2.9592 0.0008 0.1380 0.6841 0.5080 0.8864 0.8086 0.4622

Real data - 0.0007 0.1343 - - - - -

RICO

Method FID ↓ Align. ↓ Overlap ↓ mIoU ↑ UM ↑ Type Cons. ↑ Pos & Size Cons. ↑ Hierarchy Cons. ↑

Mockup [14] 29.5170 0.0096 0.5416 0.1868 0.2892 0.7548 0.5724 -
Text2Scene [35] 23.4324 0.0072 0.4558 0.1972 0.3512 0.8093 0.6061 -
SR-BERT [28] 13.1268 0.0055 0.6373 0.2927 0.3306 0.9295 0.6425 -
Ours 4.9256 0.0015 0.2918 0.5267 0.3661 0.9539 0.7145 0.7841

Real data - 0.0029 0.2714 - - - - -

Table 2. Quantitative results. The perceptual quality of generated layouts is measured in columns 2-6. The consistency between the
generated layout and the description is measured in columns 7-9, including Type Cons., Pos & Size Cons. and Hierarchy Cons.

resentations from BERT, and then generates a layout in an
iterative and non-autoregressive manner. They all require
the description and layout pairs as the training data.
Evaluation Metrics. We evaluate generation performance
from two aspects. The first aspect is the perceptual quality,
reflecting whether the generated layout looks aesthetically
pleasing and diverse. Following previous work, we con-
sider five metrics. Fréchet Inception Distance (FID) [18]
measures the distance between the distribution of gener-
ated layouts and that of real layouts, which reflects both
aesthetic quality and diversity. Alignment (Align.) [24] in-
dicates whether elements in the generated layout are well-
aligned. Overlap [24] measures the overlap area between
two arbitrary elements in the generated layout. Maximum
IoU (mIoU) [18] measures the maximum IoU between the
elements in the generated layout and those in the real lay-
out. Align., Overlap and mIoU mainly measure aesthetic
quality. Unique Match (UM) [1] uses DocSim [27] to re-
trieve the most similar layout from the training set for each
generated layout and then computes the ratio of the number
of distinct retrieved layouts to the total number of generated
layouts. It mainly indicates diversity.

The second aspect is the consistency, reflecting whether
the generated layout matches the description. We measure
it by the satisfaction rate of constraints [21]. Specifically,
we subdivide the constraints into three groups based on the
discussion in Section 3.1 and compute the satisfaction rate
for each of them, denoted as Type Consistency, Position &
Size Consistency and Hierarchy Consistency3 respectively.
Implementation Details. Our approach is implemented
with PyTorch [26] and Huggingface [36]. In the parse stage,
we use T5-base. In the place stage, the layout generation

3Hierarchy Consistency is only computed in our method since hierar-
chies are hard to parse from the layouts generated by baseline methods.

model has 12 encoder layers and 12 decoder layers. The
hidden dimension is set to 768, and the number of attention
heads is set to 8. All the models are optimized with Adam
optimizer [19] on NVIDIA V100 GPUs. The layouts in We-
bUI and RICO are proportionally scaled to 120 × 120 and
144× 256 respectively. See the appendix for more details.

4.2. Main Results

Quantitative Analysis. Table 2 shows the quantitative re-
sults. Our method significantly outperforms the baselines
on all metrics, indicating that it can generate layouts that are
more visually pleasing and consistent with the descriptions.
Moreover, our method can generate layouts with similar or
even better Align. and Overlap compared to real data.
Qualitative Analysis. Figure 3 and Figure 4 show qualita-
tive results. The results demonstrate that the layouts from
our approach are of high quality, while the layouts from
baselines frequently contain misalignment, incorrect over-
lap, and weird spacing. Besides, the layouts from our ap-
proach are more consistent with the descriptions. For ex-
ample, in case 2 of Figure 3, the baselines fail to generate
five links, while our approach succeeds. Our approach can
also complete omitted yet important elements. For exam-
ple, in case 1 of Figure 3, it completes a background image,
which is common on web pages. Figure 4 shows qualitative
results for layout diversity, where each method generates
four layouts for each description. The results indicate that
our approach can generate diverse layouts with rich patterns
and high quality, while other methods either suffer from un-
satisfactory quality or homogeneous layout designs. For
example, in case 1 of Figure 4, the eight groups are ar-
ranged in different ways by our approach. However, in SR-
BERT, they are all arranged in a two-column manner with
misalignment and incorrect overlap.

