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Abstract

Multi-view hierarchical clustering (MCHC) plays a piv-
otal role in comprehending the structures within multi-view
data, which hinges on the skillful interaction between hier-
archical feature learning and comprehensive representation
learning across multiple views. However, existing methods
often overlook this interplay due to the simple heuristic ag-
glomerative strategies or the decoupling of multi-view rep-
resentation learning and hierarchical modeling, thus lead-
ing to insufficient representation learning. To address these
issues, this paper proposes a novel Multi-view Hierarchi-
cal Clustering Network (MHCN) model by performing si-
multaneous multi-view learning and hierarchy modeling.
Specifically, to uncover efficient tree-like structures among
all views, we derive multiple hyperbolic autoencoders with
latent space mapped onto the Poincaré ball. Then, the cor-
responding hyperbolic embeddings are further regularized
to achieve the multi-view representation learning principles
for both view-common and view-private information, and
to ensure hyperbolic uniformity with a well-balanced hier-
archy for better interpretability. Extensive experiments on
real-world and synthetic multi-view datasets have demon-
strated that our method can achieve state-of-the-art hierar-
chical clustering performance, and empower the clustering
results with good interpretability.

1. Introduction
Clustering is one of the fundamental research topics in

data analysis [28, 44, 51]. With the advances in data acqui-
sition, lots of real-world data could be presented by multi-
ple views, e.g., different visual descriptors like GIST [48]
+ Histogram of Oriented Gradients (HOG) [13] + other
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Figure 1: Comparison between prior MVHC methods,
i.e., MHC and CMHHC, versus our proposed MHCN. (a)
MHC calculates the average cosine distance matrix of all
views and agglomerates the nearest neighbors according
to the simply-aligned similarity matrix. (b) CMHHC per-
forms multi-view alignment and similarity learning in the
Euclidean space, and hierarchical clustering in hyperbolic
space, separately. (c) Our MHCN, a one-stage pipeline,
directly aligns the latent hierarchies on different Poincaré
balls, leading to more effective MVHC trees.

deep features [53] for an image. Multiple views contain
both congruent and incongruent information, which can be
leveraged to explore potential consistency and complemen-
tarity across views and provide more comprehensive la-
tent representations to facilitate downstream tasks, espe-
cially for unsupervised learning. This leads to the preva-
lence of multi-view clustering including multi-view parti-
tional clustering [29, 35, 39, 49, 59] and multi-view hierar-
chical clustering [37, 68]. Aiming for high interpretability,
multi-view hierarchical clustering is particularly appealing
in the analysis of multi-view data at various levels of gran-
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ularity. For instance, gene expression analysis [36] inte-
grates multi-omics data and clusters cells into an organi-
zation/organ/system hierarchy. Besides, species trees [17],
gathering animals by their physical appearances, sounds, or
other features, reflect the hierarchical organization in phy-
logenetic inference.

Despite these merits, there are still significant limitations
in existing multi-view hierarchical clustering methods. As
shown in Figure 1, existing models for solving the MVHC
problem include the discrete linkage-based method Multi-
view Hierarchical Clustering (MHC) [68], and the continu-
ous deep neural network-based Contrastive Multi-view Hy-
perbolic Hierarchical Clustering (CMHHC) [37]. As a sem-
inal work for MVHC, shallow MHC partitions multi-view
data at multiple levels through the cosine distance integra-
tion and the nearest neighbor agglomeration components.
However, without applying deep representation learning,
this method simply considers the mean latent feature vec-
tors as the common representations of all views. Thus,
it cannot fully capture the consistency and complementar-
ity among different views, leading to degenerated HC per-
formance, especially on complicated real-world datasets.
The two-stage deep model CMHHC integrates a multi-view
alignment learning module, an aligned feature similarity
learning module, and a continuous hyperbolic hierarchi-
cal clustering module. However, CMHHC takes into ac-
count two independent geometry settings, treating multi-
view learning in the Euclidean space and HC in hyperbolic
space, enlarging the gap between the two processes. Thus,
the performance may still be suboptimal.

