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Abstract

Large scale Vision Language (VL) models have shown
tremendous success in aligning representations between vi-
sual and text modalities. This enables remarkable progress
in zero-shot recognition, image generation & editing, and
many other exciting tasks. However, VL models tend to
over-represent objects while paying much less attention to
verbs, and require additional tuning on video data for best
zero-shot action recognition performance. While previous
work relied on large-scale, fully-annotated data, in this
work we propose an unsupervised approach. We adapt a
VL model for zero-shot and few-shot action recognition us-
ing a collection of unlabeled videos and an unpaired ac-
tion dictionary. Based on that, we leverage Large Lan-
guage Models and VL models to build a text bag for each
unlabeled video via matching, text expansion and caption-
ing. We use those bags in a Multiple Instance Learning
setup to adapt an image-text backbone to video data. Al-
though finetuned on unlabeled video data, our resulting
models demonstrate high transferability to numerous un-
seen zero-shot downstream tasks, improving the base VL
model performance by up to 14%, and even comparing fa-
vorably to fully-supervised baselines in both zero-shot and
few-shot video recognition transfer. The code is released at
https://github.com/wlin-at/MAXI.

1. Introduction

Vision Language (VL) models [36, 23, 17] have met un-
precedented success in unlocking many vision applications
[36] to work with potentially unlimited open vocabularies,
through the promise of zero-shot transfer [55, 57, 58, 14,
39, 59, 22, 37]. This is empowered by the alignment be-
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Figure 1: While previous work relied on full annotation of
action datasets which is time-consuming and cost-intensive
to collect, our approach MAXI finetunes the VL model with
unlabeled video data. Specifically, we leverage a set of lan-
guage sources (action dictionary, VL model and LLM) to
construct a text bag for each unlabeled video, and employ
the Multiple Instance Learning (MIL) objective for fine-
tuning. MAXI demonstrates outstanding improvement of
zero-shot and few-shot transfer on downstream novel action
datasets.

tween visual and language representation spaces, which is
effectively attained by VL models leveraging huge amounts
of paired image and text data. Incorporating a VL model
as a source (base) model or as an architectural component
has allowed scaling finetuning on relatively small datasets
(e.g. limited in terms of the number of observed objects or
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other visual concepts compared to the vast VL pretraining)
towards zero-shot transfer at inference time. Such zero-
shot transfer includes recognizing [55, 57, 58], detecting
[14, 39, 59], segmenting [22, 37], and even generating [40]
objects unseen during the finetuning stage and only encoun-
tered for the first time at the inference stage.

However, despite the progress in zero-shot image tasks,
VL models have been observed to underperform when ap-
plied to zero-shot action recognition on video data without
any finetuning [47, 33, 18, 50, 5, 38]. A possible reason,
as extensively studied in several works [46, 56, 53, 15],
is that VL models have a tendency to mostly represent
objects (nouns) and not actions (verbs or verb phrases).
Therefore, to deal with these shortcomings of VL models
w.r.t. zero-shot action recognition, previous works [47, 33,
18, 50, 5, 38] have used datasets with full annotation (e.g.
K400 [19]) to finetune VL models (e.g. the most popular
CLIP [36]) towards improved video zero-shot recognition
performance. The potential downsides of this approach are:
(i) reliance on full annotation of large-scale action datasets
that is time-consuming and cost-intensive, and (ii) the ex-
posure of the model to only the limited action vocabulary
during the supervised finetuning (e.g. 400 actions of K400
vs. over 8K possible single verb actions and much more
possible general actions in English language) limiting the
performance of zero-shot transfer to unseen action cate-
gories. In this context, we propose ‘MAtch, eXpand and
Improve’ (MAXI) – to allow finetuning on completely un-
labeled video data (e.g. unlabeled K400 [19]) and a set
of language sources, such as unpaired action dictionaries,
Large Language Models (LLM) (e.g. GPT-3 [3]), and VL
models for matching (e.g. CLIP [36]) and captioning (e.g.
BLIP [23]). To this end, MAXI relies on individual bags of
potential texts, collected and refined based on the different
language sources, that correspond to each video in the unla-
beled set. It then applies Multiple Instance Learning (MIL)
for finetuning the VL model using those bags as illustrated
in Figure 1. We extensively evaluate MAXI on seven down-
stream zero-shot and few-shot transfer action recognition
benchmarks completely unseen during training. We show
that MAXI is effective in leveraging unlabeled video data,
not only significantly (up to 14%) improving the source VL
model performance on all of those tasks, but also favorably
competing with state-of-the-art supervised methods trained
on fully supervised counterparts of the same finetuning data,
and even improving upon them in some zero-shot and few-
shot action recognition transfer tasks.

