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Abstract

This paper presents a new vision Transformer, Scale-
Aware Modulation Transformer (SMT), that can handle var-
ious downstream tasks efficiently by combining the convolu-
tional network and vision Transformer. The proposed Scale-
Aware Modulation (SAM) in the SMT includes two primary
novel designs. Firstly, we introduce the Multi-Head Mixed
Convolution (MHMC) module, which can capture multi-
scale features and expand the receptive field. Secondly, we
propose the Scale-Aware Aggregation (SAA) module, which
is lightweight but effective, enabling information fusion
across different heads. By leveraging these two modules,
convolutional modulation is further enhanced. Further-
more, in contrast to prior works that utilized modulations
throughout all stages to build an attention-free network, we
propose an Evolutionary Hybrid Network (EHN), which can
effectively simulate the shift from capturing local to global
dependencies as the network becomes deeper, resulting in
superior performance. Extensive experiments demonstrate
that SMT significantly outperforms existing state-of-the-art
models across a wide range of visual tasks. Specifically,
SMT with 11.5M / 2.4GFLOPs and 32M / 7.7GFLOPs can
achieve 82.2% and 84.3% top-1 accuracy on ImageNet-1K,
respectively. After pretrained on ImageNet-22K in 2242 res-
olution, it attains 87.1% and 88.1% top-1 accuracy when
finetuned with resolution 2242 and 3842, respectively. For
object detection with Mask R-CNN, the SMT base trained
with 1× and 3× schedule outperforms the Swin Trans-
former counterpart by 4.2 and 1.3 mAP on COCO, respec-
tively. For semantic segmentation with UPerNet, the SMT
base test at single- and multi-scale surpasses Swin by 2.0
and 1.1 mIoU respectively on the ADE20K. Our code is
available at https://github.com/AFeng-x/SMT.

1. Introduction

Since the groundbreaking work on Vision Transform-
ers (ViT) [9], Transformers have gained significant atten-
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Figure 1: Top-1 accuracy on ImageNet-1K of recent SOTA
models. Our proposed SMT outperforms all the baselines.

tion from both industry and academia, achieving remark-
able success in various computer vision tasks, such as im-
age classification [8], object detection [27, 10], and seman-
tic segmentation [68, 6]. Unlike convolutional networks,
which only allow for interactions within a local region us-
ing a shared kernel, ViT divides the input image into a
sequence of patches and updates token features via self-
attention (SA), enabling global interactions. However, self-
attention still faces challenges in downstream tasks due to
the quadratic complexity in the number of visual tokens,
particularly for high-resolution inputs.

To address these challenges, several efficient spatial at-
tention techniques have been proposed. For example, Swin
Transformer [29] employs window attention to limit the
number of tokens and establish cross-window connections
via shifting. PVT [52, 53] and Focal [61] reduce the cost
of self-attention by combining token merging with spa-
tial reduction. Shunted [38] effectively models objects at
multiple scales simultaneously while performing spatial re-
duction. Other techniques such as dynamic token selec-
tion [34, 36, 62] have also proven to be effective improve-
ments.

Rather than directly improving self-attention, several
works [7, 24, 33, 23] have investigated hybrid CNN-
Transformer architectures that combine efficient convolu-
tional blocks with powerful Transformer blocks. We ob-
served that most hybrid networks replace shallow Trans-
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former blocks with convolution blocks to reduce the high
computational cost of self-attention in the early stages.
However, these simplistic stacking strategies hinder them
from achieving a better balance between accuracy and la-
tency. Therefore, one of the objectives of this paper is to
present a new perspective on the integration of Transformer
and convolution blocks.

Based on the research conducted in [9, 3], which per-
formed a quantitative analysis of different depths of self-
attention blocks and discovered that shallow blocks tend to
capture short-range dependencies while deeper ones cap-
ture long-range dependencies, we propose that substitut-
ing convolution blocks for Transformer blocks in shallow
networks offers a promising strategy for two primary rea-
sons: (1) self-attention induces significant computational
costs in shallow networks due to high-resolution input, and
(2) convolution blocks, which inherently possess a capacity
for local modeling, are more proficient at capturing short-
range dependencies than SA blocks in shallow networks.
However, we observed that simply applying the convolu-
tion directly to the feature map does not lead to the desired
performance. Taking inspiration from recent convolutional
modulation networks [13, 16, 60], we discovered that con-
volutional modulation can aggregate surrounding contexts
and adaptively self-modulate, giving it a stronger model-
ing capability than using convolution blocks alone. There-
fore, we proposed a novel convolutional modulation, termed
Scale-Aware Modulation (SAM), which incorporates two
new modules: Multi-Head Mixed Convolution (MHMC)
and Scale-Aware Aggregation (SAA). The MHMC mod-
ule is designed to enhance the receptive field and capture
multi-scale features simultaneously. The SAA module is
designed to effectively aggregate features across different
heads while maintaining a lightweight architecture. De-
spite these improvements, we find that SAM falls short of
the self-attention mechanism in capturing long-range de-
pendencies. To address this, we propose a new hybrid
Modulation-Transformer architecture called the Evolution-
ary Hybrid Network (EHN). Specifically, we incorporate
SAM blocks in the top two stages and Transformer blocks in
the last two stages, while introducing a new stacking strat-
egy in the penultimate stage. This architecture not only sim-
ulates changes in long-range dependencies from shallow to
deep layers but also enables each block in each stage to bet-
ter match its computational characteristics, leading to im-
proved performance on various downstream tasks. Collec-
tively, we refer to our proposed architecture as Scale-Aware
Modulation Transformer (SMT).

