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Abstract

Existing mirror detection methods require supervised
ImageNet pre-training to obtain good general-purpose im-
age features. However, supervised ImageNet pre-training
focuses on category-level discrimination and may not be
suitable for downstream tasks like mirror detection, due to
the overfitting upstream tasks (e.g., supervised image classi-
fication). We observe that mirror reflection is crucial to how
people perceive the presence of mirrors, and such mid-level
features can be better transferred from self-supervised pre-
trained models. Inspired by this observation, in this paper
we aim to improve mirror detection methods by proposing
a new self-supervised learning (SSL) pre-training frame-
work for modeling the representation of mirror reflection
progressively in the pre-training process. Our framework
consists of three pre-training stages at different levels: 1)
an image-level pre-training stage to globally incorporate
mirror reflection features into the pre-trained model; 2)
a patch-level pre-training stage to spatially simulate and
learn local mirror reflection from image patches; and 3) a
pixel-level pre-training stage to pixel-wisely capture mirror
reflection via reconstructing corrupted mirror images based
on the relationship between the inside and outside of mir-
rors. Extensive experiments show that our SSL pre-training
framework significantly outperforms previous state-of-the-
art CNN-based SSL pre-training frameworks and even out-
performs supervised ImageNet pre-training when trans-
ferred to the mirror detection task. Code and models are
available at https://jiaying.link/iccv2023-sslmirror/

1. Introduction

Mirrors are prevalent in our daily lives. As their appear-
ances are largely determined by their surroundings, they
generally lack a consistent appearance, making it difficult
to separate them from their surroundings. This may affect
many computer vision tasks such as object detection [2],
vision-language navigation [1] and depth estimation [29].
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Figure 1. State-of-the-art mirror detection methods [37, 30] are
based on costly supervised ImageNet pre-training. They may fail
even in obvious cases, e.g., (a) when the mirror clearly reflects a
real object outside of the mirror. (b) and (c) are MirrorNet [37]
and VCNet [30], respectively, pre-trained on ImageNet with full
supervision. (c) is MirrorNet with our proposed SSL framework
and without supervised ImageNet pre-training. Our SSL scheme
leverages the mirror reflection cue and avoids feature redundancy
in the pre-training stage. It outperforms those pre-trained on Ima-
geNet with full supervision (i.e., (b) and (c)).

It is therefore crucial to design high-performance mirror de-
tection methods to facilitate computer vision applications.
Recently, a few methods [37, 23, 30] have been pro-
posed for mirror detection, but they all require to be initial-
ized with supervised ImageNet [8] pre-trained weights and
then fine-tuned on mirror detection datasets. While such
a transfer learning approach is common in general com-
puter vision tasks (e.g., object detection [24] and seman-
tic segmentation [7]) to utilize category-oriented features
from large-scale image datasets, we challenge if this strat-
egy is necessary for the mirror detection task for two rea-
sons. First, the supervised ImageNet pre-training process
involves high labelling costs, as it is very time-consuming
and labor-intensive to label such a large-scale image dataset
(~1.3M images). Second, unlike general vision tasks, mir-
ror detection does not require category-level object under-
standing. Instead, it requires an understanding of the rela-
tionship between inside and outside of mirrors (e.g., con-
trast [37], similarity [23], and visual chirality [30]). Thus,
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while pre-training on ImageNet requires expensive labels, it
causes feature redundancy for the mirror detection task.

Figure 1 shows that existing models pre-trained on Ima-
geNet tend to over-detect the mirror regions. Although the
two SOTA methods [37, 30] can correctly locate the mirror
regions, they are unable to distinguish between the mirrored
objects inside the mirrors and the real objects outside, even
though these methods contain well-designed modules to
learn to address this problem via the fine-tuning stage. This
motivates us to investigate whether the current pre-training
approach may affect the final detection performance, and
whether we may incorporate some intrinsic mirror proper-
ties in the pre-training process to assist mirror detection.

An interesting observation is that humans do not need to
be “trained” to recognize mirrors. Instead, we learn to rec-
ognize them implicitly from young. This aligns with the key
idea of self-supervised learning (SSL). Works from neu-
roscience [31, 20] have shown that humans use mid-level
visual cortex to recognize mirror reflection. According to
[44], mid-level features are hard to be transferred from su-
pervised pre-training on ImageNet, and SSL is suitable for
learning mid-level representations, which inspires us to de-
velop an SSL pre-training framework for modeling mirror
reflection.