23627

Text2Scene SR-BERT Ours GT

Case 1: A page for borrowing personal loans. There need to
be two textboxes introducing the service. There should be two
buttons for using the service, one for personal loans and the
other for credit card services.

Text2Scene SR-BERT Ours GT

Case 2: A header page of NFO for users to get information.
The page should include the logo of NFO and five links,
including "TERMS & CONDITIONS", "PRIVACY
POLICY", "CASTING", "WEBMASTER", and "APPAREL".

Text2Scene SR-BERT Ours GT

Case 3: A page showing the homepage of a company’s
website. There are five categories of items, with each
representing a set of information. Each category consists of
several links for more info.

Case 4: A page to introduce the company General Dynamics.
On the page, there should contain a slogan and a text box to
have a brief introduction to the GD. Besides, there should be a
text button that the user can click it to know more about GD.
There should be an image of the topic.

Case 5: A page for publicity attractions. There should be one
title "Get beneath the surface of these destinations". Six
images are used to show the scenic pics and each of them
includes one label showing the spot name.

Case 6: A page for introducing the service provided by a
website. The page should have three groups of information
sets: "Web", "Social Media", and "Building". Each group
should include a small image, a title, a further introduction,
and a link "READ MORE" for more info by clicking it.

Case 7: A page showing the history of barcodes scanned.
There is a long toolbar with two icons and a small text inside
at the top of the page. Under the toolbar, there is a long list
item with two long texts in it. They show the result of the
barcodes recorded. At the bottom, there is a long web view.

Case 8: A page to start the app let's do eat. On the top, there is
a big image. In the middle of the page, there are two entries of
texts introducing the app briefly. At the button of the page,
there is two text buttons side by side used to skip the page or
start the app.

Case 9: A page to log in for an app. On the top, there is a
toolbar with an icon on the left and a small text in the middle.
Below is an image with one text. Below them is an input used
to enter the verification code. Below is a text button used to
resent the code. At the bottom, there is a text button for login.

Case 10: A page of some functions when using an app. On the
top of the page, there are four icons. Below them are six text
buttons for different functions.

Case 11: The page is used for choosing the user's city. There
is a toolbar within an icon and a text on the top of the page.
Below the toolbar are 13 entries of text to choose the city, line
by line.

Case 12: This is a page for the photos. On the top, there is a
toolbar with one text. Below, there is a background image that
occupies most of the page with two text buttons for users to
cancel or done.

R
IC

O
W

eb
U

I

Figure 3. Qualitative comparison with the best two baselines (zoom-in for better view). The real layout corresponding to the description is
denoted as GT. The generated layout does not have to be the same as GT, as long as it is visually pleasing and matches the description.

Dataset Method Perceptual Quality ↑ Consistency ↑

WebUI
Text2Scene 0.226 0.250
SR-BERT 0.252 0.274

Ours 0.522 0.476

RICO
Text2Scene 0.170 0.200
SR-BERT 0.205 0.240

Ours 0.625 0.560

Table 3. Results of user study. For each model, we count how
many people prefer the layouts it generates.

User Study. In the user study, we compare with the best two
baselines (measured by quantitative metrics), SR-BERT and
Text2Scene. For each method, we randomly sample 500
and 200 generated layouts on WebUI and RICO test sets, re-
spectively. Then, we invite 7 participants to the study. Each
participant is asked to evaluate 100 groups, each group con-
taining a description and three layouts generated by differ-
ent models. They need to answer two questions: 1) which
layout has the best perceptual quality, and 2) which layout
is the most consistent with the description. Table 3 shows
the results. Our approach surpasses the baselines in both
perceptual quality and consistency.

