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Abstract

Current video captioning efforts most focus on describ-
ing a single video while the need for captioning videos in
groups has increased considerably. In this study, we pro-
pose a new task, group video captioning, which aims to in-
fer the desired content among a group of target videos and
describe it with another group of related reference videos.
This task requires the model to effectively summarize the
target videos and accurately describe the distinguishing
content compared to the reference videos, and it becomes
more difficult as the video length increases. To solve this
problem, 1) First, we propose an efficient relational approx-
imation (ERA) to identify the shared content among videos
while the complexity is linearly related to the number of
videos. 2) Then, we introduce a contextual feature refinery
with intra-group self-supervision to capture the contextual
information and further refine the common properties. 3) In
addition, we construct two group video captioning datasets
derived from the YouCook2 and the ActivityNet Captions.
The experimental results demonstrate the effectiveness of
our method on this new task.

1. Introduction
Video captioning aimed to understand the scene and de-

scribe it in words has recently attracted extensive research
attention. Currently, mainstream video captioning works
mostly focus on describing individual videos [27, 8, 17, 34].
However, since the amount of online videos has been grow-
ing at an exponential rate, the need for captioning the video
groups has increased considerably like titling a categorized
video folder and query suggestions for text-based video re-
trieval. Although [16] has studied group image captioning
which boosts many real-world applications, there is no ex-
isting work in the literature that addresses the task of group-
based video captioning.

Thus, we are inspired by the group image captioning[16]
and propose the novel problem of group video caption:
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Figure 1. An example of context-aware group video captioning.
We aim to generate a description chop the onion that best describes
the target group (shown in the green area) with the contextual in-
formation from the reference group (shown in the yellow area).

given a group of target videos and a group of reference
videos, to generate a description that simultaneously iden-
tifies both important generalities arising in target videos, as
well as, particularities captured from reference videos. A
promising application scenario is shown in Figure 1, the
search engine returns a group of topically close videos with
the query of the onions and the user indicates his/her inter-
est in some of the videos (i.e. the target group shown in
green area). With the remaining videos (i.e. the reference
group shown in yellow area), we can infer the user’s hidden
preferences among multiple events in the target videos and
suggest a refined search query chop the onions accordingly.

Compared to the conventional setting of single-based
video captioning, the challenges of our group-based video
captioning are two-fold: 1) identifying which temporal fea-
tures correspond to the shared content for videos in the
group, and 2) distinguishing the shared content of target
videos from all videos in the reference group, i.e. group-
level distinctiveness.

For identifying the shared content, the method of group
image captioning is not suitable for video since the dispar-
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ity of solution space size. We argue that the fundamental
issue of group-based captioning among group videos lies in
modeling the long sequence relevance from the cross-video
perspective in an efficient manner. Following this premise,
we first investigate the traversal method whose computation
complexity is O (mn) for n videos with m frames. Then,
we further introduce an Efficient Relational Approximation
(ERA) to summarize the shared content in video groups. In
particular, we find a new random feature mapping that can
be equivalent to the softmax-kernel method and the com-
plexity scales linearly O (n) with the number of videos.

To achieve group-level distinctiveness, we propose the
contextual feature refinery which can learn to capture
the salient feature difference between target and reference
videos precisely. Specifically, the contextual feature refin-
ery enables cross-group interactions between target and ref-
erence video groups through a multi-layer co-attention. To
avoid the model mainly extracting information from certain
unrelated/noisy content like background, we further intro-
duce Intra-Group Contrastive (IGC) learning into the re-
finery. The key idea of IGC is leveraging the intra-group
self-supervision to learn desirable representations that keep
alignment between semantically-related the contextual fea-
ture and the shared target group feature.

As the first step in this type of problem, we constructed
two new datasets for our task by using the existing dense
video captioning dataset YouCook2[37] and ActivityNet
Captions[15]. The reason is that dense video captioning
dataset annotations map sentences describing events to the
segments in the videos which is easier to be grouped. Spe-
cially, we parse the single-segment caption and use the
shared verb phrases as the groups’ ground-truth captions.

Our main contributions can be summarized as:

• We propose a novel task of group video captioning that
can boost many real-world applications like video re-
trieval and classification.