In this paper, we propose a new SSL pre-training frame-
work for mirror detection, which explicitly considers mirror
reflection during the pre-training process. Our framework
does not require human-annotated labels from large-scale
image datasets. It consists of three stages to progressively
pre-train the backbone network from global to local: 1) an
image-level pre-training stage to obtain the representation
of mirror reflection globally by recognizing the geometric
transformation applied to the image; 2) a patch-level pre-
training stage to mimic patch-wise mirror reflection and
then learn the spatial correlation between the original ob-
ject patches and the corresponding mirrored object patches;
and 3) a pixel-level pre-training stage to extract the pixel-
to-pixel relationship of mirror reflection by image recon-
struction; Under such progressive pre-training scheme, our
SSL pre-training framework can learn the representation of
mirror reflection, and then effectively transfer this knowl-
edge to the subsequent mirror detection process for better
detection performances. We conduct comprehensive ex-
periments to demonstrate the effectiveness of our SSL pre-
training framework. We show that it can significantly boost
the performances of existing mirror detection methods, and
outperform other CNN-based SSL pre-training frameworks
on the mirror detection task.

To conclude, this paper makes three key contributions:

* To the best of our knowledge, we are the first to inves-
tigate how existing SSL pre-training frameworks per-
form on the mirror detection task, compared with su-
pervised ImageNet pre-training.

* We propose a new SSL pre-training framework that
consists of three stages at different levels to progres-
sively learn the representation of mirror reflection.
Compared with the features from a supervised Ima-
geNet pre-trained model, our representation is better
due to the reduced gap between the pre-training task
and the target downstream task (i.e., mirror detection).

» Extensive experiments show that our SSL pre-training
framework performs the best among all state-of-the-art
SSL methods, and even better than models with super-
vised ImageNet pre-training.

2. Related Work
2.1. Mirror Detection

Mirror detection is an essential task in computer vision,
as mirrors are everywhere these days. It is also a chal-
lenging task, since mirrors do not possess a consistent ap-
pearance, but reflect those of their surroundings. Other vi-
sion tasks such as generic object detection and segmentation
would tend to detect and segment objects outside as well as
inside of the mirror, providing incorrect information on the
mirror region, and a depth prediction task may return the
depths of the reflected objects inside the mirror region in-
stead of the depth of the mirror.

To address the mirror detection problem, Yang et al. [37]
propose the first large-scale mirror detection dataset and the
first deep-learning model, MirrorNet, for mirror detection
by learning the contextual contrast between the inside and
outside of mirrors. Lin et al. [23] further propose a new
model with similarity and edge learning to progressively de-
tect mirrors. Most recently, Guan et al. [15] employ graph
convolutional networks to model contextual associations for
mirror detection, while Tan et al. propose VCNet [30] to ex-
ploit the visual chirality cue at a feature level.

However, existing mirror detection methods are all fully-
supervised. They also directly adopt the supervised Ima-
geNet [8] pre-training to obtain generic image features. Un-
like recent works [ 19, 18, 22] that propose novel network ar-
chitectures for mirror detection, we propose in this paper to
tackle the mirror detection problem from a learning-based
perspective, offering the first self-supervised pre-training
framework for mirror detection.

2.2. Self-supervised Learning (SSL)

SSL is a popular research topic in computer vision [38,

], and has attracted a lot of research interests. It aims to
learn good feature representations without needing labeled
data. Early SSL methods focus on proposing novel pretext
tasks, such as relative location prediction [10] and rotation
prediction [21]. Recently, most methods are based on the
utilization of contrastive learning [16, 4, 14, 3, 32, 5, 41,

12228



< muu1 =
£ £ Flipped
L Backbone é E
Flipped image Network Z T
(2 8 Not Flipped
(T

Original Image Stage 1 Image-level Pre-training

Randomly Flip a patch i

.