Our contributions are as follows: (i) we propose MAXI,
an approach that leverages an unlabeled video collection
and a set of language sources to improve downstream zero-
shot action recognition; (ii) we propose to match each un-
labeled video with text bags of knowledge mined from the

language sources, and employ Multiple Instance Learning
for finetuning a VL model using these text bags; (iii) we
extensively evaluate our approach on seven unseen action
recognition benchmarks, and demonstrate up to 14% abso-
lute zero-shot performance improvements over the source
VL model, and even outperform baseline models trained in
a fully supervised manner on the same data.

2. Related Work
Vision-language (VL) Models revolution started with
CLIP [36] and ALIGN [17] which demonstrated that very
large scale (in hundreds of millions) pre-training, on a
dataset with massive amount of noisy image-text pairs
collected from the web, leads to significant advances in
many diverse downstream zero-shot tasks. VL models op-
timize for image-text alignment via contrastive learning
objectives. Earlier methods, such as [45, 8, 25], relied
on pre-trained object detectors to extract region features.
To relax this limitation, cross-attention layers with self-
supervised learning objectives, image-text matching, and
masked/autoregressive language modeling were proposed
in [20, 17, 51, 23]. BLIP [23] combined several techniques
for multi-task VL pre-training, achieving strong results in
several downstream VL tasks, such as image retrieval, vi-
sual question answering (VQA), image captioning, and rea-
soning tasks. Finer-level text-image alignment was at-
tempted in [12, 52, 10, 26, 11], employing additional losses
and logic on top of the base contrastive loss of CLIP. FILIP
focuses on fine-grained contrastive learning, maximizing
the token-wise similarity between image and text tokens.
CyClip [12] employs geometrical consistency between the
image and text embeddings. DeCLIP [26] retrieves near-
est neighbors for expanding the set of positive contrastive
matches. While these methods have strong zero-shot results
on many image benchmarks, such as ImageNet [41] and
MS-COCO [27], recent studies such as VL-CheckList [56],
the Winoground Challenge [46] and ARO [53], show that
these models cannot well distinguish fine-grained language
details or understand more structured concepts such as ac-
tions that commonly require understanding temporal con-
cepts, movement, and relations between objects. In this
paper, we show how VL models can be adapted to better
understand actions given unlabeled video data.
Zero-shot action recognition is the task of recognizing ac-
tions that have not been seen during training. This requires
the bridging between visual features and semantic represen-
tations. Previous works use manually defined attributes [28,
54], and word embeddings of action names [2, 30, 35, 42]
or action descriptions [7, 34, 48] as the semantic represen-
tation. ER-ZSAR [7] and JigsawNet [34] leverage crawled
descriptions of action classes with manual correction, which
require efforts of human annotators for modifying the de-
scriptions. The class descriptions are assigned to the videos
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Figure 2: Pipeline of MAXI. Given an unlabeled video collection and a predefined action dictionary, we construct a text
bag for each video. We finetune CLIP by passing the video and text bag through the adapted CLIP video encoder (Sec. 3.1)
and CLIP text encoder, and optimizing with the Multiple-Instance Learning objective (Sec. 3.3). The text bag construction
(Sec. 3.2) for an unlabeled video consists of (1) CLIP matching (2) GPT-3 text expansion and (3) BLIP captioning for video
to text expansion.

based on ground truth labels. On the contrary, our text bag
construction requires neither manual correction efforts nor
ground truth annotation of videos.

Recent work contributes to adapting large-scale VL
model for video understanding, including zero-shot ac-
tion recognition tasks [47, 33, 18, 50, 5, 38]. Action-
CLIP [47], Ju et al. [18] and XCLIP [33] adapt CLIP for
video data with additional components for spatio-temporal
modeling, and demonstrate performance improvements on
video tasks. The most recent ViFi-CLIP [38] shows that
frame-level processing with feature pooling achieves bet-
ter visual-language alignment, and outperforms sophisti-
cated related approaches with additional learnable spatio-
temporal components. In this work, we follow the architec-
ture and finetuning paradigm of ViFi-CLIP.

Despite the various contributions in architecture design
and optimization, the related approaches still rely on ground
truth annotations in finetuning CLIP for zero-shot action
recognition tasks. Furthermore, no additional language
source other than simple action names is explored during
finetuning. MAXI overcomes these two limitations by fine-
tuning CLIP (1) without any ground truth labels, and (2)
expanding action names by LLM text expansion and visual
captioning.

3. Method

In this work, we propose an approach that effectively
leverages a collection of unlabeled videos and a predefined
action dictionary (a potentially noisy collection of possible
action text labels) to finetune the CLIP model without any
ground truth annotations. The purpose of finetuning is to
adapt CLIP to video data and to facilitate subsequent Zero-
Shot (ZS) transfer to video recognition tasks on novel video
categories which are not seen during training. We denote
the predefined action dictionary as D, and the unlabeled
video collection as V = {xj |j ∈ I}, with an index set
I = {1, ..., NV }.