As shown in Fig. 1, our SMT significantly outperforms
other SOTA vision Transformers and convolutional net-
works on ImageNet-1K [8]. It is worth noting that our
SMT achieves top-1 accuracy of 82.2% and 84.3% with
the tiny and base model sizes, respectively. Moreover,

our SMT consistently outperforms other SOTA models on
COCO [27] and ADE20K [68] for object detection, instance
segmentation, and semantic segmentation tasks.

Overall, the contributions of this paper are as follows.

• We introduce the Scale-Aware Modulation (SAM)
which incorporates a potent Multi-Head Mixed Convo-
lution (MHMC) and an innovative, lightweight Scale-
Aware Aggregation (SAA). The SAM facilitates the
integration of multi-scale contexts and enables adap-
tive modulation of tokens to achieve more precise pre-
dictions.

• We propose a new evolutionary hybrid network that ef-
fectively models the transition from capturing local to
global dependencies as the network increases in depth,
leading to improved performance and high efficiency.

• We evaluated our proposed Scale-Aware Modulation
Transformer (SMT) on several widely used bench-
marks, including classification, object detection, and
segmentation. The experimental results indicated
that SMT consistently outperformed the SOTA Vision
Transformers while requiring fewer parameters and in-
curring lower computational costs.

2. Related Work
2.1. Vision Transformers

The Transformer [50] was initially developed for natural
language processing tasks and has since been adapted for
computer vision tasks through the introduction of the Vi-
sion Transformer (ViT) [9]. Further improvements to ViT
have been achieved through knowledge distillation or more
intricate data augmentation, as demonstrated by DeiT [48].
However, Transformers do not consider the quadratic com-
plexity of high-resolution images or the 2D structure of
images, which are challenges in vision tasks. To address
these issues and improve the performance of vision Trans-
formers, various methods have been proposed, including
multi-scale architectures [2, 29, 52, 59], lightweight con-
volution layers [12, 25, 56], and local self-attention mecha-
nisms [29, 5, 61, 65].

2.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) have been the
main force behind the revival of deep neural networks in
computer vision. Since the introduction of AlexNet [22],
VGGNet [40], and ResNet [15], CNNs have rapidly be-
come the standard framework for computer vision tasks.
The design principles of CNNs have been advanced by sub-
sequent models such as Inception [43, 44], ResNeXt [58],
Res2Net [11] and MixNet [47], which promote the use of
building blocks with multiple parallel convolutional paths.
Other works such as MobileNet [18] and ShuffleNet [67]
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Figure 2: (a) The architecture of the Scale-Aware Modulation Transformer (SMT); (b) Mix Block: a series of SAM blocks
and MSA blocks that are stacked successively (as presented in Sec. 3.3). SAM and MSA denote the scale-aware modulation
module and multi-head self-attention module, respectively.

have focused on the efficiency of CNNs. To further improve
the performance of CNNs, attention-based models such as
SE-Net [19], Non-local Networks [54], and CBAM [55]
have been proposed to enhance the modeling of chan-
nel or spatial attention. EfficientNets [45, 46] and Mo-
bileNetV3 [17] have employed neural architecture search
(NAS) [70] to develop efficient network architectures. Con-
vNeXt [30] adopts the hierarchical design of Vision Trans-
formers to enhance CNN performance while retaining the
simplicity and effectiveness of CNNs. Recently, several
studies [13, 16, 60] have utilized convolutional modula-
tion as a replacement for self-attention, resulting in im-
proved performance. Specifically, FocalNet [60] utilizes a
stack of depth-wise convolutional layers to encode features
across short to long ranges and then injects the modulator
into the tokens using an element-wise affine transformation.
Conv2Former [16] achieves good recognition performance
using a simple 11 × 11 depth-wise convolution. In con-
trast, our scale-aware modulation also employs depth-wise
convolution as a basic operation but introduces multi-head
mixed convolution and scale-aware aggregation.

2.3. Hybrid CNN-Transformer Networks

A popular topic in visual recognition is the develop-
ment of hybrid CNN-Transformer architectures. Recently,
several studies [12, 41, 56, 69] have demonstrated the ef-
fectiveness of combining Transformers and convolutions to
leverage the strengths of both architectures. CvT [56] first
introduced depth-wise and point-wise convolutions before
self-attention. CMT [12] proposed a hybrid network that
utilizes Transformers to capture long-range dependencies
and CNNs to model local features. MobileViT [33], Ed-
geNeXt [32], MobileFormer [4], and EfficientFormer [24]
reintroduced convolutions to Transformers for efficient net-
work design and demonstrated exceptional performance in
image classification and downstream applications. How-
ever, the current hybrid networks lack the ability to model

range dependency transitions, making it challenging to im-
prove their performance. In this paper, we propose an evo-
lutionary hybrid network that addresses this limitation and
showcases its importance.

