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Abstract

For improving image composition and aesthetic qual-
ity, most existing methods modulate the captured images
by striking out redundant content near the image borders.
However, such image cropping methods are limited in the
range of image views. Some methods have been suggested
to extrapolate the images and predict cropping boxes from
the extrapolated image. Nonetheless, the synthesized ex-
trapolated regions may be included in the cropped image,
making the image composition result not real and poten-
tially with degraded image quality. In this paper, we circum-
vent this issue by presenting a joint framework for both un-
bounded recommendation of camera view and image com-
position (i.e., UNIC). In this way, the cropped image is a
sub-image of the image acquired by the predicted camera
view, and thus can be guaranteed to be real and consis-
tent in image quality. Specifically, our framework takes the
current camera preview frame as input and provides a rec-
ommendation for view adjustment, which contains opera-
tions unlimited by the image borders, such as zooming in
or out and camera movement. To improve the prediction
accuracy of view adjustment prediction, we further extend
the field of view by feature extrapolation. After one or sev-
eral times of view adjustments, our method converges and
results in both a camera view and a bounding box showing
the image composition recommendation. Extensive experi-
ments are conducted on the datasets constructed upon ex-
isting image cropping datasets, showing the effectiveness of
our UNIC in unbounded recommendation of camera view
and image composition. The source code, dataset, and pre-
trained models is available at https://github.com/
liuxiaoyu1104/UNIC.

1. Introduction
With the prevalence of electronic devices such as smart-

phones, taking photos has become a common activity in ev-
eryday life. Due to the lack of professional photography
knowledge and skills, taking photos with harmonious im-
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Figure 1. Illustration of our proposed UNIC for unbounded rec-
ommendation of camera view and image composition. On the left
is the initial view provided by the user. Given the current view,
our model can predict camera operations (e.g., zoom out and the
movement) and a image composition solution (e.g., cpred ). The
prediction can be executed multiple times until convergence.

age composition and high aesthetic quality is still difficult
for non-professional users. As a remedy, image composi-
tion, which aims to find an aesthetic region of a scene, has
attracted much attention in recent years.

In order to facilitate the training of image composition
models, several datasets [33, 38, 6] have been established,
and each image comes along with one or multiple bound-
ing boxes indicating the cropping schemes. Despite the
notable progress, most existing image composition meth-
ods [33, 12, 18, 19, 38, 25, 43, 15] generally adopt a post-
processing form on the already captured images, i.e., they
only adjust the composition in an image cropping man-
ner. In other words, the captured images are modulated
by striking out redundant content near the image borders.
Nonetheless, a sub-optimal solution will inevitably be ob-
tained when the best cropping is not entirely in the acquired
image. To alleviate this issue, Zhong et al. [43] proposed
to expand the image via out-painting, and then predict the
cropped view on the expanded image. It is a practical so-
lution in post-processing manner, but may suffers from out-
painting artifacts.

To tackle the limitations of existing image composi-
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tion methods, this paper proposes a novel framework for
unbounded recommendation of camera view and image
composition (i.e., UNIC). As shown in Fig. 1, the user ini-
tializes a view with the content of interest. Given the current
view, our model finds a potential well-composed view and
provides the corresponding camera movement operations,
either inside or beyond the image borders. Note that solely
performing camera view adjustment is not enough, since
the aspect ratio is typically kept unchanged during the pho-
tography process. Therefore, our model also concurrently
predicts a bounding box for cropping after camera move-
ment operations. With our model, the user finally can get
the most recommended camera view and the corresponding
image composition bounding box as shown in Fig. 1.

For implementing the UNIC model, we further simplify
the task of joint camera view adjustment and image compo-
sition into unbounded image composition by merging the
outputs. In this way, the architecture of cropping based
image composition methods can be deployed as the back-
bone, and we follow Jia et al. [16] to adopt the conditional-
DETR [27] structure. In contrast to existing image crop-
ping methods, we argue that our UNIC is more preferred
and practical. First, existing image composition meth-
ods [33, 12, 18, 19, 38, 25, 15] are restricted to image
cropping over the already captured images. The introduc-
tion of camera view adjustment can naturally circumvent
the restriction of image borders by moving the camera or
adjusting the optical zoom. Second, in comparison to out-
painting [43], camera view adjustment can guarantee that
the pixels outside the original borders are real and consis-
tent with the pixels within the borders. Furthermore, new
and real information can be introduced after each time of
view adjustment. Thus, based on the result of last time, one
can perform view adjustment and image composition for
many times, which is also not supported by image cropping
based methods.