Image Patches Not Flipped

Stage 2 Patch-level Pre-training

~

o EFiE
E Y/ k Random Shuffle i —‘) ‘.
E‘ :)..B._.E 4}]; JWB__'_’

\‘!%5 g
g 2
" é 3 Backbone g
/] Network g
- 3
==\ 2
Corrupted Image Recovered Image

Stage 3 Pixel-level Pre-training

s 5 10 3
- 25
% 525 (285
S 16 7 4]

Backbone Location Index

Network E E 0 0 0]
5
ol > 000
Tely 2= 0 0 1
o 2Ty g0 £ 4
iz Probability
Flipped

Figure 2. Our SSL pre-training framework. It consists of three pre-training stages at different levels: an image-level pre-training stage, a
patch-level pre-training stage, and a pixel-level pre-training stage. It pre-trains the backbone network from global to local (image-level —

patch-level — pixel-level) progressively.

]. Most recently, [44] shows that some SSL methods per-
form even better than supervised ImageNet pre-training in
downstream tasks, such as object detection [ |, 24] and se-
mantic segmentation [/, 34], with the help of instance dis-
crimination during SSL pre-training. Recent transformer-
based SSL frameworks [36] also involve masked image
modeling to obtain better self-supervised representations.

In this paper, we observe that unlike general vision tasks,
mirror detection is not benefited from supervised ImageNet
pre-training since it does not require category-level object
understanding. Hence, we propose a novel SSL pre-training
framework specifically for the mirror detection task. The
proposed framework aims to simulate and learn the rela-
tionship between mirrors and their surrounding during the
pre-training stage.

3. Method

Figure 2 shows the overall architecture of the proposed
SSL pre-training framework. Our SSL pre-training frame-
work consists of three pre-training stages at different lev-
els: an image-level pre-training, a patch-level pre-training,
and a pixel-level pre-training. The pre-training at each level
is conducted sequentially and independently. The progres-
sive and sequential training strategy can help the pre-trained
model obtain a global-to-local representation of mirrors.

3.1. Image-level Pre-training

Inspired by the definition of visual chirality [26] and its
potential applications [46, 30] in various computer vision
problems, we formulate the image-level pre-training as a
binary classification problem: Given an input image and its

corresponding horizontal flipped image, can the backbone
network tell which one is the original image? To achieve
this objective, we attach a classification head to predict the
probability that the input image is flipped. The classification
head consists of a convolution layer followed by a sigmoid
activation function to project the output value into [0, 1]. In
this pre-training stage, we use binary cross-entropy (BCE)
as our loss function L¢ to optimize the backbone network.
Formally, we have:

Ly = —[ylog(y) + (1 — y)log(1 — )], (1)

where y is the ground truth label and ¢ is the predicted prob-
ability that the input image is horizontally flipped.

3.2. Patch-level Pre-training

The image-level pre-training pretext task alone cannot
bring much help in locating the mirror inside an image
since mirror detection is a pixel-level problem. However,
directly connecting the image-level and the pixel-level pre-
text tasks is challenging due to the gap between the scales
of these two pretext tasks. Thus, we design a patch-level
pre-training stage as a bridge to cover the feature represen-
tations of mirrors at different scales. Besides, the image-
level pre-training does not benefit relational spatial under-
standing, which has been proven important in mirror de-
tection [23]. Our patch-level pre-training consists of two
sub-tasks to both obtain the patch-wise relationship of mir-
ror reflection and simulate the mirrored region with pseudo
labels. We first split the input image into a grid of 3x3
image patches and randomly shuffle them. After that, we
randomly apply a flipping operation to one of the image
patches, to simulate a mirrored region. The first sub-task
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is to predict the location index from the shuffled grid by the
backbone network. We append a location predictor head to
the backbone network to predict the location index of input
patches. We apply cross-entropy loss as L. to optimize
this sub-task. The second sub-task is to predict the flipped
patch from the nine randomly shuffled image patches. Sim-
ilar to our image-level pre-training, we use BCE loss as our
loss function L, in this sub-task.

1 N
Lioe = —% ; yilog(i), @

N
1 . R
Ecls = _N Zyjlog(yj) + (1 - yj)log(l - y])’ (3)
j=1

where y; is the predicted location index, and y; is the cor-
responding ground truth label. §; is the predicted probabil-
ity that the input patch is horizontally flipped and y; is the
corresponding ground truth probability. Finally, we jointly
optimize these two sub-tasks and the final loss function is:

»Cpatch = »Cloc + ﬁcls' 4

3.3. Pixel-level Pre-training

Extracting the pixel-level relationship of mirror reflec-
tion is a challenging task, as studied by previous related
work [12] for symmetry detection. It requires point-level
GT labels to represent symmetry centers. However, obtain-
ing such labels requires huge human annotation effort and
they are not applicable for SSL pre-training. Instead of gen-
erating pseudo labels for symmetry detection, our solution
is that we formulate this task as an image reconstruction
problem on images containing mirrors. An ideal pre-trained
network should be able to reconstruct the input image con-
taining mirrors with the pixel-level understanding of mirror
reflection. We randomly mask out the input image by cutout
augmentation [9] with the ratio of 0.3 and then feed it to the
backbone network with a reconstruction head. The details
of the reconstruction head we used are listed in Table 1. The
objective of our pixel-level pre-training is defined as:

»Cpix = ”1' - ‘%”17 (5)

where L, is an L1 loss. x and & are the input image and
the reconstructed image, respectively.

4. Experiments

4.1. Experimental Settings

Dataset and Evaluation Metrics. The image-level and
patch-level pre-training experiments are conducted on the
training set of ImageNet-100 [28] and MS COCO [25],

Table 1. The architecture of the reconstruction head used in the
pixel-level pre-training. Note that each “conv-IR” corresponds to
a sequence of convolution layer, InstanceNorm layer and ReLU
activation. K, S and P denote the number of kernels, the number
of strides and the padding size, respectively, used in the convolu-
tion layer.

Layer Details

3x3conv-IR, K =1024,S=1,P =1
2x Upsample
3x3conv-IR, K =512, S=1,P=1
2x Upsample
3x3conv-IR, K =256, S=1,P=1
2x Upsample
3x3conv-IR, K =128, S=1,P=1
2x Upsample
3x3conv-IR, K =128, S=1,P=1
2x Upsample
I1x1lconv-IR, K =3,5=1,P=1

which contains 130K and ~118k images respectively. ! In
the pixel-level pre-training and fine-tuning stage, our ex-
periments are conducted on MSD [37], the first large-scale
dataset for mirror detection. MSD [37] provides 4,018 mir-
ror images, which are divided into 3,063 images for training
and 955 images for testing. We adopt two popular metrics
namely, F-measure (Fg) and mean absolute error (MAE)
to evaluate the performance of our SSL pre-training frame-
work. F-measure can reflect the overall model performance

and is calculated by the weighted harmonic mean of the pre-

fod 1482)-precision-recall .
cision and recall: Fﬁ = ( ﬁz‘pg‘ecision+recall ’ where BQ 18

set to 0.3. MAE can measure the average pixel-wise abso-
lute disparity between the predicted mirror maps M and the
binary ground truth G.

Implementation Details. We use Pytorch to implement
our proposed SSL pre-training framework. All experiments
are conducted on a GPU server with eight NVIDIA RTX
3090 GPUs. Following existing SSL pre-training frame-
works, we adopt ResNet-50 [17] as our backbone net-
work. All pre-trained model weights of existing SSL pre-
training frameworks are obtained from the released mod-
els of mmsel fsup [6] for fair comparisons. For each pre-
text task in the pre-training stage, all images are resized to
256 x 256. The batch size is set to 352. We use AdamW [27]
with an initial learning rate of le-4 to optimize our SSL
pre-training framework and stop pre-training after 20,000
iterations. We only adopt random color jittering for data
augmentation. In the fine-tuning stage, we use the same hy-
perparameters reported in the original papers of the adopted

Tt is worth noting that the datasets that we used (about 250K training
images) are much smaller than the pre-trained dataset ImageNet (14 mil-
lion images) used by other baseline SSL methods. We adopted ImageNet-
100 to pre-train our network due to the limited computational resources.
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Figure 3. Qualitative Comparison of our proposed method with NPID [33], MocoV2 [4], SWAV [3], Barlow Twins [41], ImageNet pre-
training (Supervised). We use the released pre-trained models of these existing SSL methods from mmse 1 fsup [6] for fair comparison.

base methods MirrorNet [37] and VCNet [30]. frameworks (including the two best-performing frameworks
NPID [33] and Moco V2 [16] based on MirrorNet and
the two best-performing frameworks SWAV [3] and Barlow
Twins [4 1] based on VCNet, according to their performance
in Table 2) and supervised ImageNet pre-training due to the
limitation of space. Our framework can correctly detect the
mirror regions by utilizing the relationship of mirror reflec-
tion caused by mirrors, even though the reflected regions are
pure texture (i.e., lack of object keypoints in the second row)
and relatively small in the image (e.g., the last three rows).
We attribute the superior performance of our framework to
the utilization of mirror reflection in the pre-training stage.