To address these issues, this paper proposes the
Multi-view Hierarchical Clustering Network (MHCN), as
sketched in Figure 2. Taking the desired MVHC tree struc-
tures into consideration, we make corresponding designs for
MHCN as follows. Firstly, drawing inspiration from the re-
cent success of latent hyperbolic anatomy [42, 52], which
excels in modeling hierarchies with minimal distortion, we
incorporate multiple hyperbolic autoencoders to capture the
inherent hierarchies present in different views. Secondly,
considering multi-view consistent and complementary prin-
ciples [34, 66], we design the multi-view alignment loss
between two arbitrary views to discover the view-common
information, and use the reconstruction loss to retain the
view-private information, respectively. Thirdly, uniformly-
distributed hyperbolic embeddings on the Poincaré ball cre-
ate well-balanced trees, leading to more interpretable se-
mantics compared with skewed ones. In order to im-
prove interpretability in clustering trees, we encourage the
balanced hierarchy construction via a hyperbolic unifor-
mity loss, which facilitates learning such hyperbolic em-
beddings. In this way, MHCN provides explicit guidance
for ensuring the quality of the tree structure and integrates
multi-view representation learning and hierarchy discovery

processes on hyperbolic manifolds with hierarchy-friendly
hyperbolic autoencoders. As the pioneering one-stage so-
lution for the MVHC problem, the MHCN model collec-
tively optimizes the three objectives with mini-batch train-
ing. Thus, large datasets can be efficiently processed. Af-
ter obtaining the optimal hyperbolic hierarchical representa-
tions for unseen data with trained neural networks, MHCN
can decode back to the underlying tree structures, making
inductive hierarchical clustering possible.

Different from existing MVHC models, our contribu-
tions are summarized as follows.

• We analyze the multi-view hierarchical clustering
problem and propose a novel hyperbolic neural
network-based model to tackle the problem, where the
latent space is grafted on the Poincaré ball of hyper-
bolic space for explicit hierarchical structures.

• We introduce three objectives to facilitate the final
multi-view hierarchical clustering trees with desired
properties, i.e., a multi-view alignment loss, a recon-
struction loss, and a hyperbolic uniformity loss.

• We conduct extensive experiments to show the supe-
riority of MHCN compared with other multi-view HC
methods in terms of both effectiveness and scalability.

2. Related Work
2.1. Hierarchical Clustering

Bottom-up linkage algorithms for solving HC are sim-
ple and easy to implement, which recursively merge simi-
lar data points to build larger cluster sub-trees until a com-
plete dendrogram appears [10, 31]. Typical agglomerative
heuristics include Single Linkage, Complete Linkage, Av-
erage Linkage, and Ward Linkage [10]. While these tra-
ditional algorithms are widely used in practice, there is a
limit to fit continuous optimization due to their inherent
discreteness [14, 43, 61]. Hence, there have been more
attempts at gradient-based HC through embedding meth-
ods recently [5, 9, 24, 46, 56]. For example, UFit [9] pro-
posed a gradient-based fitting framework over ultrametric.
Besides, similarity-based HypHC [5] directly relaxed Das-
gupta’s cost with the aid of the continuous form of hyper-
bolic leaf nodes and lowest common ancestors (LCAs).

In contrast to the above HC methods, our unified frame-
work is multi-view data-oriented, which can be optimized
continuously via specifically-designed hierarchical cluster-
ing objectives. Also, little previous research pays close at-
tention to the balancing property of clustering trees, which
is one of the mainly-addressed spots in our method.

2.2. Multi-view Clustering

Existing multi-view clustering (MVC) methods can be
roughly classified into four categories, namely, canon-
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Figure 2: Overview of the proposed MHCN (taking two views as an example). MHCN assigns a hyperbolic autoencoder
to each view, with the latent space grafted on the Poincaré ball for explicit hierarchies, where the exponential mapping
function exp0 follows the hyperbolic encoder, and the hyperbolic decoder connects behind the logarithm mapping function
log0. The whole model is trained with the three joint learning objectives: (1) the multi-view alignment learning aims to
align the hyperbolic embeddings z1i and z2i , (2) the reconstruction for HAE is used to project the complementary information
in each view into the latent space, and (3) the hyperbolic uniformity learning guarantees z1i and z2i to distribute uniformly
on the corresponding Poincaré balls, respectively. After β-fusion, the final MVHC tree can be decoded from the common
hyperbolic representations.

ical correlation analysis-based [8], matrix factorization-
based [3], subspace-based [27, 33] and graph-based [30]
methods. Recently, deep MVC methods have been devel-
oped increasingly [35, 38, 49, 53, 59, 67]. However, most
methods are limited to partitional clustering. The high com-
putational complexities of these methods hinder the practi-
cability and development of multi-view hierarchical clus-
tering. To this end, research about MVHC has gradually
emerged. Shallow MHC [68] roughly averages the cosine
distance graphs for common latent features, which cannot
achieve consistency of all views. A recent two-stage deep
method CMHHC [37] presents an MVHC tree over aligned
common representations through three modules, i.e., multi-
view alignment learning, unsupervised metric learning, and
hyperbolic hierarchical clustering.