Our pipeline is illustrated in Fig. 2. We first adapt the
CLIP image encoder to a video encoder for deployment on
video data (Sec. 3.1). Second, given the unlabeled video
collection V and a predefined action dictionary D, we use
different language sources to construct a text bag for each
video (Sec. 3.2). The text bag is a (noisy) collection of texts
that potentially correspond to the video contents. Third, we
perform Multiple Instance Learning (MIL) to learn from the
unlabeled videos and noisy text bags (Sec. 3.3), which al-
lows to robustly finetune CLIP in an unsupervised manner.
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3.1. CLIP on Video Data

CLIP [36] consists of a visual encoder ϕv(·; θv) and a
text encoder ϕt(·; θt). We aim to adapt the CLIP image
encoder for processing videos. It is demonstrated in [38]
that frame-level processing on CLIP image encoder with
feature pooling helps in implicitly modeling the temporal
cues. This also leads to improved performance over related
approaches that additionally incorporate learnable spatio-
temporal components. Therefore, following [38], given a
video x, we pass M frames into the visual encoder and
compute the average of frame features as the video rep-
resentation, i.e. zv =

∑
m ϕv(x

F
m; θv)/M . An advan-

tage of this paradigm is that the network can be initial-
ized directly from a large-scale pretrained VL model (e.g.
CLIP pretrained on 400M web image-text pairs [36]) with-
out adding any randomly initialized parameters. This pro-
vides a good starting point with reasonable initial perfor-
mance before finetuning. We also explore extending a non-
randomly-initialized-parameters paradigm to include, e.g.,
a parameter-free temporal-aware module (see supplemen-
tary), confirming [38] that a sophisticated temporal module
does not lead to better video adaptation from CLIP.

During inference, given a set of class prompts C =
{tc|NC

c=1}, the text feature is computed as ztc = ϕt(tc; θt).
For simplicity, we denote the L2-normalized video feature
and text feature as zv = ϕ̄v(x) and zt = ϕ̄t(t). The
zero-shot classification is performed by selecting the class
prompt with the maximum similarity to the video represen-
tation, i.e., ĉ = argmaxc ϕ̄v(x)

⊤ϕ̄t(tc).

3.2. Text Bag Construction

Given an unlabeled video collection V and a predefined
action dictionary D (where each item is a short sentence or
a verb phrase describing an action, see Fig. 2), we construct
a text bag Ti for each video xi ∈ V , i.e. a noisy collection
of text prompts describing the video contents.

Predefined action dictionary. In a practical scenario, we
usually expect to have coarse prior knowledge of the po-
tential action types in an unannotated video collection. The
prior knowledge defines the action dictionary. To have a
reasonable action dictionary, we include category names of
the action dataset we use for finetuning CLIP. However, the
prior knowledge we could obtain in a practical case might
not be completely accurate. Therefore, we also explore two
cases of noisy action dictionary: a) an under-specified dic-
tionary comprised of only part of possible actions in the set,
and b) an over-specified dictionary - adding noisy verbs and
verb phrases randomly collected from another text corpus.
An evaluation of these settings is given in Sec. 4.5.2.

CLIP matching. For a video xi ∈ V , we use the original
CLIP to match xi with texts in D w.r.t the cosine similarity.

We denote the Top-1 matched text as

t̂i = argmax
t∈D

sim(ϕv(xi), ϕt(t)) (1)

where sim(u, v) = uTv/(∥u∥∥v∥) is the cosine similarity.
We include t̂i in the text bag Ti.

The CLIP matching is a means of distilling knowledge
from the original CLIP as the teacher. Common choices of
unlabeled video collection V are usually of much smaller
scale than the original CLIP domain and might be prone
to overfitting. Using knowledge from the original CLIP
prevents the model from overfitting to the smaller domain
V , preserving the generalizability learned in the pretraining
stage of CLIP. This hypothesis is supported by experiments
in Sec. 4.3 and Sec. 4.4, where we show that compared to all
supervised finetuning baselines, the proposed unsupervised
pretraining significantly improves zero-shot transfer as well
as few-shot adaptation to other novel datasets.

GPT-3 text expansion. We expand the text bag by leverag-
ing the large-scale language model (LLM) GPT-3 [3]. We
build upon the fact that GPT-3 has high performance on lan-
guage instruction tasks [3]. By providing the best-matched
text t̂i in the instruction for LLM requiring it to describe this
text using its language (world) knowledge (see instruction
example in Fig. 2), we obtain a collection of expanded alter-
native descriptions of the action. The descriptions contain
details hallucinated by the LLM leveraging its collective
world knowledge. We collect the verbs and verb phrases
extracted from the generated expanded action descriptions.
Furthermore, we perform text augmentation by including
both the lemma and gerund (present participle) forms of the
verbs. We add the collection of words to the text bag Ti.