3. Method
3.1. Overall Architecture

The overall architecture of our proposed Scale-Aware
Modulation Transformer (SMT) is illustrated in Fig. 2. The
network comprises four stages, each with downsampling
rates of {4, 8, 16, 32}. Instead of constructing an attention-
free network, we first adopt our proposed Scale-Aware
Modulation (SAM) in the top two stages, followed by a
penultimate stage where we sequentially stack one SAM
block and one Multi-Head Self-Attention (MSA) block to
model the transition from capturing local to global depen-
dencies. For the last stage, we solely use MSA blocks to
capture long-range dependencies effectively. For the Feed-
Forward Network (FFN) in each block, we adopt the detail-
specific feedforward layers as used in Shunted [38].

3.2. Scale-Aware Modulation

Multi-Head Mixed Convolution We propose the Multi-
Head Mixed Convolution (MHMC), which introduces mul-
tiple convolutions with different kernel sizes, enabling it to
capture various spatial features across multiple scales. Fur-
thermore, MHMC can expand the receptive field using a
large convolutional kernel, enhancing its ability to model
long-range dependencies. As depicted in Fig. 3(b), MHMC
partitions input channels into N heads and applies distinct
depth-wise separable convolutions to each head, which re-
duces the parameter size and computational cost. To sim-
plify our design process, we initialize the kernel size with
3×3 and gradually increase it by 2 per head. This ap-
proach enables us to regulate the range of receptive fields
and multi-granularity information by merely adjusting the
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Figure 3: (a) The schematic illustration of the proposed
scale-aware modulation (SAM). (b) and (c) are the mod-
ule descriptions of multi-head mixed convolution (MHMC)
and scale-aware aggregation (SAA), respectively.

number of heads. Our proposed MHMC can be formulated
as follows:

MHMC(X) = Concat(DWk1×k1
(x1), . . . , DWkn×kn

(xn))
(1)

where x = [x1, x2, ..., xn] means to split up the input fea-
ture x into multiple heads in the channel dimension and
ki ∈ {3, 5, . . . ,K} denotes the kernel size increases mono-
tonically by 2 per head.

As shown in Fig. 4(a), each distinct convolution feature
map learns to focus on different granularity features in an
adaptive manner, as expected. Notably, when we compare
the single-head and multi-head by visualizing modulation
maps in Fig. 4(b), we find that the visualization under multi-
head depicts the foreground and target objects accurately in
stage 1, while filtering out background information effec-
tively. Moreover, it can still present the overall shape of the
target object as the network becomes deeper, while the in-
formation related to the details is lost under the single-head
convolution. This indicates that MHMC has the ability to
capture local details better than a single head at the shallow
stage, while maintaining detailed and semantic information
about the target object as the network becomes deeper.

Scale-Aware Aggregation To enhance information inter-
action across multiple heads in MHMC, we introduce a
new lightweight aggregation module, termed Scale-Aware
Aggregation (SAA), as shown in Fig. 3(c). The SAA in-
volves an operation that shuffles and groups the features
of different granularities produced by the MHMC. Specifi-
cally, we select one channel from each head to construct a
group, and then we utilize the inverse bottleneck structure
to perform an up-down feature fusion operation within each

Head 1 Head 2

Head 3 Head 4

Single Head Convolution

Multi-Head Mixed Convolution

Stage 1 Stage 2

(a) Different Heads (b) Single Head vs Multi-Head

Input

Figure 4: (a) Visualization of the output values of different
heads in the MHMC in the first stage. (b) Visualization of
the modulation values (corresponding to the left side of ⊙ in
Eq. 3) under single-head and multi-head mixed convolution
in the last layer during the top two stages. All maps are
upsampled for display.

group, thereby enhancing the diversity of multi-scale fea-
tures. However, a well-designed grouping strategy enables
us to introduce only a small amount of computation while
achieving desirable aggregation results. Notably, let the in-
put X ∈ RH×W×C , Groups = C

Heads , which means the
number of groups is inversely proportional to the number of
heads. Subsequently, we perform cross-group information
aggregation for all features using point-wise convolution to
achieve cross-fertilization of global information. The pro-
cess of SAA can be formulated as follows:

M = Winter([G1, G2, . . . , GM ]),

Gi = Wintra([H
i
1, H

i
2, . . . ,H

i
N ]),

Hi
j = DWConvkj×kj (x

i
j) ∈ RH×W×1.

(2)

where Winter and Wintra are weight matrices of point-wise
convolution. j ∈ {1, 2, . . . , N} and i ∈ {1, 2, . . . ,M},
where N and M = C

N denote the number of heads and
groups, respectively. Here, Hj ∈ RH×W×M represents the
j-th head with depth-wise convolution, and Hi

j represents
the i-th channel in the j-th head.