Dataset Random Initialization T5 Initialization

WebUI 35.5% 76.2%
RICO 9.9% 56.6%

Table 4. IR accuracy in the parse stage.

4.3. Ablation Studies

Our parse stage utilizes a pretrained language model. To
understand its effect, we compare the performance of the
network initialized by T5 pretrained weights and the same
network initialized randomly. To avoid the influence of the
place stage, we only evaluate the performance of the parse
stage. We use IR accuracy as the metric, where a predicted
IR is considered correct if all its constraints are the same
as those of the golden IR. Table 4 shows the results. On
both datasets, IR accuracy improves significantly with T5
pretrained weights initialization. This suggests that PLM
offers great help in transforming implicit constraints in the
text into explicit ones.

To study the effect of unlabeled data used in the place
stage, we conduct experiments on various volumes of unla-
beled layouts: 0, 50K, 250K, 500K, 1M and 1.5M (ours).

23628

Text2Scene SR-BERT Ours GT

R
IC

O
W

eb
U

I Case 1: A page for introducing a phone system to users. There should be one title named "Everything your team needs from a phone system" on the top and eight groups under it.
Each group contains one icon, one title such as "Local and toll-free", "Texting", and "Call transfer", and a brief description under it.

Case 2: A page for marketing a website. The page should have the title "Consumer Insights and Audiences", a further description, and a link "Read more" for the user to read more
info by clicking it. Then it will be better to have an image of the topic.

Case 3: This page is used for searching for bookings. On the top, there is one toolbar with two images and one text in it. Below are one text and three inputs where users can input
the confirmation number, passenger's first name, and passenger's last name. Below them is one text button where users can continue to add services.

Case 4: A page for users to set a new keyboard. There are two images in the upper of the page. Below them, there is a text, a text button for enabling this keyboard as a new
keyboard, and an image.

Figure 4. Qualitative comparison of layout diversity with the best two baselines. We show four layouts for each description.

FID ↓ Align. ↓ Overlap ↓ mIoU ↑ UM ↑ Type Cons. ↑ Pos & Size Cons. ↑ Hierarchy Cons. ↑

0 (w/o pretrain) 3.8141 0.0010 0.2453 0.5773 0.6304 0.8727 0.7737 0.4447
50K 3.3341 0.0009 0.1792 0.6623 0.5191 0.8863 0.8114 0.4155
250K 3.2846 0.0009 0.1597 0.6783 0.5055 0.8844 0.8229 0.4480
500K 3.1259 0.0009 0.1400 0.6843 0.4998 0.8780 0.8086 0.4291
1M 2.9408 0.0008 0.1504 0.6836 0.4776 0.8837 0.8103 0.4339

1.5M (Ours) 2.9592 0.0008 0.1380 0.6841 0.5080 0.8864 0.8086 0.4622
w/o two stages 4.3163 0.0010 0.3010 0.3168 0.5236 0.8620 0.7691 0.4350
w/ golden IR 2.6555 0.0008 0.1301 0.6866 0.5047 0.9532 0.8286 0.5058

Table 5. Ablation studies on WebUI.

Table 5 shows the results. Without using any unlabeled lay-
out, our approach already outperforms all baselines (see Ta-
ble 2) on every metric, suggesting that our overall algorithm
design is very effective. When more unlabeled layouts are
used, the performance is further boosted, especially on per-
ceptual quality metrics (such as FID, Overlap and mIoU),
indicating that the rich patterns of unlabeled layouts indeed
improve generation skills.

Moreover, since we represent the layouts as sequences, it
is feasible to train an end-to-end model using the description
and layout pairs. Specifically, we finetune T5 on Web5K
(denoted as w/o two stages). The results show that the end-
to-end variant performs worse than our method under the
same condition (w/o pretrain), again confirming the effec-
tiveness of our method. Finally, we input the golden IR into
the place stage (denoted as w/ golden IR) to study the effect
of the parse stage on the overall approach performance. We
see that almost all metrics are significantly improved in this
setting. This leads us to believe that utilizing more powerful

PLM can further boost the performance of our approach.