BLIP captioning for video to text expansion. We employ
the vision-language model BLIP [23] for generating cap-
tions of individual frames on a video. Note that this image
captioning model is not pretrained on any video domain.
The frame captions provide instance-level descriptions that
are dependent on the visual content of frames of the unla-
beled videos. Similar to the case of GPT-3 text expansion,
we collect verbs and verb phrases from these descriptions,
and perform text augmentation (as stated above), adding the
resulting texts to the text bag Ti.

Filtering text bags. To improve the quality of the text
bags, we set a threshold δp on the similarity score from
CLIP matching. We determine δp such that p × 100% of
videos (or text bags) remain after thresholding. For video
xi ∈ V , we keep the corresponding text bag Ti if the best
matched text t̂i has a similarity above the threshold, i.e.
sim(ϕv(xi), ϕt(t̂i)) ≥ δp. The filtering results in a sam-
pled index set Ip = {i | sim(ϕv(xi), ϕt(t̂i)) ≥ δp,∀i ∈ I}
and video set Vp = {xi | i ∈ Ip}.
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3.3. Multiple Instance Learning

We employ Multiple Instance Learning (MIL) to learn
from the unlabeled videos and noisy text bags collected
above. The MIL-NCE loss proposed in [31] combines Mul-
tiple Instance Learning and Noise Contrastive Estimation.
Following MIL-NCE, instead of enforcing the match of one
specific positive text to each video, we softly associate a text
bag Ti with each video xi ∈ V , in which one or multiple
texts could be a positive match to the video. As different
videos have varying numbers of texts in bag, we randomly
sample Nbag texts from the original bag in each training it-
eration. We refine the definition of the sampled text bag Ti

as Ti = {ti,n|
Nbag
n=1}, where Nbag is the constant bag size.

The original MIL-NCE loss encourages the instance-
level match between each video and its corresponding text
bag. In this work, we further propose to encourage the
videos and text bags, which have the same best matched
text, to be close to each other. Noting that each video xi has
a best matched text t̂i in the dictionary from CLIP matching
step, than our proposed loss is

L = − 1

|IB |
∑
i

log

∑
j

∑
n exp(ϕ̄v(xi)

⊤ϕ̄t(tj,n)/σ) · 1(t̂i = t̂j)∑
k

∑
n exp(ϕ̄v(xi)⊤ϕ̄t(tk,n)/σ)

(2)
where i, j, k ∈ IB and n ∈ {1, ..., Nbag}. IB ⊂ Ip is a
sampled batch of indices. tj,n ∈ Tj is text in a text bag,
and σ is a temperature parameter for contrastive learning.
1(t̂i = t̂j) is an indicator that xi and xj have the same best
matched text.

4. Experiments
4.1. Datasets

We perform the self-supervised finetuning on Kinetics
400 (K400) [19] without any ground truth labels. K400 is
the most popular benchmark for action recognition tasks,
containing around 240K training videos for 400 classes.
We evaluate action recognition zero-shot transfer and few-
shot transfer on several benchmark datasets: UCF101 [44],
HMDB51 [21], MiniSSv2 [6] (subset of SSv2 [13]), Kinet-
ics600 (K600) [4], Charades [43], UAV Human (UAV) [24],
and Moments-in-Time (MiT) [32]. UCF, HMDB and K600
are collections of online user videos, which are closer in
terms of style to K400. The remaining datasets cover larger
domain shifts to K400, varying from egocentric motions
(MiniSSv2), human and animal videos (MiT), drone videos
with small subject in frame (UAV) and 30-second long-term
home videos (Charades). More details about datasets are
given in the supplementary.

We follow the evaluation protocol of zero-shot and few-
shot action recognition from [38, 33]. We report mAP
for multi-label classification on Charades and Top1/Top5
accuracy for single-label classification on the remaining

datasets.

4.2. Implementation Details

We employ CLIP with the ViT-B/16 [9] visual encoder.
We follow the full-finetuning configuration of [38] to fine-
tune both the visual and text encoder. We consistently set
the temperature σ to 0.02. For zero-shot setting, we fine-
tune on K400 without any ground truth labels. We use
the AdamW optimizer [29] with an initial learning rate of
5 × 10−6 and a cosine decay scheduler. We sample 16
frames from each video and train with a batch size of 256
for 10 epochs. For few-shot learning, we sample 32 frames
per video. We set the learning rate to 2 × 10−6, and train
with a batch size of 64 for 50 epochs. During inference, we
sample 1 view from each video. Inspired by [49, 16], we
perform linear weight-space ensembling between the origi-
nal CLIP (with ratio of 0.2) and the finetuned model. In the
main results, we set the text bag filtering ratio p to 90% and
bag size to 16. Our code is provided in the supplementary
and will be released upon acceptance.

4.3. Zero-Shot Action Recognition

We finetune CLIP on the large-scale K400 dataset
stripped of the original ground truth labels. We perform
zero-shot action recognition on seven different datasets to
verify that cross-dataset model generalizability transfer af-
ter the finetuning. In zero-shot setting, the model is eval-
uated directly on downstream datasets with unseen classes,
without being trained on any samples of these datasets.