4.2. Comparison with State-of-the-Arts

We compare against 11 state-of-the-art CNN-based
frameworks in self-supervised learning, including Rela-
tive Location (Rel. Loc.) [10], Rotation Prediction (Rot.
Pred.) [21], NPID [33], ODC [43], Moco V2 [16], Sim-
CLR [4], BYOL [14], SWAV [3], DenseCL [32], Sim-
Siam [5] and Barlow Twins (Bar. Twins) [41]. We select
MirrorNet [37] and VCNet [30], which are two representa-
tive mirror detection methods, as base methods to conduct
experiments in the fine-tuning stage.

Qualitative Evaluation. We further show the performance
of our SSL pre-training framework in Figure 3. We compare
our framework with four state-of-the-art SSL pre-training

Quantitative Evaluation. Table 2 shows the experimen-
tation results comparing the proposed SSL pre-training
framework with the state-of-the-arts. Besides, we also re-
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Table 2. Quantitative comparison between our SSL pre-training
framework and existing CNN-based SSL methods. We also com-
pare it with random initialization (Random) and ImageNet pre-
training (Supervised).

Methods Venue MirrorNet VCNet

Fs 1T MAE| FgtT MAE]
Rel. Loc. ICCV’15 0582 0.254 0.842 0.072
Rot. Pred. ICLR’18 0.537 0.212 0.851 0.069
NPID CVPR’18 0.739 0.132 0.832 0.076
OoDC CVPR’20 0.558 0.223 0.836 0.077
Moco V2 CVPR’20 0.707 0.177 0.835 0.072
SimCLR ICML’20 0.594 0.244 0.837 0.071
BYOL NeurIPS °20 0.704 0.158 0.832 0.077
SwAV NeurIPS °20 0.578 0.224 0.856 0.071
DenseCL CVPR 21 0.694 0.240 0.844 0.072
SimSiam CVPR 21 0.672 0.198 0.818 0.080
Bar. Twins ICML 21 0.655 0.178 0.857 0.069
Random 0.586 0.200 0.400 0.103
Supervised 0.727 0.170 0.871 0.062
Ours 0.763 0.116 0.886 0.057

port the results from models adopting Xavier initializa-
tion [13] (Random) or supervised ImageNet pre-training
(Supervised). Our SSL pre-training framework (Ours)
achieves the best performance across both metrics when ap-
plied on MirrorNet and VCNet and shows a good general-
ization of different mirror detection methods. It is worth
noting that our framework even outperforms the supervised
ImageNet pre-training.

4.3. Ablation Study

Table 3 demonstrates the effectiveness of each pre-
training stage in our framework. We analyze its results point
by point as follows.

Image-level Pre-training vs. Random Initialization. To
evaluate the effectiveness of the proposed image-level pre-
training, we compare the model only adopting image-level
pre-training (B2) with the model initialized randomly with-
out any pre-training (B1). We can see that only adopting
image-level pre-training (B2) will even cause a performance
drop compared with the one without pre-training (B1). This
somehow supports the finding from VCNet [30] that image-
level flipping cannot provide sufficient information to pixel-
wisely locate the mirror inside an image.

’Note that the original backbone networks reported in their pa-
pers are ResNext-101 [35]. However, the model weights of ResNext-
101 pre-trained by our baseline SSL frameworks are not available in
mmselfsup [6]. Thus, we switch the backbone network of these two
methods to ResNet-50 [17], which is a common backbone network used
in evaluating the performances of SSL frameworks. We also directly use
the released ResNet-50 SSL pre-trained weights in our experiments for fair
comparisons.

Table 3. Ablation study of the proposed SSL pre-training frame-
work. We use MirrorNet [37] trained on the MSD dataset as our
base method to conduct the experiments in this ablation study.
Best results are shown in bold.

Rand. Patch-lev.

Image-lev. Pixel-lev.