Moreover, our UNIC is free to go beyond image bor-
ders, yet directly predicting in unseen regions may lead to
inferior results. To compensate for this, we further extend
the camera field of view by extrapolation. Different from
Zhong et al. [43], whose extrapolation was performed in
the image domain, we choose feature extrapolation and use
it for predicting camera movement and bounding box in-
stead of synthesizing unseen content. Thus, we can get the
content in novel views by moving the camera, and unseen
content generation is not necessary. In comparison to the la-
tent space specified for image composition, forcing the ex-
trapolation into the image domain may bring redundant or
even harmful information. Besides, the feature extrapola-
tion module can be well integrated into our existing frame-
work, avoiding the heavy computation burdens brought by
extra modules such as the image decoder.

For training and evaluating the proposed model, we take

the advantage of existing image cropping datasets [33, 38]
and convert them into a more generalized form. Extensive
experiments and ablation studies show the effectiveness of
our UNIC, which can work well under diverse conditions.

To sum up, the contributions of this paper include,

• We propose a novel UNIC method for jointly perform-
ing unbounded recommendation of camera view and
image composition. The user can adjust the current
view following the recommendations to obtain images
with higher aesthetic quality.

• We introduce a feature extrapolation module as well as
an extrapolation loss term in the detection transformer
framework, which improves the prediction accuracy,
especially for out-of-image scenarios.

• Two unbounded image composition datasets are con-
structed upon existing image cropping ones. Experi-
mental results show that our proposed method achieves
superior performance against state-of-the-art methods.

2. Related Work

2.1. Image Composition

Image composition aims to find the most aesthetic photo
of a scene, which is typically achieved by image cropping in
the literature. Early works rely on saliency detection to pre-
serve important content in the image [2, 9, 3, 31] or extract
hand-crafted features from aesthetic characteristics or com-
position rules for predicting cropping schemes [2, 8, 40, 30,
35, 39]. Recently, a large number of methods address image
cropping tasks in a data-driven manner. In general, existing
methods can be broadly categorized as two groups, i.e., an-
chor evaluation [7, 33, 38, 43, 20] and cropping coordinate
regression [12, 25, 18, 19, 15].

Anchor Evaluation. The general pipeline of anchor evalu-
ation based methods is to generate candidate croppings and
then rank different crops to obtain the final result. For ex-
ample, Chen et al. [7] proposed paired ranking constraints
to train an aesthetics-aware ranking net. Wei et al. [33]
predicted scores efficiently by introducing a new knowl-
edge transfer framework. Zeng et al. [38] constructed a
novel grid anchor based formulation and a corresponding
dataset for image cropping. CGS [21] explicitly utilized
mutual relations between different candidate regions with
a graph-based model. Besides, two tasks closely related
to our method are worth mentioning. Zhong et al. [43]
expanded the range of cropping windows outside the im-
age border through image out-painting. However, the out-
painting result may suffer from low visual quality and be
inconsistent with the real-world scene. And some meth-
ods [28, 24] also tried to provide composition scores for the
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current view when photographing with mobile devices, yet
they lack the ability to recommend new camera views.

Coordinate Regression. Coordinate regression based
methods directly obtain the coordinate of the cropping box.
Some works [12, 25] directly designed an end-to-end net-
work to predict the cropping boxes. Regarding image
cropping as a consistent decision-making process, Li et
al. [18, 19] introduced reinforcement learning to gener-
ate boxes. Composition rules were explicitly leveraged by
Hong et al. [15], making the model work like a photogra-
pher. Based on object detection method [27], Jia et al. [16]
predicted multiple crop schemes in a set prediction manner,
which took model diversity and globalization into account.