5. Conclusion
In this work, we propose to use text as guidance to cre-

ate graphic layouts, i.e., Text-to-Layout. To tackle this chal-
lenging task, we present a two-stage approach, parse-then-
place. It introduces an intermediate representation between
text and layout to decompose the problem into a parse and
place stage. Experiments demonstrate the effectiveness of
our approach. However, our approach still has some limita-
tions. First, it does not perform as well on some high-level
descriptions (e.g., a layout exhibiting products) as on de-
tailed descriptions in the datasets. Second, it currently does
not support arbitrarily nested hierarchy constraints (e.g., a
modal with three list items, each containing two texts). In
the future, we plan to generalize our approach to more types
of graphic design. We will also investigate how to extend
our intermediate representation to support user constraints
in other modalities, e.g., images.

23629

References
[1] Diego Martin Arroyo, Janis Postels, and Federico Tombari.

Variational transformer networks for layout generation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13642–13652, 2021. 1,
2, 6

[2] Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara,
Abhinav Rastogi, Jindong Chen, and Blaise Aguera y Arcas.
Uibert: Learning generic multimodal representations for ui
understanding, 2021. 2

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 2

[4] Qi Chen, Qi Wu, Rui Tang, Yuhan Wang, Shuai Wang, and
Mingkui Tan. Intelligent home 3d: Automatic 3d-house de-
sign from linguistic descriptions only, 2020. 3

[5] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hib-
schman, Daniel Afergan, Yang Li, Jeffrey Nichols, and Ran-
jitha Kumar. Rico: A mobile app dataset for building data-
driven design applications. In Proceedings of the 30th annual
ACM symposium on user interface software and technology,
pages 845–854, 2017. 5

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics. 3, 5

[7] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical
neural story generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 889–898, Melbourne, Aus-
tralia, July 2018. Association for Computational Linguistics.
5

[8] Jiaqi Guo, Qian Liu, Jian-Guang Lou, Zhenwen Li, Xueqing
Liu, Tao Xie, and Ting Liu. Benchmarking meaning rep-
resentations in neural semantic parsing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1520–1540, Online, Nov.
2020. Association for Computational Linguistics. 4

[9] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S
Davis, Vijay Mahadevan, and Abhinav Shrivastava. Layout-
transformer: Layout generation and completion with self-
attention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1004–1014, 2021. 1,
2, 5

[10] Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and
Mike Lewis. Semantic parsing for task oriented dialog us-
ing hierarchical representations. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Pro-
cessing, pages 2787–2792, Brussels, Belgium, Oct.-Nov.
2018. Association for Computational Linguistics. 4

[11] Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin Guu,
Panupong Pasupat, and Yuan Zhang. Unlocking composi-
tional generalization in pre-trained models using intermedi-
ate representations. arXiv preprint arXiv:2104.07478, 2021.
4

[12] Seunghoon Hong, Dingdong Yang, Jongwook Choi, and
Honglak Lee. Inferring semantic layout for hierarchical text-
to-image synthesis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2018. 3

[13] Forrest Huang and John F. Canny. Sketchforme: Composing
sketched scenes from text descriptions for interactive appli-
cations. In Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology, UIST ’19, page
209–220, New York, NY, USA, 2019. Association for Com-
puting Machinery. 3

[14] Forrest Huang, Gang Li, Xin Zhou, John F Canny, and
Yang Li. Creating user interface mock-ups from high-level
text descriptions with deep-learning models. arXiv preprint
arXiv:2110.07775, 2021. 5, 6

[15] Zhaoyun Jiang, Huayu Deng, Zhongkai Wu, Jiaqi Guo,
Shizhao Sun, Vuksan Mijovic, Zijiang Yang, Jian-Guang
Lou, and Dongmei Zhang. Unilayout: Taming unified
sequence-to-sequence transformers for graphic layout gen-
eration. arXiv preprint arXiv:2208.08037, 2022. 2, 3, 4, 5