Init. Pretrain Pretrain Pretrain Fg T MAE]
Bl v 0.601 0.195
B2 v 0.623 0.191
B3 v 0.689 0.162
B4 v 0.620 0.198
BS5 v v 0.723 0.166
B6 v v 0.758 0.124
B7 v v 0.666 0.178
Ours v v v 0.763 0.116

Patch-level Pre-training vs. Random Initialization. We
compare our patch-level pre-training (B3) with random ini-
tialization (B1) to analyze if patch-level pre-training is use-
ful in our SSL pre-training framework. Our patch-level pre-
training outperforms the model without pre-training on both
two metrics (14.64% improvement on Fz and 16.32% im-
provement on MAE), which indicates the effectiveness of
our patch-level pre-training. It also demonstrates the im-
portance of modeling the spatial relationship of mirror re-
flection at a patch level.

Pixel-level Pre-training vs. Random Initialization. Simi-
larly, we conduct the ablation experiment on our pixel-level
pre-training. The model adopting pixel-level pre-training
performs better than the model with image pre-training.
However, the performance gain is not as much as the model
with patch-level pre-training (B3). One possible reason is
that directly optimizing the backbone network for the rep-
resentation of mirrors at a pixel level is challenging and may
not produce satisfactory results for mirror detection.

Location Predictor in Patch-level Pre-training. The lo-
cation predictor in our patch-level pre-training is designed
to capture the relational spatial information, which has been
proven important in mirror detection [23]. We conduct an
ablation experiment to remove the location predictor and
the performance of our methods drops from 0.763 to 0.731.
This shows the importance of learning spatial information
in the mirror detection task.

Combinations of Different Pre-training Stages. Based on
the above three comparisons, we find that the patch-level
pre-training contributes the most improvement. It demon-
strates the importance of modeling the spatial relationship
of mirror reflection at a patch level. We then analyze the re-
sults from the model with different combinations of our pre-
training stages. The model with image-level pre-training
and patch-level pre-training (BS) performs better than the
model that only adopts patch-level pre-training (B3), which
shows that the global information provided by image-level
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Figure 4. Visualization of the effects of the proposed pre-training stages.

pre-training can benefit the model with patch-level pre-
training. Similarly, as shown in B7, B4 (i.e., only pixel-level
pretraining) can boost the performance of the pre-trained
model after image-level pre-training. These two compar-
isons indicate that image-level pre-training should be used
with other pre-training stages to benefit the overall perfor-
mance and it should not be solely adopted to our SSL pre-
training framework. Besides, we find that combining patch-
level and pixel-level pre-training (B6) has superior perfor-
mance when compared with B3, especially on MAE with
about 23.4% improvement. This combination also outper-
forms supervised ImageNet pre-training, according to the
results from Table 2. We attribute its superior performance
to the pixel-level representation of mirror reflection. Our
final model with all pre-training stages outperforms other
ablation models, showing the effectiveness of adopting pre-
training stages progressively.

Visual Comparison of Our Pre-training Stages. Figure 4
shows a visual example of our ablation study. We can
see that only adopting image-level pre-training on our SSL
pre-training framework can approximately locate the mir-
ror region but fails to produce a precise boundary for the
predicted mask of the mirror. Patch-level pre-training can
help predict mirrors more accurately with clearer bound-
aries but over-predict the non-mirror regions as mirrors.
In comparison to predictions from all other ablation mod-
els, the prediction from the model with pixel-level pre-
training has the clearest boundary but contains the largest
over-predicted regions, primarily because of the insuffi-
cient global-level learning on mirrors. Our framework can
significantly reduce over-predictions when image-level and
patch-level pre-training are used, as opposed to when patch-
level pre-training is used only, and performs the best with
the help of the global-to-local pre-training process.

4.4. Discussions

Impacts of Pre-training Strategy. Some previous
SSL works [42, 45], especially for those focusing on self-
supervised pre-training for downstream tasks like segmen-
tation [42] and salient object detection [45], would adopt

Table 4. The results of MirrorNet [37] when using different pre-
training strategies. Best results are shown in bold.

Fs1 MAE]

Random Initialized 0.586 0.200
ImageNet Supervised 0.727 0.170

Ours (In parallel) 0.708 0.331
Ours (Sequential) 0.763 0.116

different pretext tasks sequentially to pre-train their back-
bone networks. We also adopt this common strategy in our
proposed SSL framework. To verify if employing differ-
ent pre-training strategies may affect the performance of the
proposed SSL framework, we have tried training the three
stages sequentially as well as in parallel. We find that when
pre-training the three stages in parallel, the backbone net-
work fails to converge and its final fine-tuning results are
much worse than those using sequential pre-training. Ta-
ble 4 shows the results of this experiment. We can see that
the MAE performance of pre-training the different stages
in parallel is even worse than that of random initialization.
A possible reason for this is that directly pre-training differ-
ent pretext tasks in parallel is difficult to transfer the learned
knowledge from the pre-trained network to the target down-
stream task (i.e., pixel-level mirror detection).