Fig. 5 shows that our SAA module explicitly strengthens
the semantically relevant low-frequency signals and pre-
cisely focuses on the most important parts of the target ob-
ject. For instance, in stage 2, the eyes, head and body are
clearly highlighted as essential features of the target object,
resulting in significant improvements in classification per-
formance. Compared to the convolution maps before ag-
gregation, our SAA module demonstrates a better ability to
capture and represent essential features for visual recogni-
tion tasks. (More visualizations can be found in Appendix).

Scale-Aware Modulation As illustrated in Fig. 3(a), after
capturing multi-scale spatial features using MHMC and ag-
gregating them with SAA, we obtain an output feature map,
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Figure 5: (a) Visualization of the modulation values before
SAA. (b) Visualization of the modulation values after SAA.

which we refer to as the modulator M. We then adopt this
modulator to modulate the value V using the scalar prod-
uct. For the input features X ∈ RH×W×C , we compute the
output Z as follows:

Z = M ⊙ V,

V = WvX,

M = SAA(MHMC(WsX)).

(3)

where ⊙ is the element-wise multiplication, Wv and Ws

are weight martices of linear layers. Since the modulator
is calculated via Eq. 3, it changes dynamically with dif-
ferent inputs, thereby achieving adaptively self-modulation.
Moreover, unlike self-attention, which computes an N ×N
attention map, the modulator retains the channel dimension.
This feature allows for spatial- and channel-specific modu-
lation of the value after element-wise multiplication, while
also being memory-efficient, particularly when processing
high-resolution images.

3.3. Scale-Aware Modulation Transformer

Evolutionary Hybrid Network In this section, we pro-
pose to reallocate the appropriate computational modules
according to the variation pattern in the network’s capture
range dependencies to achieve better computational per-
formance. We propose using MSA blocks only from the
penultimate stage to reduce the computational burden. Fur-
thermore, to effectively simulate the transition pattern, we
put forth two hybrid stacking strategies for the penultimate
stage: (i) sequentially stacking one SAM block and one
MSA block, which can be formulated as (SAM × 1 +
MSA×1)×N

2 , depicted in Fig. 6(i); (ii) using SAM blocks
for the first half of the stage and MSA blocks for the second
half, which can be formulated as (SAM×N

2 +MSA×N
2 ),

depicted in Fig. 6(ii).
To assess the efficacy of these hybrid stacking strategies,

we evaluated their top-1 accuracy on the ImageNet-1K, as

SAM
Block

MSA
Block

× 𝐿
……

(i) 

(ii)

SAM
Block

MSA
Block

SAM
Block

MSA
Block

SAM
Block

MSA
Block

…… SAM
Block

MSA
Block

MSA
Block

SAM
Block

×
𝐿
2 ……

×
𝐿
2

Figure 6: Two proposed hybrid stacking strategies.

shown in Table 9. Moreover, as depicted in Fig. 7, we
calculate the relative receptive field of the MSA blocks in
the penultimate stage, followed by the approach presented
in [3]. It is noteworthy that there is a slight downward trend
in the onset of the relative receptive field in the early lay-
ers. This decline can be attributed to the impact of the SAM
on the early MSA blocks, which emphasize neighboring to-
kens. We refer to this phenomenon as the adaptation period.
As the network becomes deeper, we can see a smooth and
steady upward trend in the receptive field, indicating that
our proposed evolutionary hybrid network effectively simu-
lates the transition from local to global dependency capture.

0 2 4 6 8 10 12 14
Depth (layer)

0.30

0.35

0.40

0.45

0.50

Re
la

tiv
e 

Re
ce

pt
iv

e 
Fi

el
d

Figure 7: The receptive field of SMT-B’s relative attention
across depth, with error bars representing standard devia-
tions across various attention heads.

4. Experiments
To ensure a fair comparison under similar parameters

and computation costs, we construct a range of SMT vari-
ants. We validate our SMTs on ImageNet-1K [8] im-
age classification, MS COCO [27] object detection, and
ADE20K [68] semantic segmentation. Besides, extensive
ablation studies provide a close look at different compo-
nents of the SMT. (The detailed model settings are pre-
sented in Appendix)

4.1. Image Classification on ImageNet-1K

Setup We conduct an evaluation of our proposed model
and compare it with various networks on ImageNet-1K

6019



(a) Tiny Models

method
image
size

#param. FLOPs
ImageNet
top-1 acc.

RegNetY-1.6G [35] 2242 11.2M 1.6G 78.0
EffNet-B3 [45] 3002 12M 1.8G 81.6
PVTv2-b1 [53] 2242 13.1M 2.1G 78.7

EfficientFormer-L1 [24] 2242 12.3M 1.3G 79.2
Shunted-T [38] 2242 11.5M 2.1G 79.8

Conv2Former-N [16] 2242 15M 2.2G 81.5
SMT-T(Ours) 2242 11.5M 2.4G 82.2

(b) Small Models

method
image
size

#param. FLOPs
ImageNet
top-1 acc.