• We introduce a new model for group video captioning
with an efficient relational approximation that summa-
rizes relevant shared information in the groups. Also,
our model proposes a contextual feature refinery to
capture discriminative information.

• We constructed two new video datasets specifically for
the group captioning problem. Experiments on the two
datasets demonstrate that our model outperforms vari-
ous baselines on the group video captioning task.

2. Related work
2.1. Video Captioning

Deep neural networks have achieved remarkable success
in various fields of computer vision[9, 12, 31, 30, 32]. Clas-
sical approaches usually extract visual representations with
an encoder, then feed them to a language decoder and output

sequences of words [27, 10, 11, 3]. Recent advances mainly
focus on improving visual representation. Existing solu-
tions can be coarsely divided into two categories: Object-
based and Frame-based methods. Object-based models
mainly exploit the spatio-temporal object interaction.[35]
aggregated salient objects according to their spatial coor-
dinate to capture the dynamic information in the temporal
domain. [20, 36] constructed a spatio-temporal graph ac-
cording to the position as well as representation of objects
to enhance object-level representation. In contrast, Frame-
based methods focus on the relationship between contents.
[7] used boundary-aware pooling to select the features of
different scenarios and reduce redundancy. Another re-
lated work is dense video captioning[15, 38] which studies
the event-based visual representation. [29] focused on the
holistic scene and event-level features to generate a more
comprehensive description. However, our work focuses on
the novel setting of group-based video captioning which
aims to extract cross-video visual representations, not ob-
jects or frames.

2.2. Multi-input Captioning

There are several captioning settings that need multiple
inputs in image captioning. The existing multi-input cap-
tioning setting has two main tasks: change captioning and
distinctive captioning. Change captioning [25, 22, 33, 23]
take before and after images as input and describe the
changes between them(i.e., 1 − 1). Thus, the two images
in their settings always have strong correlations. Distinc-
tive captioning initially uses an image as input and gener-
ates recognizable captions for each image [18, 19]. Recent
work[28] proposes to study the task based on a target im-
age and a group of semantic-similar reference images(i.e.,
1 − N ). There are also some N − N works that use a
group of images as references to investigate certain prop-
erties of the target images. [2] firstly model both relevance
and diversity among image contents in group-based image
captioning. [16] summarized common information in the
target group while capturing discriminative information be-
tween them. However, the methods of multi-input image
captioning cannot be simply applied to video since 1) the
complexity of identifying the relationship among videos in-
creases with the video length, and 2) there is a large amount
of unrelated content makes it more difficult to focus the dis-
criminative information.

3. Dataset
To train our model, we need a large-scale dataset where

each data sample consists of a group of target videos with its
shared content description and a larger group of reference
videos. The reference videos need to be relevant to target
videos while containing a larger variety of visual content
and thus providing context for describing target videos. The
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Figure 2. Dataset construction method. A constituency parse tree
is used to extract the common VP. Then the videos with shared VP
are grouped to form the target group, the videos with same verb or
noun that partially match the targets form the reference group.

description should be simultaneously specific to the target
group and conditioned on the reference group.

3.1. Dataset Construction

We construct two datasets with pairs of a video group
and its shared content description on top of two existing
dense video captioning datasets: ActivityNet Captions[15],
which is the largest existing public dense video captioning
dataset, and YouCook2[37], which contains videos that are
visually different but semantically similar that suitable for
our experiment.

First, for the target videos, what is the shared content?
Different from images, events are important for video un-
derstanding and applications. So, we extracted verb phrases
(VP) from sentences attached to segments in all videos by
using a constituency parse tree[14]. More specifically, if a
common VP appeared in different videos, we grouped them.
As shown in Figure 2, videos with the verb phrases chop
the onions are selected to form the target group. Note that
there are multiple events in a video, which means that more
than one common content can be identified in the video
group. Without any reference videos, people won’t know
what should be emphasized in the target videos. In contrast,
they will focus on the unique events of chop, and predict
chop the onions when they use the videos in the yellow re-
gion as references.