Unlike CMHHC, which regards multi-view representa-
tion learning and hierarchical clustering as two separate
stages, our method unifies them into a one-stage training
pipeline, where they can reinforce each other for naturally
contributing to the final HC trees.

2.3. Hyperbolic Models

There is extensive literature on hierarchical models con-
ducted in the Euclidean space and its applications [22, 25,
58]. However, suffering from the inherent discrete na-

ture of trees, the Euclidean hierarchical models have dif-
ficulty in constructing the hierarchical structure of data ex-
plicitly, while hyperbolic models can. The underlying rea-
son is that the exponential growth of the volume in hyper-
bolic space with its radius is analogous to the exponen-
tial growth of the number of leaves in a tree with its alti-
tude, which is infeasible in the Euclidean space [43]. Thus,
there has been an increasing interest in the generalization of
hyperbolic neural networks to learn hyperbolic representa-
tions [6, 20, 26, 42, 50, 55].

3. Method
In this part, we propose a hyperbolic neural network

model for MVHC, termed as Multi-view Hierarchical Clus-
tering Network (MHCN), as shown in Figure 2. For clarity,
we first briefly review the background of hyperbolic geom-
etry and a specific hyperbolic model, i.e., the Poincaré ball.
Then, we describe the architecture of HAE, define what de-
sired trees look like through specific loss functions, and in-
troduce the decoding strategy. Lastly, we summarize the
whole optimization process.

Let {Xm ∈ RN×Dm}Mm=1 be a multi-view dataset in-
cluding N samples across M views, where each xm

i ∈
RDm denotes the i-th instance of Dm dimension from the
m-th view. Our target is to present a unified method for
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clustering tree learning by searching over multi-view con-
tinuous hierarchical representations in hyperbolic space.

3.1. Preliminaries

We first introduce the Riemannian geometry and the
Poincaré ball model of hyperbolic geometry, with which we
build the hyperbolic autoencoders for our model. A more
detailed review can be found in the appendix.

3.1.1 Riemannian Geometry

An n-dimensional manifold M [19, 54] is a real and
smooth space, which can be locally approximated to a lin-
ear n-dimensional space Rn at each point x ∈ M. For
any point x of the manifold M, the corresponding local
tangent space TxM, is the first order linear approxima-
tion of M around the point x. The related metric tensor
gx : TxM×TxM → R defines an inner product on TxM,
and a Riemannian metric g = (gx)x∈M is a set of such in-
ner products on M. In this way, a Riemannian manifold
can be presented as a matching tuple (M, g). With gx,
the local geometric attributions of TxM are accessible, and
then the global distances can be achieved by integrating
the local properties together. To project a tangent vector
z in TxM onto M along a geodesic with constant veloc-
ity, the exponential map expx : TxM → M is given,
and the inverse form is logarithmic map logx : M →
TxM [20, 52, 55]. More detailed review is in the appendix.

3.1.2 Poincaré Ball Model of Hyperbolic Geometry

Many studies [12, 21, 47] have demonstrated that data rep-
resentations in most machine learning applications lie on a
Riemannian manifold [32]. Later on, how to generalize neu-
ral networks to a Riemannian space has made remarkable
progress [15, 42, 45]. An n-dimensional hyperbolic space
Hn is an n-dimensinal Riemannian manifold with constant
negative curvature [2, 4]. We choose to perform our model
on the n-dimensional Poincaré ball (Bn, gB) with a constant
negative curvature −1, where Bn = {x ∈ Rn : ||x||2 < 1}
is an open ball of curvature −1, and its hyperbolic met-
ric tensor gBx = λ2

xg
E is conformal to the Euclidean one.

λ2
x = 2

1−||x||2 is a conformal factor, and gE = In denotes
the dot product in the Euclidean space.

Given z, z′ ∈ Bn and t ∈ TzBn, the exponential
map expz : TzBn → Bn and the logarithm map logz :
Bn → TzBn realize the projection from the Euclidean
space onto the Poincaré ball and vice versa, respectively.
To enable the mathematical operations for hyperbolic space
models, the framework of gyrovector spaces provides the
algebraic setting for the hyperbolic geometry. With the
Möbius Addition ⊕ [60], the closed-form expressions of

expz and logz are respectively given by

expz(t) = z ⊕ (tanh(
λz||t||

2
)

t

||t||
),

logz(z
′) =

2

λz
arctanh(|| − z ⊕ z′||) −z ⊕ z′

|| − z ⊕ z′||
.