RegNetY-4G [35] 2242 21M 4.0G 80.0
EffNet-B4 [45] 3802 19M 4.2G 82.9

DeiT-S [48] 2242 22M 4.6G 79.8
Swin-T [29] 2242 29M 4.5G 81.3

ConvNeXt-T [30] 2242 29M 4.5G 82.1
PVTv2-b2 [53] 2242 25.0M 4.0G 82.0

Focal-T [61] 2242 29.1M 4.9G 82.2
Shunted-S [38] 2242 22.4M 4.9G 82.9

CMT-S [12] 2242 25.1M 4.0G 83.5
FocalNet-T [60] 2242 28.6M 4.5G 82.3

Conv2Former-T [16] 2242 27M 4.4G 83.2
HorNet-T [37] 2242 23M 4.0G 83.0

InternImage-T [51] 2242 30M 5.0G 83.5
MaxViT-T [49] 2242 31M 5.6G 83.6
SMT-S(Ours) 2242 20.5M 4.7G 83.7

(c) Base Models

method
image
size

#param. FLOPs
ImageNet
top-1 acc.

RegNetY-8G [35] 2242 39M 8.0G 81.7
EffNet-B5 [45] 4562 30M 9.9G 83.6

Swin-S [29] 2242 49.6M 8.7G 83.0
CoAtNet-1 [7] 2242 42M 8.0G 83.3
PVTv2-b4 [53] 2242 63M 10.0G 83.6

SwinV2-S/8 [28] 2562 50M 12.0G 83.7
PoolFormer-m36 [63] 2242 56.2M 8.8G 82.1

Shunted-B [38] 2242 39.6M 8.1G 84.0
InternImage-S [51] 2242 50.0M 8.0G 84.2

Conv2Former-S [16] 2242 50.0M 8.7G 84.1
Swin-B [29] 2242 87.8M 15.4G 83.4

ConvNeXt-B [30] 2242 89M 15.4G 83.8
Focal-B [61] 2242 89.8M 16.4G 83.8

FocalNet-B [60] 2242 88.7M 15.4G 83.9
HorNet-B [37] 2242 87M 15.6G 84.2
SMT-B(Ours) 2242 32.0M 7.7G 84.3

Table 1: Comparison of different backbones on ImageNet-
1K classification.

classification [8]. To ensure a fair comparison, we follow
the same training recipes as previous works [48, 29, 38].
Specifically, we train the models for 300 epochs with an
image size of 224× 224 and report the top-1 validation ac-
curacy. The batch size used is 1024, and we employ the

ImageNet-22K pre-trained models

method
image
size

#param. FLOPs
ImageNet
top-1 acc.

ViT-B/16 [9] 3842 86.0M 55.4G 84.0
ViT-L/16 [9] 3842 307.0M 190.7G 85.2

Swin-Large [29] 2242/2242 196.5M 34.5G 86.3
Swin-Large [29] 3842/3842 196.5M 104.0G 87.3

FocalNet-Large [60] 2242/2242 197.1M 34.2G 86.5
FocalNet-Large [60] 2242/3842 197.1M 100.6G 87.3
InternImage-L [51] 2242/3842 223M 108G 87.7

InternImage-XL [51] 2242/3842 335M 163G 88.0
SMT-L(Ours) 2242/2242 80.5M 17.7G 87.1
SMT-L(Ours) 2242/3842 80.5M 54.6G 88.1

Table 2: ImageNet-1K finetuning results with models pre-
trained on ImageNet-22K. Numbers before and after “/” are
resolutions used for pretraining and finetuning, respectively

AdamW optimizer [21, 31] with a weight decay of 0.05 and
a learning rate of 1 × 10−3. In addition, we investigate the
effectiveness of SMTs when pretrained on ImageNet-22K.
(Further details regarding the training process can be found
in Appendix)

Results Tab. 1 presents a comparison of our proposed
SMT with various models, and the results demonstrate that
our models outperform various architectures with fewer pa-
rameters and lower computation costs. Specifically, con-
cerning the tiny-sized model, SMT achieves an impressive
top-1 accuracy of 82.2%, surpassing PVTv2-b1 [53] and
Shunted-T [38] by significant margins of 3.5% and 2.4%,
respectively. Furthermore, when compared to small-sized
and base-sized models, SMT maintains its leading posi-
tion. Notably, SMT-B achieves a top-1 accuracy of 84.3%
with only 32M parameters and 7.7GFLOPs of computation,
outperforming many larger models such as Swin-B [29],
ConvNeXt-B [30], and FocalNet-B [60], which have over
70M parameters and 15GFLOPs of computation. Addition-
ally, to evaluate the scalability of the SMT, we have also
created smaller and larger models, and the experimental re-
sults are presented in the Appendix.

We also report the ImageNet-22K pre-training results
here in Tab. 2. When compared to the previously best re-
sults, our models achieve significantly better accuracy with
a reduced number of parameters and FLOPs. SMT-L attains
an 88.1% top-1 accuracy, surpassing InternImage-XL by
0.1% while utilizing significantly fewer parameters (80.5M
vs. 335M) and exhibiting lower FLOPs (54.6G vs. 163G).
This highly encouraging outcome underscores the impres-
sive scalability capabilities of SMT.