Thus, after getting the shared verb phrases among tar-
get videos, the videos containing the onions are selected to
form the reference group paired with the target group. In
this way, the reference group contains a larger variety of
contents (onion in any places or conditions) which distinct
the desired shared content. Finally, the shared verb phrases
serve as the ground truth group description. Details about
the construction of the two datasets are provided as follows.
For simplicity, in this paper, we call our newly constructed
group captioning datasets by the same name as their parent
datasets: ActivityNet Captions and YouCook2.

Datasets Groups Train Val Test Video len Vocab

ActivityNet 4035 2421 403 1211 40.27 1466
YouCook2 1763 1058 176 529 16.09 633

Table 1. Statistics of ActivityNet Captions and YouCook2.

3.2. Statistical Information

ActivityNet Captions This dataset is based on differ-
ent human activity divided into 200 classes and consists
of about 100,000 sentences to describe all 20,000 videos,
and on average each video has 3.65 events annotated. The
high diversity of visual content and a large number of videos
makes ActivityNet Captions a suitable choice.

After sampling from 20,000 clips from YouCook2, we
obtain around 4,035 samples with 12,947 videos included.
Each sample contains 3 target videos and 5 reference
videos, where target and reference videos share the same
video pool. The videos with rare verb phrases that cannot
be made into groups are not used. We manually clean the
sampled data to remove samples that are not meaningful.
We also clean the vocabulary to remove rare words. The
4,035 samples are split into test, validation, and train splits,
where these three splits share the same video pool.

YouCook2 While the ActivityNet Captions dataset ex-
cels in video diversity, we found that its captions are often
long and sometimes noisy. Motivated by the query sugges-
tion application where the suggested search queries are usu-
ally short and compact, we propose to construct the dataset
on another dataset named YouCook2 Captions which con-
tains fine-grained action annotation but is visually different.
YouCook2 has 2,000 videos and the average number of seg-
ments per video is 7.70. Many of the captions in this dataset
are more verb-like short events titles.

After grouping and filtering the 15,400 clips, we get
5613 videos, grouped into 1,736 data samples for the
YouCook2 Captions dataset as shown in Table 1. The
dataset sampling and split details are similar to ActivityNet
Captions.

4. Method

Formally, given a group of ntar target videos and a group
of nref reference videos, we aim to generate a description
D = ⟨w1, ..., wT ⟩ to describe the target video group in the
context of the reference group. In our setting, ntar = 3,
nref = 5. The input of our model is the extracted tar-
get video features set Vtar =

[
{vm1 } , ...,

{
vmntar

}]
and ref-

erence video features set Vref =
[
{vm1 } , ...,

{
vmnref

}]
,

where m is number of frames.
Different from the conventional video captioning task,

the generated description D should describe both the com-
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Figure 3. An overview of our framework. For the video group input, we apply the efficient relation approximation (ERA) to obtain the
joint representations that summarize the shared content among the videos. Then, we leverage the intra-group supervision to distill the
desired contextual feature. Finally, the two shared representations are concatenated with contextual features to compose the input to the
Transformer decoder for description generation.

mon content in the target videos and also highlight the
uniqueness of the target videos compared to other refer-
ence videos in the same group. To perform this task, we
explore methods to address the two main challenges in our
proposed problem: a) how to identify the shared content for
all videos simultaneously by considering the relationships
among videos and b) how to figure out the difference be-
tween two video groups.

In the subsequent subsections, we describe our method
explorations path starting with an intuitive baseline. We
then gradually introduce more computationally specialized
modules. For each module, we describe our intuition and
back them up with quantitative results and visual illustra-
tions.

4.1. Baseline: video relation traversing

The intuitive approach would be to summarize the tar-
get and reference features by traversing. We refer to this
method as Traversal which identifies the temporal frames
corresponding to the common content in each video by
traversing all videos.

Suppose the extracted feature lists of videos are{
vi ∈ Rd×m|i ∈ [1, n]

}
where n is the number of videos

and m is the frame length of vi, we could obtain mn groups
of joint representations. To combine these information, we
introduce the attention map A ∈ Rmn

as follows:

Aa1,a2,...,an =

n∑
i=1

n∑
j<i

(
vaii v

aj
j

)
(1)

where vaii ∈ Rd denotes the ai-th frame of video vi and
Aa1,a2,...,an denotes an element in tensor A with indices
[a1, a2, ..., an]. We consider the score Aa1,a2,...,an indicates
the similarity of frame (va1

1 , va2
2 , ..., vann ).