(1)

For the convenience in practice, z is usually set to the origin
0, so the expz and logz can be simplified as

exp0(t) = tanh(||t||) t

||t||
),

log0(z
′) = arctanh(||z′||) z′

||z′||
.

(2)

By means of the above main operations exp0(t) and
log0(z

′), MHCN is able to perform the basic transforma-
tions of the latent representations between the Euclidean
space and the hyperbolic space.

3.2. Hyperbolic Autoencoders

The conventional approach to learning useful represen-
tations is through a regular Euclidean autoencoder [18, 23,
64]. However, there has been significant interest in hierar-
chical representation learning using non-Euclidean geome-
try, specifically the hyperbolic space. This attention arises
from the fact that the number of leaf nodes in tree struc-
tures increases exponentially with depth, mirroring the ex-
ponential growth of the hyperbolic surface area with its ra-
dius, while the growth in the Euclidean space is polyno-
mial [6, 20, 52, 55]. As a result, we augment the standard
autoencoder with hyperbolic geometry in the embedding
space, and propose a novel multi-view hyperbolic model
consisting of multiple hyperbolic autoencoders assigned for
different views, shown in Figure 2. Each hyperbolic au-
toencoder’s geometry-aware encoder and decoder are con-
structed via the introduced exponential and logarithmic map
functions in Eq.(2). We show the detailed structures of the
encoders and the decoders in the following.

3.2.1 Encoder with the Exponential Map

With regard to the m-th view Xm, the encoder of m-th
HAE, i.e., fenc(Xm; θmenc) : Xm ∈ RDm → Zm

hyp ∈ Bd,
is designed as a regular Euclidean encoder followed by the
exponential map exp0(·), along with which the output of
the hyperbolic encoder is projected onto the Poincare ball.
Zm

hyp represents the d-dimensional hyperbolic latent code
with explicit hierarchical patterns and θmenc denotes the en-
coder parameters.

3.2.2 Decoder with the Logarithm Map

Similar to the hyperbolic encoder, the decoder of the m-
th HAE, fdec(Xm; θmdec) : Zm

hyp ∈ Bd → Xm ∈ RDm
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for the m-th view Xm which is parameterized by θmdec, is
constituted of a regular Euclidean decoder preprocessed by
the logarithm map log0(·), projecting the latent hyperbolic
features back to the Euclidean space.

3.3. Loss Functions for Desired HC Trees

High-quality MVHC trees should: 1) preserve the intrin-
sic hierarchy of each view via learned hyperbolic embed-
dings, 2) make full use of multi-view complementary and
consistent information to acquire common hierarchical rep-
resentations, and 3) not increase hierarchies without strong
necessity [1, 7, 14, 62]. In this section, based on the struc-
ture of multi-view HAEs, we design the total loss functions
for our model to realize the above characteristics:

Ltotal = Lmvl + Luni . (3)

In our model, we jointly achieve the multi-view consistency
and complementarity in the hyperbolic common-view space
by optimizing the combined loss Lmvl of the multi-view
alignment loss Lalign and the reconstruction loss Lrc:

Lmvl = αLalign + (1− α)Lrc , (4)

where α is a trade-off coefficient to balance the effects of
consistency and complementarity for multi-view learning.

Learning view-common consistency with the multi-
view alignment loss. The extracted common representa-
tions {Zm

hyp = fenc(X
m)}Mm=1 are expected not only to

uncover the complementary relationships among different
views but also to contain sufficient consensus information
of all views. To achieve consistency across multiple views,
we apply distance and similarity-based alignment by con-
ducting a multi-view alignment loss endowed on the hyper-
bolic embeddings. Here, we consider the cosine distance
between two latent features zm1

i and zm2
j as the similarity

measurement for multi-view alignment:

sim(zm1
i , zm2

i ) =
⟨zm1

i , zm2
j ⟩

||zm1
i ||||zm2

j ||
. (5)

Supported by the conformality property of the Riemannian
geometry, i.e., the Poincaré ball preserves the same angels
as the Euclidean space, the computation of the cosine simi-
larity in the Euclidean space is equal to that on the Poincaré
ball [20, 55]. Besides, unlike the geodesic distances, values
of the cosine distances are kept in a certain range, which is
friendly to optimization processes.