In Table 1, we first compare to other state-of-the-art
methods, all of which use K400 to adapt CLIP models
for zero-shot recognition tasks on UCF, HMDB and K600.
Following [38, 33, 7], we report the mean and standard
deviation of results on three official validation sets. ER-
ZSAR [7] and JigsawNet [34] are zero-shot action recogni-
tion approaches that train with K400 ground truth annota-
tions. They leverage crawled descriptions of action classes
with manual correction, which requires efforts from human
annotators. Afterwards, the class descriptions are assigned
to videos based on ground truth annotations. We see that the
original CLIP has good direct zero-shot performance across
the three datasets, which performs better or on par with ER-
ZSAR [7] and JigsawNet [34]. The rest of the compared ap-
proaches all adapt CLIP models on video-text pairs with the
K400 ground truth class labels as texts. Among them, the
most recent ViFi-CLIP [38] achieves the best result, outper-
forming all the other approaches, without adding any learn-
able spatio-temporal modules (as done by other approaches
such as [47, 18, 33]).

In a similar full finetuning paradigm to ViFi-CLIP,
MAXI achieves favorable results without using any ground
truth annotation. We report the performance of MAXI with
different combinations of language sources. Simply with
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Method gt language vis.encoder frames UCF101 HMDB51 K600 Top1 K600 Top5

ER-ZSAR [7] yes Manual description TSM 16 51.8 ± 2.9 35.3 ± 4.6 42.1 ± 1.4 73.1 ± 0.3
JigsawNet [34] yes Manual description R(2+1)D 16 56.0 ± 3.1 38.7 ± 3.7 - -

ActionCLIP [47] yes K400 dict. ViT-B/16 32 58.3 ± 3.4 40.8 ± 5.4 66.7 ± 1.1 91.6 ± 0.3
XCLIP [33] yes K400 dict. ViT-B/16 32 72.0 ± 2.3 44.6 ± 5.2 65.2 ± 0.4 86.1 ± 0.8

A5 [18] yes K400 dict. ViT-B/16 32 69.3 ± 4.2 44.3 ± 2.2 55.8 ± 0.7 81.4 ± 0.3
ViFi-CLIP [38]* yes K400 dict. ViT-B/16 16 74.9 ± 0.6 50.9 ± 0.7 67.7 ± 1.1 90.8 ± 0.3
ViFi-CLIP [38] yes K400 dict. ViT-B/16 32 76.8 ± 0.7 51.3 ± 0.6 71.2 ± 1.0 92.2 ± 0.3
Text4Vis [50] yes K400 dict. ViT-L/14 16 - - 68.9 ± 1.0 -

CLIP [36] no - ViT-B/16 16 69.9 ± 1.3 38.0 ± 1.7 63.5 ± 0.4 86.8 ± 0.4
MAXI no K400 dict. ViT-B/16 16 76.6 ± 0.9 50.5 ± 0.9 70.4 ± 0.8 91.5 ± 0.3
MAXI no K400 dict, GPT3 verbs ViT-B/16 16 77.8 ± 0.3 51.6 ± 0.9 71.6 ± 1.0 92.3 ± 0.3
MAXI no K400 dict, GPT3 verbs ViT-B/16 16/32 77.8 ± 0.5 51.9 ± 1.1 71.6 ± 1.0 92.4 ± 0.3
MAXI no K400 dict, GPT3 verbs, BLIP verbs ViT-B/16 16 78.2 ± 0.8 52.2 ± 0.6 71.4 ± 0.9 92.5 ± 0.3
MAXI no K400 dict, GPT3 verbs, BLIP verbs ViT-B/16 16/32 78.2 ± 0.8 52.3 ± 0.7 71.5 ± 0.8 92.5 ± 0.4

Table 1: Zero-shot action recognition on UCF101, HMDB51 and K600. We report mean and standard deviation of results on
three official validation splits. All models (except for the original CLIP) are trained on K400. We set the text bag filtering
ratio p to 90%. We train with 16 frames per video and report single-view inference results with 16 and 32 frames here.
*denotes our re-evaluation.