4.2. Object Detection and Instance Segmentation

Setup We make comparisons on object detection with
COCO 2017 [27]. We use SMT-S/B pretrained on

6020



Backbone
Params FLOPs Mask R-CNN 1× schedule Mask R-CNN 3× schedule + MS

(M) (G) AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 APm APm
50 APm

75

ResNet50 [15] 44.2 260 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
Twins-SVT-S [5] 44.0 228 43.4 66.0 47.3 40.3 63.2 43.4 46.8 69.2 51.2 42.6 66.3 45.8
Swin-T [29] 47.8 264 42.2 64.6 46.2 39.1 61.6 42.0 46.0 68.2 50.2 41.6 65.1 44.8
PVTv2-B2 [52] 45.0 - 45.3 67.1 49.6 41.2 64.2 44.4 - - - - - -
Focal-T [61] 48.8 291 44.8 67.7 49.2 41.0 64.7 44.2 47.2 69.4 51.9 42.7 66.5 45.9
CMT-S [12] 44.5 249 44.6 66.8 48.9 40.7 63.9 43.4 - - - - - -
FocalNet-T [60] 48.9 268 46.1 68.2 50.6 41.5 65.1 44.5 48.0 69.7 53.0 42.9 66.5 46.1
SMT-S 40.0 265 47.8 69.5 52.1 43.0 66.6 46.1 49.0 70.1 53.4 43.4 67.3 46.7

ResNet101 [15] 63.2 336 40.4 61.1 44.2 36.4 57.7 38.8 42.8 63.2 47.1 38.5 60.1 41.3
Swin-S [29] 69.1 354 44.8 66.6 48.9 40.9 63.4 44.2 48.5 70.2 53.5 43.3 67.3 46.6
Swin-B [29] 107.1 497 46.9 69.2 51.6 42.3 66.0 45.5 48.5 69.8 53.2 43.4 66.8 46.9
Twins-SVT-B [5] 76.3 340 45.2 67.6 49.3 41.5 64.5 44.8 48.0 69.5 52.7 43.0 66.8 46.6
PVTv2-B4 [52] 82.2 - 47.5 68.7 52.0 42.7 66.1 46.1 - - - - - -
Focal-S [61] 71.2 401 47.4 69.8 51.9 42.8 66.6 46.1 48.8 70.5 53.6 43.8 67.7 47.2
FocalNet-S [60] 72.3 365 48.3 70.5 53.1 43.1 67.4 46.2 49.3 70.7 54.2 43.8 67.9 47.4
SMT-B 51.7 328 49.0 70.2 53.7 44.0 67.6 47.4 49.8 71.0 54.4 44.0 68.0 47.3

Table 3: Object detection and instance segmentation with Mask R-CNN on COCO. Only the 3× schedule has the multi-scale
training. All backbones are pre-trained on ImageNet-1K.

Method Backbones #Params FLOPs AP b AP b
50 AP b

75 APm APm
50 APm

75

Cascade [1]

ResNet50 [15] 82.0M 739G 46.3 64.3 50.5 40.1 61.7 43.4
Swin-T [29] 86.0M 745G 50.5 69.3 54.9 43.7 66.6 47.1

ConvNeXt [30] - 741G 50.4 69.1 54.8 43.7 66.5 47.3
Shuffle-T [20] 86.0M 746G 50.8 69.6 55.1 44.1 66.9 48.0

FocalNet-T [60] 87.1M 751G 51.5 70.3 56.0 - - -
SMT-S 77.9M 744G 51.9 70.5 56.3 44.7 67.8 48.6

Method Backbones #Params FLOPs AP b AP b
50 AP b

75 APS APM APL

RetinaNet [26]

ResNet50 [15] 37.7M 240G 39.0 58.4 41.8 22.4 42.8 51.6
Swin-T [29] 38.5M 245G 45.0 65.9 48.4 29.7 48.9 58.1
Focal-T [61] 39.4M 265G 45.5 66.3 48.8 31.2 49.2 58.7

Shunted-S [38] 32.1M - 46.4 66.7 50.4 31.0 51.0 60.8
SMT-S 30.1M 247G 47.3 67.8 50.5 32.5 51.1 62.3

Table 4: COCO detection and segmentation with the Cas-
cade Mask R-CNN and RetinaNet. The performances are
reported on the COCO val dataset under the 3× schedule.

ImageNet-1K as the foundation for three well-known object
detectors: Mask R-CNN [14], Cascade Mask R-CNN [1],
and RetinaNet [26]. To demonstrate a consistent compar-
ison, two training schedules (1× schedule with 12 epochs
and 3× schedule with 36 epochs) are adopted in Mask R-
CNN. In 3× schedule, we use a multi-scale training strat-
egy by randomly resizing the shorter side of an image to be-
tween [480, 800]. We take AdamW optimizer with a weight
decay of 0.05 and an initial learning rate of 2× 10−4. Both
models are trained with batch size 16. To further showcase
the versatility of SMT, we conducted a performance eval-
uation of SMT with three other prominent object detection
frameworks, namely Sparse RCNN [42], ATSS [66], and
DINO [64]. We initialize the backbone with weights pre-
trained on ImageNet-1K and fine-tune the model using a
3× schedule for Sparse RCNN and ATSS.