Then, the multi-view alignment loss between the hyper-
bolic embeddings of the same instance from any two views
Zm1

hyp, Zm2

hyp is given by:

L(m1,m2)
align = − 1

N

N∑
i=1

sim(zm1
i , zm2

i )/τalign , (6)

where τalign is used as a temperature parameter for the
scaled distance function. Here, we notice that CMHHC [37]
also serves to learn common representations. However,
CMHHC aligns Euclidean features, while MHCN directly
makes the corresponding hyperbolic embeddings closer.

Therefore, the complete multi-view alignment loss
across all view pairs is formulated as:

Lalign =

M∑
m1=1

M∑
m2=1,m1 ̸=m2

L(m1,m2)
align . (7)

Learning view-private complementarity with the re-
construction loss of HAEs. In multi-view representation
learning models, autoencoders are widely used for their
impressive strengths, such as preserving the useful view-
private information and preventing data points from collaps-
ing to a small number of clusters [29, 67]. In our multi-view
hierarchical clustering model, the learned representations
by multiple HAEs consider the preservation of the local hi-
erarchical structure within each view. This implies that sim-
ilar instances from each view remain close to each other in
the hyperbolic space, while the latent codes obtained from
dissimilar instances remain distant from one another. To
this end, the total reconstruction loss function of HAEs for
multiple views is formulated as

Lrc =

M∑
m=1

Lm
rc =

M∑
m=1

1

N

N∑
i=1

||xm
i − fdec(fenc(x

m
i ))||22 ,

(8)
where Lm

rc is the corresponding m-th view objective to re-
construct Xm.

Learning tree balancing property with the hyperbolic
uniformity loss. Through the multi-view alignment and re-
construction related to the Poincaré ball, our model obtains
reliable multi-view representations and discovers the hier-
archical structure of each view simultaneously. Last but
not least, a hierarchical clustering tree with explicit bal-
ancing property provides fewer hierarchies and higher in-
terpretability than skewed ones.

Consequently, we leverage the uniformity of the hyper-
bolic embedding distribution located on the Poincaré ball
to learn separable features and enhance the contribution of
the balanced affinity. Concretely, considering the form of
Gaussian potential kernel [11, 40], we define a hyperbolic
uniformity objective based on the cosine distance as:

Luni =

M∑
m=1

1

N2

N∑
i=1

N∑
j=1

log(e−t(−sim(zm
i ,zm

j )/τuni)) . (9)

Still, the temperature parameter τuni is a scaling factor to the
cosine distance. Intuitively, the hyperbolic uniformity loss
encourages the latent hyperbolic embeddings to push far-
ther away from each other and to benefit the uniform global
distribution of embeddings on the Poincaré ball.

16529



3.4. From Hyperbolic Embeddings to Binary Trees

We first adopt β-fusion [55] to concatenate the opti-
mal hyperbolic embeddings from multiple views into the
common-view space, to guarantee the concatenated norms
maintain upper-bounded by the radius of the Poincaré ball.
To output an intuitive HC tree from the common continuous
hyperbolic representations on the Poincaré ball back to dis-
crete HC trees with low error, we apply the decoding strat-
egy proposed by [5], which realizes the underlying corre-
spondence between the hyperbolic embeddings and the HC
trees with low-error. This bottom-up decoding algorithm
decodes the common hyperbolic embeddings by measuring
the similarity of any two embeddings with the distance from
their lowest common ancient (LCA) to the origin of the ball
and merging more similar ones iteratively.

3.5. Optimization Process

The whole optimization process of MHCN is summa-
rized in the appendix. We train this model by adopting
a one-stage pipeline of mini-batch gradient descent, mak-
ing our method feasible to scale up to large-scale scenarios.
Concretely, the integrated framework of multiple HAEs is
optimized collectively with the Ltotal in Eq.(3).

4. Experiments
In the following, we conduct experiments to verify the

effectiveness and efficiency of the proposed method and an-
alyze the results.