Apart from the superior performance made by the se-
quential pre-training strategy, we also notice that the num-
ber of pre-training iterations for each pretext task can heav-
ily affect the performance of our SSL framework. To avoid
heavy hyperparameter tuning and increase the reproducibil-
ity of our pre-training framework, we adopt the same num-
ber of pre-training iterations for all stages. Although this
strategy of using the same number of pre-training iterations
is likely not the optimal design for individual stages, we be-
lieve that it can better reflect the real performance of our
framework with less stochasticity and more reproductivity.
We provide a more detailed discussion on this issue next.

Impacts of Pre-training Iterations. SSL pre-training
frameworks usually require huge pre-training iterations to
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Figure 5. Ablation study on the number of pre-training iterations
for our SSL pre-training framework. We find that our SSL pre-
training framework continues to improve in performance until

~20,000 pre-training iterations. After that, the performance starts
to decline, mainly due to overfitting.

converge. For example, SimSiam [5] requires about 250K
iterations to pre-train their model on ImageNet, which is
very time-consuming. To validate how this issue may affect
our SSL pre-training framework, we conduct the ablation
study on the number of pre-training iterations for our SSL
pre-training framework, and the results are shown in Fig-
ure 5. Note that we use the same number of iterations for all
pre-training stages for convenience and to get rid of heavy
hyperparameter tuning.

From the results, we find that the performance of our
SSL pre-training framework improves rapidly as the num-
ber of pre-training iterations increases, up to around 20,000,
which is a relatively small number compared with those
used in existing SSL pre-training frameworks. The perfor-
mance of our SSL pre-training framework gradually drops
as the number of pre-training iterations exceeds 20,000,
mainly due to overfitting. One possible explanation of this
is that the model pre-trained by our SSL pre-training frame-
work can efficiently learn the representation of mirror re-
flection under a short pre-training period. Another possible
explanation is that unlike generic SSL pre-training frame-
works that attempt to extract general-propose image rep-
resentation, our SSL pre-training framework is developed
specially for a specific task, i.e., mirror detection. While
generic SSL pre-training may cause feature redundancy for
our task, having too many pre-training iterations (i.e., over
20,000) causes overfitting.

Failure Cases. Our SSL pre-training framework does have
limitations. It continues to struggle with the limitations of
the base method [37], as the base method adopted can also
significantly affect the final detection performances. For ex-
ample, as shown in first row of Figure 6, MirrorNet with our
SSL pre-training may still fail to handle some mirror-like
regions (e.g., the top-right region). It may also fail to de-

GT

Figure 6. Failure cases of our SSL pre-training framework based
on MirrorNet. Our SSL pre-training framework fails to tackle
the intrinsic limitation of existing mirror detection methods. The
model pre-trained by our SSL pre-training framework still has
wrong predictions when the input images are challenging (e.g.,
containing mirror-like regions in the first row, and insufficient re-
lationship between mirror/non-mirror regions in the second row.

tect mirrors in some challenging cases when the input image
contains ambiguous mirrors without the relationship of mir-
ror reflection and sufficient contextual contrast, as shown in
the second row of Figure 6.

5. Conclusion

In this paper, we have investigated how self-supervised
learning (SSL) works with the mirror detection task. To
the best of our knowledge, we are the first to explore
SSL pre-training frameworks applied to mirror detection.
We have found that the supervised ImageNet pre-training
might not be the ideal way to extract backbone image fea-
tures for mirror detection due to the discrepancy between
general-propose representation and mirror-specific repre-
sentation. We have also proposed a new SSL pre-training
framework to pre-train the backbone network for mirror
detection. Our SSL pre-training framework does not re-
quire any labeled data. It progressively (image-, patch-
and pixel-level pre-training) models the relationship of mir-
ror reflection, and obtains a better representation of mir-
rors in the pre-training stage. Experimental results show
that the proposed SSL pre-training framework outperforms
CNN-based state-of-the-art SSL pre-training frameworks,
and even achieves better results compared with supervised
ImageNet pre-training.
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