Method Backbone #Param. FLOPs AP b AP b
50 AP b

75

Sparse R-CNN [42]

R-50 [15] 106.1M 166G 44.5 63.4 48.2
Swin-T [29] 109.7M 172G 47.9 67.3 52.3
Focal-T [61] 110.8M 196G 49.0 69.1 53.2
FocalNet-T [60] 111.2M 178G 49.9 69.6 54.4
SMT-S 102.0M 171G 50.2 69.8 54.7

ATSS [66]

R-50 [15] 32.1M 205G 43.5 61.9 47.0
Swin-T [29] 35.7M 212G 47.2 66.5 51.3
Focal-T [61] 36.8M 239G 49.5 68.8 53.9
FocalNet-T [60] 37.2M 220G 49.6 68.7 54.5
SMT-S 28.0M 214G 49.9 68.9 54.7

DINO [64]

R-50 [15] 47.7M 244G 49.2 66.7 53.8
Swin-T [29] 48.2M 252G 51.3 69.0 55.9
Swin-S [29] 69.5M 332G 53.0 71.2 57.6
SMT-S 39.9M 309G 54.0 71.9 59.0

Table 5: A comparison of models with three different object
detection frameworks.

Results Tab. 3 presents the superior performance of SMT
over other networks with Mask R-CNN [14] under various
model sizes. Specifically, SMT demonstrates a significant
improvement in box mAP of 5.6 and 4.2 over Swin Trans-
former in 1× schedule under small and base model sizes, re-
spectively. Notably, with 3× schedule and multi-scale train-
ing, SMT still consistently outperforms various backbones.
For instance segmentation, the results also demonstrate that
our SMT achieves higher mask mAP in comparison to pre-
vious SOTA networks. In particular, for small and base
models in the 1× schedule, we achieve 1.5 and 0.9 points
higher than FocalNet, respectively. Furthermore, to assess
the generality of SMT, we trained two additional detec-
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tion models, Cascade Mask R-CNN [1] and RetinaNet [26],
using SMT-S as the backbone. The results, presented in
Tab. 4, show clear improvements over various backbones
in both box and mask mAPs. The resulting box mAPs for
Sparse R-CNN, ATSS and DINO are presented in Tab. 5,
which indicate that SMT outperforms other networks con-
sistently across all detection frameworks, highlighting its
exceptional performance in downstream tasks.

4.3. Semantic Segmentation on ADE20K

Setup We evaluate the SMT for semantic segmentation
using the ADE20K dataset. To conduct the evaluation, we
use UperNet as the segmentation method and closely fol-
lowed the training settings proposed by [29]. Specifically,
we train UperNet [57] for 160k iterations with an input res-
olution of 512 × 512. We employ the AdamW optimizer
with a weight decay of 0.01, and set the learning rate to
6× 10−5.

Results The results are presented in Tab. 6, which shows
that our SMT outperforms Swin, FocalNet, and Shunted
Transformer significantly under all settings. Specifically,
SMT-B achieves 1.5 and 0.9 mIoU gains compared to Swin-
B and a 0.6 and 0.1 mIoU improvement over Focal-B at
single- and multi-scale, respectively, while consuming sig-
nificantly fewer FLOPs and reducing the model size by
more than 50%. Even for the SMT with a small model size,
it achieves comparable accuracy with the previous SOTA
models which have a larger model size.

Backbone #Param(M) FLOPs(G) mIoUss mIoUms

ResNet-101 [15] 86 1029 44.9 -
DeiT-S [48] 52 1099 44.0 -
Swin-T [29] 60 941 44.5 45.8
Focal-T [61] 62 998 45.8 47.0
FocalNet-T [61] 61 949 46.8 47.8
Swin-S [29] 81 1038 47.6 49.5
ConvNeXt-S [30] 82 1027 49.6 -
Shunted-S [38] 52 940 48.9 49.9
FocalNet-S [60] 84 1044 49.1 50.1
Focal-S [61] 85 1130 48.0 50.0
Swin-B [29] 121 1188 48.1 49.7
Twins-SVT-L [5] 133 - 48.8 50.2
Focal-B [61] 126 1354 49.0 50.5

SMT-S 50.1 935 49.2 50.2
SMT-B 61.8 1004 49.6 50.6

Table 6: Semantic segmentation on ADE20K [68]. All
models are trained with UperNet [57]. mIoUms means
multi-scale evaluation.

4.4. Ablation Study

Number of heads in Multi-Head Mixed Convolution
Table 7 shows the impact of the number of convolution

heads in the Multi-Head Mixed Convolution (MHMC) on
our model’s performance. The experimental results indi-
cate that while increasing the number of diverse convolu-
tional kernels is advantageous for modeling multi-scale fea-
tures and expanding the receptive field, adding more heads
introduces larger convolutions that may negatively affect
network inference speed and reduce throughput. Notably,
we observed that the top-1 accuracy on ImageNet-1K peaks
when the number of heads is 4, and increasing the number
of heads does not improve the model’s performance. This
findings suggest that introducing excessive distinct convo-
lutions or using a single convolution is not suitable for our
SMT, emphasizing the importance of choosing the appro-
priate number of convolution heads to model a specific de-
gree of multi-scale spatial features.