4.1. Experimental Settings

Datasets. Following literature [37, 53, 57, 59, 63, 67],
we adopt seven common multi-view datasets in our experi-
ments, including five regular-scale datasets (MNIST-USPS,
BDGP, Caltech, COIL-20 and BBCSport) and two large-
scale datasets (Multi-Fashion and NR-MNIST). MNIST-
USPS [53] is a handwritten digital dataset with 5,000 im-
ages from 10 categories, where the digits from MNIST and
USPS are two views. BDGP [35] includes 2,500 images
of Drosophila embryos divided into 5 classes, character-
ized by visual and textual features. Caltech [16] contain-
ing 1,400 RGB images of 7 classes is constructed with 5
different visual descriptors. COIL-20 [59] contains 480
grayscale images of 20 classes, described by 3 different an-
gles. BBCSport [41] is a text dataset in 5 topic areas. It
consists of 544 documents collected from the BBC Sport
website of sports news articles, related to 2 different view-
points. Multi-Fashion [66] is also a grayscale image dataset
on 10 kinds of 10,000 fashionable products. Three differ-
ent views are represented by three products from the same
category. In terms of NR-MNIST [65], we regard the noise-
processed MNIST and the rotated-processed MNIST as two
views. We use 60,000 image pairs for the general MVHC

experiments in Section 4.2, and use the rest 10,000 image
pairs for the inductive HC experiments in Section 4.5.

Dendrogram Purity measurement for HC. The tree
structures with various fine-grained partitional clusters can
be truncated at any level. Therefore, instead of using parti-
tional clustering metrics, e.g., ACC and NMI, evaluating the
performance of a clustering tree needs a much more com-
prehensive measurement. To this end, we adopt the Dendro-
gram Purity (DP) measurement to evaluate the quality of the
clustering tree [31, 37, 43], which computes the average pu-
rity over the descendant leaves of LCA of all data point pairs
belonging to the same ground-truth clusters. Trees with
higher DP results tend to be more similar to the ground-truth
clusters. Note that the Dasgupta’s Cost, another HC metric
applied in [5], requires an uncontroversial predefined sim-
ilarity measurement as input, which is not available in our
settings. The detailed reasons for using DP and not using
ACC or NMI are given in the appendix.

Baseline methods. The baselines include three kinds of
methods as follows: (1) shallow discrete single-view hi-
erarchical agglomerative clustering methods (HACs), e.g.,
Single-linkage, Complete-linkage, Average-linkage, and
Ward-linkage algorithms; (2) deep continuous single-view
HC approaches, e.g., UFit and HypHC, where we concate-
nate the raw features of all views into a single-view pat-
tern [53]; and (3) State-of-the-art MVHC methods, includ-
ing MHC and CMHHC.

Implementation. The proposed network architecture is
trained with the PyTorch platform. The fully connected net-
works with the same architecture are adopted to implement
the HAEs for all views in our MHCN. We use the mini-
mal dataset-dependent hyperparameter set for tuning. Since
the parameters in hyperbolic space can be considered as Eu-
clidean parameters computed through Zm

hyp = exp0(Z
m
tan),

where Zm
tan ∈ Rd, we directly train our model by using the

common optimizer Adam. All experiments are conducted
on a Linux Server with an Intel Xeon E5-2630 v4 CPU, an
NVIDIA TITAN Xp GPU, and 128GB RAM. More imple-
mentation details are provided in the supplementary mate-
rials.

4.2. Experimental Results and Analysis

The comparison results are shown in Table 1. DP re-
sults of the baseline methods on all datasets except NR-
MNSIT are directly taken from [37]. We can observe
that: (1) MHCN outperforms the second-best baseline, i.e.,
CMHHC, on all datasets. Unlike two-stage CMHHC, our
one-stage framework relieves the separation of multi-view
representation learning and hierarchical clustering and nat-
urally makes two associated processes boost each other.
(2) Compared with the representative shallow MHC, our
deep model also obtains considerable improvements on all
datasets. MHC is not capable of learning rich multi-view
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Method MNIST-USPS BDGP Caltech COIL-20 BBCSport Multi-Fashion NR-MNIST

HAC-Single 29.81% 61.88% 23.67% 72.56% 27.66% 27.89% 25.77%
HAC-Complete 54.36% 56.57% 30.19% 69.95% 34.78% 48.72% 27.71%
HAC-Average 69.67% 45.91% 30.90% 73.14% 29.05% 65.70% 59.74%
HAC-Ward 80.38% 58.61% 35.69% 80.81% 62.65% 72.33% 76.91%
UFit 21.67% 69.20% 19.00% 55.41% 30.33% 25.94% OOM
HyperHC 32.99% 31.21% 22.46% 28.50% 29.08% 25.65% OOM

MHC 78.27% 89.14% 45.22% 66.50% 42.43% 54.81% 40.87%
CMHHC 94.49% 91.53% 66.52% 84.89% 53.50% 96.25% OOM

MHCN 99.22% 96.22% 77.14% 94.70% 78.93% 97.67% 98.71%

Table 1: Comparison results. Higher DP values indicate better clustering performance. “OOM” is out-of-memory on our
server.