After we traversed all video frames and obtain mn

groups of joint representations A. The softmax function is
applied element-wisely along all dimensions. And, we con-
sider the score wj

i which indicates whether the content of
j-th frame in video vi is common to all videos.

A := softmax (A) ,

wj
i =

n∑
q=1,̸=i

m∑
t=1

Avji ,v
t
q

(2)

Then, we compute the target common feature ψtar and
the reference common feature ψref as follows:

ψtar =

ntar∑
i=1

m∑
j=1

wj
i v

j
i ψref =

nref∑
i=1

m∑
j=1

wj
i v

j
i (3)

Finally, we follow the standard captioning pipeline and take
the concatenation of the two group features as the decoder
input to predict the descriptions. We use Transformer as the
sentence decoder. At time step t, we have the equations for
decoding:

x = [ψtar, ψref ]

zt = Transformer(x, ŵt−1)

ŵt ∼ Softmax(zt)
(4)

The entire system is trained by minimizing the negative log-
likelihood as follows.

Lcap = −
∑T

t=1 log (ŵt = wt|w1:T−1) , (5)

This decoding architecture is used in all of our subsequent
model variants.
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4.2. Shared feature identification with efficient re-
lation approximation

The traversal is the intuitive and theoretically optimal
method, it calculates all possible combinations of all frames
in a video group. Obviously, the computation complexity is
the limitation of the traversal method. For a video group
containing n videos, and each video extracts m frame fea-
tures, the computation complexity is O (mn). In real video
applications, the complexity of the traversal method is un-
acceptable as shown in Figure 6.

We find that the complexity of the traversal method lies
in the computation of attention map A. However, such a
high-order tensor A cannot be decomposed directly due to
the non-linearity caused by the softmax function. Thus, it is
necessary to find a substitute approximate solution.

The softmax-kernel function is given as : σ (x, y) =
exp

(
xT y

)
. In the traversal method, we obtain the cross-

video joint representations as follows:

σ (vi|i ∈ [1, n]) = exp

 n∑
i=1

n∑
j<i

(
vTi vj

) (6)

Inspired by the Performer [4], we propose the Efficient
Relational Approximation (ERA) mechanism that can re-
duce the computation complexity to linear. σ could be
rewritten as follows:

σ
(
vji

)
= Eω∼N (0,IK′ )exp

∏n

i=1
ωT vji −

∥∥∥vji ∥∥∥2
2

 (7)

where E and N (0, IK′) denote expectation and sampling
distribution. With Eq 7, we can projecting the features of
i-th video and obtain ϑi ∈ Rm×d

′

. The detailed derivations
and theoretical errors can be found in Appendix ??.

Note that the softmax function consists of exponential
operation and sum normalization, we need the value of the
normalized denominator. And the score wi can be calculate
as follows:

wi =
ϑi(

∏n
t=1, ̸=i 1 · ϑt)∑

(
∏n

t=1 1 · ϑt)
(8)

where 1 ∈ Rm,
∑

denotes the sum of all elements in the
tensor.

In this way, the complexity scales linearlyO (n) with the
number of videos. In the subsequent analysis, we show that
the proposed efficient relational approximation accelerates
the process of identifying shared features while maintaining
the desired level of accuracy.

4.3. Contextual feature refinery with intra-group
self-supervision

We propose the contextual feature refinery with con-
trastive learning to obtain group-level distinctiveness from

the reference group. We first set the target shared feature
as a query and the reference shared feature as the key and
value in the co-attention mechanism.

ϕ = MHA (ψtar, ψref , ψref ) (9)

where MHA denotes the multi-head attention. By the resid-
ual connection in self-attention blocks, feature ψtar gradu-
ally distills useful information from the reference videos.

Then the contextual feature ϕ is added to target common
feature ψtar to generate the comprehensive feature ψ′

tar.