[16] Zhaoyun Jiang, Shizhao Sun, Jihua Zhu, Jian-Guang Lou,
and Dongmei Zhang. Coarse-to-fine generative modeling for
graphic layouts. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 36(1):1096–1103, Jun. 2022. 2

[17] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Si-
gal, and Greg Mori. Layoutvae: Stochastic scene layout gen-
eration from a label set. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9895–
9904, 2019. 2

[18] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota
Yamaguchi. Constrained graphic layout generation via latent
optimization. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 88–96, 2021. 6

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[20] Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan
Hao, Haifeng Gong, and Irfan Essa. Blt: Bidirectional lay-
out transformer for controllable layout generation. arXiv
preprint arXiv:2112.05112, 2021. 1, 2, 5

[21] Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng
Gong, Ming-Hsuan Yang, and Weilong Yang. Neural de-
sign network: Graphic layout generation with constraints. In
European Conference on Computer Vision, pages 491–506.
Springer, 2020. 2, 6

[22] Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu
Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw,
Ming-Wei Chang, and Kristina Toutanova. Pix2struct:
Screenshot parsing as pretraining for visual language under-
standing. arXiv preprint arXiv:2210.03347, 2022. 2

[23] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang,
and Tingfa Xu. Layoutgan: Generating graphic layouts with

23630

wireframe discriminators. arXiv preprint arXiv:1901.06767,
2019. 1, 2

[24] Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu,
Christina Wang, and Tingfa Xu. Attribute-conditioned lay-
out gan for automatic graphic design. IEEE Transactions on
Visualization and Computer Graphics, 27(10):4039–4048,
2020. 2, 6

[25] Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul Crook,
Zhenpeng Zhou, Zhiguang Wang, Zhou Yu, Andrea
Madotto, Eunjoon Cho, and Rajen Subba. Leveraging
slot descriptions for zero-shot cross-domain dialogue State-
Tracking. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages
5640–5648, Online, June 2021. Association for Computa-
tional Linguistics. 4

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 6

[27] Akshay Gadi Patil, Omri Ben-Eliezer, Or Perel, and Hadar
Averbuch-Elor. Read: Recursive autoencoders for document
layout generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 544–545, 2020. 6

[28] Gorjan Radevski, Guillem Collell, Marie-Francine Moens,
and Tinne Tuytelaars. Decoding language spatial relations
to 2D spatial arrangements. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020, pages
4549–4560, Online, Nov. 2020. Association for Computa-
tional Linguistics. 3, 5, 6

[29] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Pe-
ter J Liu, et al. Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach. Learn. Res.,
21(140):1–67, 2020. 2, 4

[30] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 2

[31] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International Confer-
ence on Machine Learning, pages 8821–8831. PMLR, 2021.
2

[32] Subendhu Rongali, Luca Soldaini, Emilio Monti, and Wael
Hamza. Don’t parse, generate! a sequence to sequence ar-
chitecture for task-oriented semantic parsing. In Proceedings
of The Web Conference 2020, WWW ’20, page 2962–2968,
New York, NY, USA, 2020. Association for Computing Ma-
chinery. 4

[33] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 2

[34] Nathan Schucher, Siva Reddy, and Harm de Vries. The
power of prompt tuning for low-resource semantic parsing.
In Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Pa-
pers), pages 148–156, Dublin, Ireland, May 2022. Associa-
tion for Computational Linguistics. 2, 4

[35] Fuwen Tan, Song Feng, and Vicente Ordonez. Text2scene:
Generating compositional scenes from textual descriptions.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2019. 3, 5, 6

[36] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Trans-
formers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations,
pages 38–45, Online, Oct. 2020. Association for Computa-
tional Linguistics. 6

[37] Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng Wu,
Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor Zhong,
Bailin Wang, Chengzu Li, Connor Boyle, Ansong Ni, Ziyu
Yao, Dragomir Radev, Caiming Xiong, Lingpeng Kong, Rui
Zhang, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. Uni-
fiedskg: Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. EMNLP, 2022.
4

[38] Kota Yamaguchi. Canvasvae: Learning to generate vector
graphic documents. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
5481–5489, October 2021. 2

23631