Variants MNIST-USPS BDGP Caltech COIL-20 BBCSport Multi-Fashion NR-MNIST

MHCN (complete) 99.22% 96.22% 77.14% 94.70% 78.93% 97.67% 98.71%

w/o Lrc 99.07% 95.46%∗ 75.17%† 93.85% 78.38% 96.78%∗ 98.20%
w/o Lalign 41.29%† 56.83%† 57.56%† 78.68%† 40.58%† 53.16%† 28.36%†

w/o Luni 19.42%† 44.31%† 36.69%† 51.57%† 28.52%† 40.37%† 32.64%†

Euclidean AEs 92.72%† 52.47%† 32.50%† 70.69%† 56.58%† 60.55%† 53.30%†

Table 2: Ablation study of our method. “∗” and “†” indicate that the difference is significant at 0.05 and 0.01, respectively.

(a) Without ℒ!"# (c) With ℒ!"#(b) With 0.1 * ℒ!"#

Figure 3: Illustrations of the effectiveness of hyperbolic uniformity learning. We visualize the hyperbolic embeddings and
the top-35 non-leaf internal nodes of corresponding decoding dendrograms. Left: Distributions of the learned hyperbolic
embeddings optimized by different weights of Luni, i.e., 0.0, 0.1, and 1.0. Right: Top-35 non-leaf internal nodes of corre-
sponding decoding dendrograms. With the weight of Luni increasing, the distribution becomes uniform and the dendrograms
are gradually balanced.

hierarchical representations as a result of poor hierarchical
representation ability and ignorance of the balancing prop-
erty of the tree structure. (3) Our method performs signifi-
cantly better than all multi-view concatenation followed by
single-view discrete or continuous HC methods. In contrast
to concatenating features of all views simply, through learn-
ing the multi-view alignment and preserving each view’s lo-
cal relationships, MHCN encodes the meaningful common
hierarchical representations across multiple views into the
latent hyperbolic space. (4) The performance of MHCN on
large-scale NR-MNIST is much better than other compar-
ison methods. Meanwhile, conducting deep methods, like
UFit, HyperHC, and CMHHC, on oversized NR-MNSIT re-

sults in high time complexity and unbearable memory cost.
The scalability of MHCN can be attributed to the one-stage
pipeline to optimize the total loss by batch-based training.

4.3. Ablation Studies

To further understand the effectiveness of all the factors
of MHCN, we conduct ablation studies and report the re-
sults in Table 2. We mainly consider the following ab-
lations, i.e., (a) MHCN without Lrc, (b) MHCN without
Lalign, (c) MHCN without Luni, and (d) MHCN with Eu-
clidean autoencoders. We also report the significance of test
results for the differences compared with MHCN.

As shown in Table 2, Lalign and Luni both contribute
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Running Time MHCN HAC-Single HAC-Complete HAC-Average HAC-Ward

NR-MNIST 900.92s 1823.43s 1903.12s 2055.16s 2204.11s

Table 3: Total time spent of MHCN and HACs on NR-MNIST dataset.
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Figure 4: The sampled sub-tree of LCA #19978 from the Multi-Fashion HC tree. We can observe that the sub-trees containing
more similar kinds of products are closer, e.g., categories Shirt in the green circle and T-Shirt/Top in the blue circle, while
less similar products are merged together at higher LCA, e.g., categories Shirt in the green circle and Trouser in the purple
circle, or categories Bag in the orange circle and Trouser in the purple circle.

a lot to the final performance. The effectiveness of Lrc is
relatively less significant. This may be due to the prop-
erty of experimental datasets. Especially, such datasets e.g.,
MNIST-USPS, Multi-Fashion, and NR-MNSIT are con-
structed by picking pairs of individual objects from the cor-
responding classes of multiple datasets [53, 65, 67]. So con-
sistency may play a much more important role compared
with complementarity. As for MHCN with Euclidean AEs,
we can find that the performance also degenerates signif-
icantly, indicating the effectiveness of hyperbolic embed-
dings for modeling hierarchies.