ψ′
tar = ψtar + ϕ (10)

The comprehensive target feature ψ′
tar and reference com-

mon featureψref are concatenated and fed into Transformer
to generate captions.

However, co-attention ignores the self-supervision
within each group, thus failing to guarantee the desirable
precision of learned features. The reason is that a) text usu-
ally captures most of the salient events in the paired visual
and overlooks background features; and b) videos are in-
herently noisy, which makes the problem in i) even worse.
Therefore, obtaining ϕ without any constraints will result in
degraded representations.

To mitigate the limitations, we propose to further make
use of intra-group self-supervision by introducing an Intra-
Group Contrastive objective. In other words, IGC aims to
maximize the Mutual information (MI) between the contex-
tual feature and the shared target group feature. Specifically,
we pair contextual feature ϕ with target videos feature Vtar
as positive examples V +

t while the feature Vr from refer-
ence videos in the same group are used to build up negative
examples Ṽr.

£igc

(
ψtar, V

+
t , Ṽr

)
=−log

(
e(s(ψtar,v

+
t )/τ)∑nref

i=1 e(s(ψtar,ṽ
i
r)/τ)

)
(11)

where s (p, q) = pT q/ ∥p∥ ∥q∥ denotes the dot product be-
tween l2 normalized p and q; τ is the temperature parameter.

We finally introduce the hyper-parameter λ to seek a
trade-off between the two learning losses (details about λ
can be found in the appendix), and combine the two losses:

L = Lcap + λLigc, (12)

Intuitively, by minimizing Ligc, we encourage the contrast-
ing feature refinery to condense the contextual feature and
in turn ease the feature fusion.

As an example shown in Figure 4, our model can learn
to focus on the refined features. When predicting unique
objects, for dishes in Vtar, because all reference videos for
it do not contain the same concept, the refinery learns that
dishes is a discriminative object in Vtar and overlooks back-
ground features like kitchen and bathroom by leveraging the
intra-group supervision.
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Methods Contextual feature BLEU1 BLEU2 BLEU3 BLEU4 WAC METEOR ROUGE CIDEr WER↓Subtract[16] Refinery IGC

Average
(13.2s)

✘ ✘ ✘ 39.36 24.77 15.47 9.98 28.75 16.25 37.15 155.8 89.53
✔ ✘ ✘ 41.17 26.48 16.56 11.37 30.89 19.35 40.29 159.7 86.78
✘ ✔ ✘ 44.98 28.52 17.97 12.03 34.33 20.95 43.46 169.3 86.03
✘ ✔ ✔ 44.93 28.77 19.03 12.69 34.13 20.72 43.86 170.6 85.34

Traversal
(3884.4s)

✘ ✘ ✘ 42.22 27.74 17.76 13.65 32.14 18.63 41.37 162.6 81.84
✔ ✘ ✘ 44.76 27.33 19.54 13.86 36.81 20.59 43.25 169.3 77.53
✘ ✔ ✘ 45.77 28.17 20.84 14.12 38.22 21.91 44.87 176.6 76.16
✘ ✔ ✔ 46.15 29.52 21.22 14.04 38.80 21.84 45.97 179.4 75.61

ERA
(17.6s)

✘ ✘ ✘ 42.34 27.87 18.61 13.55 32.58 19.34 41.08 161.7 80.37
✔ ✘ ✘ 45.07 28.96 18.39 13.09 36.49 20.77 43.53 168.3 77.74
✘ ✔ ✘ 46.37 30.22 20.55 14.37 38.61 21.63 45.06 178.7 75.42
✘ ✔ ✔ 47.32 30.74 20.78 14.74 39.55 22.18 45.77 180.8 75.77

Table 2. Comparison and ablation study with other methods on the YouCook2 dataset. The time below the methods is the average time
required to train an epoch. For each method, the first row indicates no contextual features, the second row indicates the use of subtraction
to obtain contextual features, the third row indicates the use of refinery instead of subtraction, and the shaded fourth row indicates the
complete refinery of contextual features using IGC.