Method gt language Charades MiT MiniSSv2 UAV

ViFi-CLIP [38] yes K400 dict. 25.77 21.68 / 44.19 5.98 / 19.04 4.67 / 15.18

CLIP [36] no - 19.80 20.11 / 40.81 3.96 / 14.42 1.79 / 7.05
MAXI no K400 dict. 23.47 21.94 / 45.68 5.19 / 17.71 2.42 / 8.39
MAXI no K400 dict., GPT3 verbs 23.74 22.11 / 45.79 5.60 / 16.73 2.77 / 9.07
MAXI no K400 dict., GPT3 verbs, BLIP verb 23.79 22.91 / 46.38 6.37 / 18.73 2.72 / 9.00

Table 2: Zero-shot action recognition on Charades, MiT, MiniSSv2 and UAV. All models (except for CLIP) are trained on
K400. We report the mAP of multi-label classification on Charades and Top-1/Top-5 single-label classification accuracy for
MiT, MiniSSv2 and UAV. We set the text bag filtering ratio p to 90%.

the original K400 action dictionary, we already outperform
most of the related work across the three datasets. With the
additional GPT-3 verbs and BLIP verbs in the text bag, we
further boost the performance, achieving the state-of-the-art
among the three datasets.

For a thorough analysis of the model generalizibility, we
further report the performance of MAXI on four datasets
(Charades, MiT, MiniSSv2 and UAV) with larger domain
shift to K400 in Table 2. In comparison to the original
CLIP, our finetuned model has improved zero-shot trans-
fer on all datasets. With the additional language sources of
GPT-3 and BLIP, we even outperform ViFi-CLIP trained
with ground truth of K400, on the challenging MiT and
MiniSSv2 datasets.

4.4. Few-Shot Action Recognition

We perform few-shot all-way action recognition to eval-
uate the model learning capacity in a low data regime.
In this setting, we specifically verify whether our self-
supervised finetuning on K400 provides a proper initializa-
tion for few-shot learning. We follow the few-shot configu-
ration of ViFi-CLIP [38] and XCLIP [33], and use the same
training samples in 2, 4, 8 and 16-shot experiments without
additional language source for a fair comparison. We train
with 32 frames per video. We use the best backbone of self-

supervised finetuning (from Sec. 4.3) as the model initial-
ization for few-shot training. In Table 3, we report few-shot
results of MAXI on three datasets, and also the zero-shot
performance of our initialization as a reference. We com-
pare with related approaches that directly perform few-shot
learning on CLIP. For a fair comparison, we include the
result of few-shot training with a CLIP model that is pre-
trained with ground truth labels in the ViFi-CLIP paradigm.

We see that few-shot learning using a MAXI-pretrained
backbone leads to best performance in most settings, even
outperforming the fully-supervised pretrained backbone of
ViFi-CLIP. The performance gap is significant in the more
challenging extremely limited data scenarios (e.g. 2-shot on
HMDB and UCF). Pretraining with full supervision as an
initialization might lead to degraded performance in the fol-
lowing few-shot learning (e.g. 8-shot on HMDB, 4-shot on
UCF), while our self-supervised finetuned model mitigates
this problem, indicating improved generalizability.

4.5. Ablation Study

4.5.1 Text bag filtering

To improve the quality of text bags used in training, we set
a threshold δp on the similarity score from CLIP matching,
such that p× 100% of videos with highest similarity scores
remain after the thresholding (see Sec. 3.2). We perform
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Dataset pretrain on K400 sett. HMDB51 UCF101 SSv2

Shots 2 4 8 16 2 4 8 16 2 4 8 16

CLIP [36] no ZS 41.9 41.9 41.9 41.9 63.6 63.6 63.6 63.6 2.7 2.7 2.7 2.7
ActionCLIP [47] no FS 47.5 57.9 57.3 59.1 70.6 71.5 73.0 91.4 4.1 5.8 8.4 11.1

XCLIP [33] no FS 53.0 57.3 62.8 64.0 48.5 75.6 83.7 91.4 3.9 4.5 6.8 10.0
A5 [18] no FS 39.7 50.7 56.0 62.4 71.4 79.9 85.7 89.9 4.4 5.1 6.1 9.7

ViFi-CLIP [38] no FS 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7 6.2 7.4 8.5 12.4

MAXI yes w/o gt ZS 49.2 49.2 49.2 49.2 77.8 77.8 77.8 77.8 4.8 4.8 4.8 4.8
ViFi-CLIP [38] yes gt FS 55.8 60.5 64.3 65.4 84.0 86.5 90.3 92.8 6.6 6.8 8.6 11.0

MAXI yes w/o gt FS 58.0 60.1 65.0 66.5 86.8 89.3 92.4 93.5 7.1 8.4 9.3 12.4

Table 3: Few-shot action recognition on HMDB, UCF and SSv2. We report few-shot learning results with and without
pretraining on K400.

Matching ratio p matching acc. on K400 UCF101 HMDB51 K600 MiniSSv2 Charades UAV Human Moments-in-time

CLIP [36] (w/o finetune) Zero-Shot 69.93 38.02 63.48 3.96 19.80 1.79 20.11

gt 100% 100% 82.39 52.68 73.39 5.61 25.31 4.47 23.79

CLIP matching 100% 59.7% 77.88 51.09 71.24 5.46 23.52 2.53 22.44
CLIP matching 90% 64.3% 78.17 52.24 71.43 6.37 23.79 2.72 22.91
CLIP matching 50% 80.9% 78.18 50.35 70.78 5.74 23.89 3.06 22.41
CLIP matching 30% 89.5% 76.71 47.73 70.57 4.92 23.14 2.89 21.96

Table 4: Text bag filtering with different filtering ratio p. We report the CLIP matching accuracy (after filtering) on K400,
and the zero-shot transfer performance of models finetuned with the filtered K400 videos and text bags.