In addition, to intuitively show the effectiveness of Luni,
taking MNIST-USPS as an example, we train an MHCN
model mapping the data to a two-dimensional Poincaré ball
with different weights for Luni. We visualize the averaged
embeddings and the decoded clustering trees. For clarity,
we present the top-35 non-leaf nodes in Figure 3. As shown,
if Luni is absent, only Lalign for multi-view consistency and
Lrc for multi-view complementarity will force the embed-
dings to gather in a small corner of the Poincaré ball, re-
sulting in a skewed tree that lacks interpretability. With the
weight of Luni growing, the embeddings become more uni-
formly distributed, and the corresponding clustering trees
become more balanced.

4.4. Scalability Analysis

As shown in Table 1, the DP results of our method ex-
ceed those of other baselines on the large-scale NR-MNIST
dataset. Also, Table 3 shows that the running time of our
method achieves a significant decline when compared with
the classic baselines, i.e., HACs. The theoretical complex-
ity analysis can be found in the appendix.

4.5. Inductive Hierarchical Clustering Experiments

It is difficult for traditional HAC-based methods to train
on one dataset and then predict on another. However, this
inductive HC setting becomes relatively easy with MHCN.
We train the model with the training set of NR-MNIST, then
infer the results with the test set, and finally, the DP result
is 96.54%. This result is numerically comparable with the
result in Table 1 (98.71%). The ability of inductive HC may
help improve the performance, e.g., transfer learning.

4.6. Parameter Sensitivity Analysis

Trade-off efficient α. To start with, we focus on the
choice of the trade-off efficient α. By fixing the other hy-
perparameters, we investigate how the α parameter balances
the effects of reconstruction and alignment loss components
for multi-view learning. We show the DP result of different
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Figure 5: α sensitivity analysis

α values in a range between 0.0 and 1.0. As shown in Fig-
ure 5, with the increase of α values, the quality of the final
tree structures consistently stabilizes at an optimal level on
all datasets. When α = 0, the performance of HC gets
near the lowest point, especially on MNIST-USPS, BBC-
Sport, Multi-Fashion, and NR-MNSIT datasets. The prin-
cipal reason is that in MHCN, the consistency across all
views is achieved via the multi-view alignment loss, which
is much essential to capture view-common meaningful se-
mantics and further boost the final clustering trees.

Temperature parameters τalign and τuni. Similarly,
with the other hyperparameters fixed, we present the DP
results on all datasets by varying τalign and τuni from 0.0 to
5.0. As shown in Figure 6, both τalign and τuni set to around
1.0 achieve optimal performance on MNIST-USPS, BDGP,
BBCSport, Multi-Fashion, and NR-MNIST datasets, while
the HC performance on Caltech and COIL-20 datasets are
more promising with τalign = τuni = 0.5. Besides, the
model is more robust to changes of τalign.

4.7. Case Study

In addition to quantitative analysis, we qualitatively ex-
amine the quality of the final MVHC tree structures learned
by our method. We take a truncated sub-tree of the com-
plete Multi-Fashion tree as an example in Figure 4, where
more similar leaf nodes are merged together earlier in the
tree structure, guaranteeing explicit hierarchical partition-
ing. We can observe that more similar leaf nodes are merged
together earlier in the tree structure, e.g., categories Shirt
and T-Shirt/Top, while less similar products are merged to-
gether at higher LCA, e.g., categories Shirt and Trouser, or
categories Bag and Trouser. Therefore, MHCN is capable
of guaranteeing meaningful fine-grained hierarchical parti-
tioning with high interpretability for the multi-view data.

5. Conclusion & Future Work
In this work, we present a novel one-stage framework

MHCN to solve the multi-view hierarchical clustering prob-
lem. With the help of the hyperbolic model of the Poincaré
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Figure 6: τalign and τuni sensitivity analysis

ball, we conduct our multi-view representation learning
via multiple hyperbolic autoencoders, where the exponen-
tial map of each encoder and its inverse logarithm map
of each decoder generalize the extracted latent hierarchies
to hyperbolic space efficiently. Additionally, we introduce
how to promote the final hierarchical clustering tree from
the learned hyperbolic representations by jointly optimizing
our designed loss functions, including the multi-view align-
ment loss for view-common information, the reconstruction
loss for view-private information, and the hyperbolic unifor-
mity loss for more balanced embedding distribution on the
Poincaré ball. Extensive experiments on seven widespread
multi-view datasets demonstrate our method achieves state-
of-the-art hierarchical clustering performance. In the fu-
ture, we expect to improve our method with a more general
scheme to better learn the different effects of consistency
and complementarity of different multi-view datasets.
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