Methods Contextual feature BLEU1 BLEU2 BLEU3 BLEU4 WAC METEOR ROUGE CIDEr WER↓Subtract[16] Refinery IGC

Average
(41.7s)

✘ ✘ ✘ 39.48 23.06 16.40 12.33 28.42 17.89 37.88 149.4 89.21
✔ ✘ ✘ 40.95 27.64 17.43 14.48 31.16 19.13 39.27 157.7 87.84
✘ ✔ ✘ 41.21 28.73 19.81 15.49 33.27 19.66 41.06 171.6 87.10
✘ ✔ ✔ 41.87 28.46 19.53 16.17 33.62 20.32 40.17 172.8 86.01

Traversal
(11456.4s)

✘ ✘ ✘ 39.94 26.07 18.92 16.24 31.67 19.10 39.23 159.4 79.28
✔ ✘ ✘ 41.76 27.11 20.13 16.64 35.35 20.08 40.88 166.2 77.36
✘ ✔ ✘ 42.52 29.59 21.05 17.65 37.09 21.40 41.51 177.0 75.11
✘ ✔ ✔ 44.57 29.70 21.28 16.53 37.85 21.64 42.78 180.7 74.94

ERA
(49.3s)

✘ ✘ ✘ 39.45 25.58 18.66 15.37 31.42 19.19 38.79 158.2 79.18
✔ ✘ ✘ 41.17 27.04 19.87 16.56 34.64 20.24 40.36 165.5 76.55
✘ ✔ ✘ 42.68 28.44 20.72 16.73 36.93 21.04 41.80 177.9 74.85
✘ ✔ ✔ 44.26 29.75 21.61 16.97 37.93 21.51 42.42 181.3 74.41

Table 3. Comparison and ablation study with other methods on ActivityNet dataset. Same experimental setup as YouCook2.

5. Experiment

5.1. Experimental settings

Evaluation Metrics: We consider the standard metrics
widely used in image captioning literature. BLEU[21] for a
sanity check, METEOR[1] based on unigram precision and
recall, ROUGE-L[24] based on the longest common subse-
quence cooccurrence, and CIDEr[26] based on human-like
consensus. In addition, following [16], we also consider
two additional metrics, Word-by-word accuracy (WAC) and
word error rate (WER), that specifically assess word-based
accuracy due to the group descriptions being often compact.

Implementation Details: For videos, we inspect 10
frames for each video. And the ResNet-101[6] model pre-
trained on ImageNet[5] is used to extract the representa-

tion of video. For descriptions, we set the max length as
15. When training our system, we used the Adam[13] op-
timizer with a 5 ∗ 10−5 learning rate with a batch size of
32 and λ = 1 ∗ 10−3. In the Transformer decoder, we set
the dimensionality d of each layer to 512, and the number
of heads to 8. For inference, we used a beam search with 5
and train our models on an NVIDIA GeForce RTX 2080.

5.2. Group Captioning Performance

To the best of our knowledge, no methods are doing pre-
cisely the same task as ours before. The most relevant to our
research is [16], which studied the semantic understanding
of groups of visual information in the spatial direction, not
the temporal direction. Therefore, we followed the path of
exploration to thoroughly analyze the behavior of our model
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Figure 4. Qualitative prediction examples on YouCook2 Captions (up) and ActivityNet Captions (bottom) datasets. Our model can ef-
fectively summarize the shared information and takes contextual information between the target and reference group into account during
captioning to predict accurate group captioning results.

Methods ActivityNet↓ YouCook2↓
Average 13.77 11.67
Traversal 10.13 9.24

ERA 10.05 9.16

Table 4. Results of the variance of the extracted feature ψ within
each video group are shown.

Methods B1 B4 WAC M R C WER↓
T1+R5 41.94 14.83 31.63 19.86 40.86 163.1 87.43
T2+R5 45.64 14.54 37.36 21.68 43.84 174.3 77.23
T3+R0 19.87 8.32 13.92 8.63 19.15 69.81 97.62
T3+R5 47.32 14.74 39.55 22.18 45.77 180.8 75.77

Table 5. Performance with varying the number of target and refer-
ence videos. (evaluated on YouCook2 Captions dataset)

and provide insights into this new problem. We compare
our model with two baselines: Average which calculates
ψ by averaging the video features in the temporal direction
and Traversal which serves as a theoretical upper bound
performance. The detail about the Average can be found in
the appendix. To analyze the effect of different components,
we perform ablation studies with the proposed contextual
feature module on all three models.