CLIP matching between unlabeled K400 videos and the
K400 action dictionary, and use the filtered videos and text
bags for finetuning CLIP. In Table 4, we report the match-
ing accuracy (after filtering), and zero-shot transfer perfor-
mance of models finetuned with the filtered K400 videos
and text bags. As a reference, we also report CLIP zero-shot
performance, and the case of finetuning on 100% accurate
video-textbag pairs using ground truth annotation, which
leads to the best zero-shot transfer on most datasets.

In Table 4, we notice that the CLIP matching accuracy
increases continuously with decreasing filtering ratio p. Set-
ting p = 90% leads to consistent improvement of zero-shot
transfer, in comparison to the case of p = 100% due to im-
proved quality of matched texts. Setting p = 50% leads
to partial improvement compared to p = 100%. Further
reducing p to 50% leads to performance degradation due to
the limited amount of data. This indicates that selecting text
bags that CLIP is confident about ensures improved finetun-
ing for more effective zero-shot transfer. However, there is
a trade-off between the quality of the filtered data and the
amount of data used for training.

4.5.2 Robustness against noisy action dictionary

In a practical scenario, we have coarse prior knowledge of
the potential action types in an unannotated video collec-
tion, which defines an action dictionary. However, such
knowledge might be noisy. We explore the robustness of
our finetuning pipeline against such a noisy action dictio-

nary. We consider two cases of noisy action dictionaries: (1)
an under-specified dictionary consisting of only half of the
words of the original K400 action dictionary. Specifically,
we use the 200 action names from MiniKinetics [6] (a 200-
class subset of K400). (2) An over-specified dictionary by
adding noisy verbs and verb phrases into the original K400
action dictionary. We parse verbs from the captions in the
validation set of the WebVid2.5M dataset [1], and randomly
sample 400 verbs to add to the dictionary, resulting in a dic-
tionary of 800 verbs or verb phrases.

In Table 5, we report the zero-shot transfer performance
of models finetuned with these noisy dictionaries. Here we
set the text bag filtering p = 50% for improved text bag
quality. We also report the results with the original K400
action dictionary as a reference. Apparently, using the clean
original K400 action dictionary leads to the best zero-shot
transfer on most of the downstream datasets. However, us-
ing noisy action dictionaries still leads to significant perfor-
mance boost compared to the CLIP zero-shot results with-
out finetuning. This indicates the robustness of our pipeline
with different cases of noisy predefined dictionaries.

4.5.3 What words to include in the text bag?

In Table 6, we investigate different combinations of words
to include in the text bag. Besides the original K400 ac-
tion dictionary (K400 dict.), we explore: (1) BLIP verbs:
verbs parsed from BLIP captions; (2) BLIP object nouns:
nouns of objects parsed from BLIP captions; (3) GPT3
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Action dictionary dictionary size UCF101 HMDB51 K600 MiniSSv2 Charades UAV Human Moments-in-time

CLIP [36] (w/o finetune) Zero-Shot 69.93 / 92.7 38.02 / 66.34 63.48 / 86.80 3.96 / 14.42 19.80 1.79 / 7.05 20.11 / 40.81

K400 400 78.18 / 96.03 50.35 / 77.10 70.78 / 92.17 5.74 / 17.70 23.89 3.06 / 9.46 22.41 / 45.83
MiniKinetics 200 75.10 / 95.82 48.34 / 76.95 69.23 / 90.92 6.50 / 18.76 22.70 2.40 / 8.04 22.50 / 46.01

K400+WebVid2.5M 800 75.99 / 96.00 45.97 / 73.94 69.14 / 91.13 4.81 / 15.79 22.67 2.11 / 8.00 20.92 / 43.99

Table 5: Robustness of finetuning with noisy action dictionaries. We report the zero-shot transfer performance (mAP on
Charades and Top1/Top5 accuracy on other datasets). We set the text bag filtering ratio p = 50% for improved text bag
quality.

Text bag UCF101 HMDB51 K600

K400 dict. 76.45 47.43 69.98
K400 dict. + BLIP object nouns 76.23 50.15 71.13

K400 dict. + BLIP verbs 76.94 50.92 71.25
K400 dict. + GPT3 verbs 76.98 50.46 71.24

K400 dict. + GPT3 verbs + BLIP verbs 77.88 51.09 71.24

Table 6: Combinations of words in text bags. We report the
zero-shot transfer performance on UCF, HMDB and K600.
For a thorough ablation, we set the text bag filtering ratio
p = 100% to keep the full noisy text bag property.

verbs: verbs and verb phrases from GPT3 text expansion.
For a thorough ablation, we set the text bag filtering ratio
p = 100% to keep the full noisy text bag property.