Heads Number Params(M) FLOPs(G) top-1 (%)
throughput
(images/s)

1 11.5 2.4 81.8 983
2 11.5 2.4 82.0 923
4 11.5 2.4 82.2 833
6 11.6 2.5 81.9 766
8 11.6 2.5 82.0 702

Table 7: Model performance with number of heads in
MHMC. We analyzed the model’s performance for the
number of heads ranging from 1 to 8. Throughput is mea-
sured using a V100 GPU, following [29].

Different aggregation strategies After applying the
MHMC, we introduce an aggregation module to achieve
information fusion. Table 8 presents a comparison of dif-
ferent aggregation strategies, including a single linear layer,
two linear layers, and an Invert BottleNeck (IBN) [39]. Our
proposed scale-aware aggregation (SAA) consistently out-
performs the other fusion modules, demonstrating the ef-
fectiveness of SAA in modeling multi-scale features with
fewer parameters and lower computational costs. Notably,
as the size of the model increases, our SAA can exhibit
more substantial benefits while utilizing a small number of
parameters and low computational resources.

Aggregation Strategy
Params

(M)
FLOPs

(G)
top-1
(%)

No aggregation 10.9 2.2 81.5
Single Linear (c → c) 11.2 2.3 81.6

Two Linears (c → c → c) 11.5 2.4 81.9
IBN (c → 2c → c) 12.1 2.6 82.1
SAA(c → 2c → c) 11.5 2.4 82.2

Table 8: Model performance for different aggregation meth-
ods.

Different hybrid stacking strategies In Sec. 3.3, we pro-
pose two hybrid stacking strategies to enhance the modeling
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of the transition from local to global dependencies. The re-
sults shown in Table 9 indicate that the first strategy which
sequentially stacks one scale-aware modulation block and
one multi-head self-attention block is better, achieving a
performance gain of 0.3% compared to the other strategy.
Furthermore, the strategy stacking all MSA blocks achieves
comparable performance as well, which means retaining the
MSA block in the last two stages is crucial.

Stacking Strategy Hybrid
Params

(M)
FLOPs

(G)
top-1
(%)

(SAM ×N) % 11.8 2.5 81.4
(MSA×N) % 11.2 2.3 81.8

(SAM × 1 +MSA× 1)× N
2
! 11.5 2.4 82.2

(SAM × N
2
+MSA× N

2
) ! 11.5 2.4 81.9

Table 9: Top-1 accuracy on ImageNet-1K of different stack-
ing strategies.

Component Analysis In this section, we investigate the
individual contributions of each component by conducting
an ablation study on SMT. Initially, we employ a single-
head convolution module and no aggregation module to
construct the modulation. Based on this, we build an
attention-free network, which can achieve 80% top-1 ac-
curacy on the ImageNet-1K dataset. The effects of all the
proposed methods on the model’s performance are given in
Tab. 10, which can be summarized as followings.

• Multi-Head Mixed Convolution (MHMC) To enhance
the model’s ability to capture multi-scale spatial features
and expand its receptive field, we replaced the single-
head convolution with our proposed MHMC. This mod-
ule proves to be effective for modulation, resulting in a
0.8% gain in accuracy.

• Scale-Aware Aggregation (SAA) We replace the single
linear layer with our proposed scale-aware aggregation.
The SAA enables effective aggregation of the multi-scale
features captured by MHMC. Building on the previous
modification, the replacement leads to a 1.6% increase in
performance.

• Evolutionary Hybrid Network (EHN) We incorporate
the self-attention module in the last two stages of our
model, while also implementing our proposed hybrid
stacking strategy in the penultimate stage, which im-
proves the modeling of the transition from local to global
dependencies as the network becomes deeper, resulting
in a significant gain of 2.2% in performance based on the
aforementioned modifications.

MHMC SAA EHN Params(M) FLOPs(G) top-1 (%)
11.1 2.3 80.0 (↑0.0)

✓ 11.2 2.3 80.8 (↑0.8)
✓ ✓ 12.1 2.5 81.6 (↑1.6)
✓ ✓ ✓ 11.5 2.4 82.2 (↑2.2)

Table 10: Component analysis for SMT. Three variations
are gradually added to the original attention-free network.

5. Conclusion
In this paper, we introduce a new hybrid ConvNet and vi-

sion Transformer backbone, namely Scale-Aware Modula-
tion Transformer (SMT), which can effectively simulate the
transition from local to global dependencies as the network
becomes deeper, resulting in superior performance. To sat-
isfy the requirement of foundation models, we propose a
new Scale-Aware Modulation that includes a potent multi-
head mixed convolution module and a lightweight scale-
aware aggregation module. Extensive experiments demon-
strate the efficacy of SMT as a backbone for various down-
stream tasks, achieving comparable or better performance
than well-designed ConvNets and vision Transformers, with
fewer parameters and FLOPs. We anticipate that the excep-
tional performance of SMT on diverse vision problems will
encourage its adoption as a promising new generic back-
bone for efficient visual modeling.
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