The captioning performance on the YouCook2 Captions

and ActivityNet Captions datasets are reported in Table
2 and Table 3, and we make the following observations.
First, when compared to the Average model, our model
achieves impressive improvement for all metrics. For ex-
ample, ERA brings +10.2% CIDEr boost on YouCook2 and
+8.5% CIDEr boost on ActivityNet. Second, when com-
pared to the Traversal model which serves as the upper
bound performance of group video captioning theoretically,
our model also achieves competitive results, 179.4 vs 180.8
on YouCook2. It is worth mentioning that ERA achieved
those competitive results with only 0.4% training time of
Traversal. This observation suggests that our ERA is an ef-
ficient substitute approximate solution. Note that Traversal
would perform worse than ERA in some cases while Traver-
sal searches the space of all possible solutions but lacks a
better way of integration.

Specifically for the influence of each component, models
trained without contextual features tend to perform worse.
We also compare refinery with the subtraction proposed by
[16], which removes the similarity portion in two group fea-
tures without constraints and deduces noisy representations.
When we instead use our contextual feature refinery, which
emphasizes the difference between the target video group
in the context of the reference group, we observe a further
performance improvement (e.g. 168.3 vs 178.7 CIDEr on
YouCooK2). And on top of Refinery, applying IGC to ei-
ther method leads to a performance boost.
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Figure 5. Visualization of the shared content identification. The frame with the red box is the shred content. The first row of each weight
matrix is calculated by Traversal and the second row is calculated by ERA. Darker color means more relevant.

5.3. Discussion

Quantitative and qualitative analysis of shared group
features identification. We first design quantitative exper-
iments to evaluate the shared group feature. Specially, we
evaluated the variance of the extracted features, which is
calculated as var = 1

n

∑n
i=1(wivi − ψ)T (wivi − ψ). A

smaller var value means that the extracted shared feature ψ
among all the videos is more convergent. Table 4 shows the
results of the YouCook2 and ActivityNet Captions datasets.

To better understand the effectiveness of EAR in shared
content identification, we visualize the score w calculated
by Traversal and EAR. As shown in Figure 5, EAR per-
forms similarly to Traversal in identifying shared content.
Qualitative and quantitative experiments further demon-
strate that our proposed EAR can correctly identify the
shared content and achieve competitive results with Traver-
sal by linear complexity.

Importance of multiple target and reference videos.
To investigate the effectiveness of giving multiple videos
in each group, we vary the number of target and reference
videos. As the results are shown in Table 5, fewer target
or reference videos results in a performance decline. The
results of T3+R0 indicate that when not given a reference
group the predictions tend to be more generic and less dis-
criminative, which indicates that the contextual information
contained in reference videos is necessary.

Effectiveness of EAR. To investigate the effect of EAR
on reducing model complexity, we measured the average
time to train an epoch on YouCook2 with the same batch
size of 32 for each model. Figure 6 shows that the time con-
sumed by our method and average is basically the same dur-
ing the increase of the number of videos from 1 to 5. While
the time consumed by Traversal starts to rise sharply as the
number of videos increases (when the number of videos is
5, the time has reached 3884s) which is unacceptable.

Figure 6. The average training time for one epoch with different
video nums on YouCook2.

6. Conclusion

In this paper, we introduce the novel group-based video
captioning, which requires a semantic understanding of the
relationships among videos to identify the desired content.
To solve this problem, firstly, we present an efficient rela-
tion approximation to capture the shared content among the
videos while the complexity scales linearly O (n) with the
number of videos. Then, we propose the contextual fea-
ture refinery and further consider intra-group supervision to
guarantee that the learned representations are meaningful
for target videos. To evaluate our system, we construct two
new datasets using the YouCook2 and ActivityNet Caption
datasets. Qualitative and quantitative experimental results
demonstrate the effectiveness of our method.
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