In Table 6, we notice that additional language source
upon the original K400 action dictionary leads to further im-
provement in zero-shot transfer. Interestingly, using BLIP
verbs has slightly better results than the case of BLIP object
nouns. We assume this is because CLIP has a high object
bias and is less sensitive to the language of verbs. Finetun-
ing CLIP by injecting verbs leads to better zero-shot per-
formance in action recognition. Consequently, combining
BLIP verbs and GPT3 verbs in the text bag leads to the best
zero-shot transfer.

4.5.4 How to learn from words in text bags?

In Table 7, we explore different strategies of learning from
words in a text bag: (1) Cross entropy: classification in a
fixed class space. (2) NCE: contrastive learning to encour-
age instance-level match between a pair of video and text.
In this case, we randomly sample one text from the text bag
in each iteration. (3) MIL-Max: in each iteration, among
words in a text bag, we choose the word with the maximum
similarity to the video, and pass the similarity in the con-
trastive loss. (4) MIL-NCE: as explained in Sec. 3.3, we
softly associate a bag of texts with the video, and sum up
the similarities of texts in a bag (5) MIL-NCE only instance-
level: the MIL-NCE on instance-level match between video
and text bag, without encouraging videos and text bags with
the same best matched text to be close to each other (see
Sec. 3.3). In Table 7, we see that cross entropy of classifica-
tion in a fixed class space leads to the most inferior result,

Objective UCF101 HMDB51 K600

Cross entropy 74.48 48.69 65.09
NCE 77.26 49.85 70.08

MIL-Max 77.24 49.85 70.71
MIL-NCE only instance-level 76.96 50.48 70.14

MIL-NCE 77.88 51.09 71.24

Table 7: Different strategies of learning from text bags. We
report the zero-shot transfer performance on UCF, HMDB
and K600. For a thorough ablation, we set the text bag filter-
ing ratio p = 100% to keep the full noisy text bag property.

while our MIL-NCE achieves the best improvement. En-
couraging videos and text bags with the same best matched
text to be close to each other also leads to some performance
boost in contrast to only instance-level matching.

4.5.5 Bag size

We perform an ablation on the bag size in Table 8. A bag
size of 1 is the same as NCE loss with random word sam-
pling in Table 7. Increasing the bag size from lower num-
bers to 8 leads to consistent performance improvements.
Using bag size 16 has further slight performance boost. We
report our main results with a bag size of 16.

4.6. Attention Heatmaps

To gain more insights into the performance improvement
of MAXI, we compare the attention heatmaps across several
approaches in Fig. 3, Fig. 4. CLIP is the original CLIP [36]
without any finetuning. ViFi-CLIP [38] finetunes CLIP via
supervised classification on K400 with ground truth anno-
tations. MAXI is our approach. Interpretations and more
visualization results can be found in the supplementary.

5. Conclusion
In this work, we consider the task of leveraging unla-

beled video collections and a set of language sources to fine-
tune the VL model for improved zero-shot action recogni-
tion. To our best knowledge, our approach ‘MAtch, eXpand
and Improve’ (MAXI) is the first of this kind. Specifically,
we leverage a set of language sources (unpaired action dic-
tionaries, Large Language Models and VL models) to con-
struct a text bag for each unlabeled video. Then we use the
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Figure 3: Attention heatmaps on actions which have a verb form (lemma or gerund) directly included in the K400 dictionary.
We compare among CLIP (2nd row), ViFi-CLIP (3rd row) and our MAXI (4th row). Warm and cold colors indicate high and
low attention. MAXI has more focused attention on hands (for clap) and legs (for kick ball).
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(b) chew(a) wave

Figure 4: Attention heatmaps on novel actions which do not have any verb form included in the K400 dictionary. We
compare among CLIP (2nd row), ViFi-CLIP (3rd row) and our MAXI (4th row). Warm and cold colors indicate high and
low attention. MAXI has more focused attention on hand and arm for wave, and on the area of mouth for chew.

Bag size UCF101 HMDB51 K600

1 77.26 49.85 70.08
4 77.24 49.84 70.71
8 77.70 50.61 71.35

16 77.88 51.09 71.24

Table 8: Effect of bag size. We report the zero-shot transfer
performance on UCF, HMDB and K600. For a thorough
ablation, we set the text bag filtering ratio p = 100% to
keep the full noisy text bag property.

unlabeled videos and text bags to finetune the VL model
with the objective of Multiple Instance Learning. Our ex-
tensive evaluation for zero-shot and few-shot action recog-
nition across several unseen action benchmarks demonstrate
significant performance improvement over the source VL
model, as well as improvement over baselines trained in a
fully supervised manner.
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