In comparison to the aforementioned cropping based
image composition methods, our solution performs un-
bounded recommendation of camera view and image com-
position, which can provide more flexibility in searching for
better composition schemes.

2.2. Image Out-painting

In this work, we extrapolate the features for better pre-
diction, which is closely related to image out-painting meth-
ods. Therefore, we briefly review the progress of out-
painting tasks. Inspired by image in-painting methods,
Sabini and Rusak [29] introduced the image out-painting
task and trained a deep neural network framework adver-
sarially. Wang et al. [32] designed an effective deep gener-
ative model termed SRN with practical context normaliza-
tion module for image extrapolation. Some spatial-related
loss terms are also proposed to improve the performance.
For example, a recurrent content transfer model was pro-
posed for spatial content prediction in NSIPO [36]. Based
on StyleGAN2 [17], Zhao et al. [42] presented comodu-
lated GANs, which utilized the difference between the un-
conditional and conditional generative models. Moreover,
Ma et al. [26] decomposed the image out-painting task into
two generation stages, i.e., semantic segmentation domain
and image domain. More recently, transformer-based net-
works are incorporated to extend image borders. For exam-
ple, Gao et al. [10] designed a transformer-based genera-
tive adversarial network with Swin transformer blocks [22].
QueryOTR [37] proposed a novel hybrid transformer that
formulated out-painting problem as a sequence-to-sequence
auto-regression problem. In this work, we extrapolate in the
feature domain, which shows superior performance against
image out-painting for our UNIC.

3. Method
3.1. Problem Definition and Overview

While existing cropping-based image composition meth-
ods predict a bounding box for image cropping, we extend
the problem to joint unbounded recommendation of camera

view and image composition. In specific, the user initial-
izes a camera view Iinit with field of view vinit

1, which
contains the subjects or scenes of interest. Given Iinit , we
predict the actions (e.g., zoom in/out, move left/right, move
up/down, etc.) for obtaining a new camera view Ipred lo-
cated by vpred . In practice, the view with a high aesthetic
score may not share the same aspect ratio as the camera,
thus we concurrently predict a bounding box (denoted by
cpred ) for cropping in the adjusted camera view. With a
model f (·), the problem can be formulated by

[vpred , cpred ] = f (Iinit), (1)

where the difference between vpred and vinit indicates the
camera movement actions.

To maximize the space occupation of cpred in vpred , we
can define the relationship between vpred and cpred , i.e.,
they share the same center position,

(xv
pred , y

v
pred) = (xc

pred , y
c
pred), (2)

and have the same width and/or height,{
wv
pred = wc

pred , wc
pred/h

c
pred ≥ wv

pred/h
v
pred

hv
pred = hc

pred , wc
pred/h

c
pred ≤ wv

pred/v
c
pred

, (3)

and vpred will coincide with cpred when they have the same
aspect ratio. Note that the camera view ratio is typically
kept unchanged during the photography process, without
loss of generality, in this paper we assume the camera view
ratio to be wv : hv = 4 : 3 or wv : hv = 3 : 4. Then given
Eqns. (2) and (3), vpred can be naturally derived from cpred .
Thus, we simplify the problem defined in Eqn. (1) as,

cpred = f (Iinit), (4)

which can also be easily generalized to other camera view
ratios or even adjustable ratios.

3.2. Unbounded Regression Model

With the simplified task in Eqn. (4), f (·) can be regarded
as a generalized image cropping model which allows the
predicted bounding box cpred to exceed the image borders.
As such, we can implement the UNIC model based on ex-
isting image cropping models [12, 25, 18, 19, 15]. In par-
ticular, Jia et al. [16] have successfully applied DETR-like
architectures [1, 27] in image cropping tasks, which enables
global interactions via the attention mechanism, and the set
prediction settings also benefit the diversity of the results.
Therefore, we follow Jia et al. [16] and adopt conditional-
DETR [27] as a base model for implementing f(·).

1We represent the position and size of bounding boxes by four values
[x , y,w , h], where (x , y) is the center coordinate, while w and h are width
and height, respectively. The axes are normalized to [0, 1] w.r.t. Iinit .
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Figure 2. Architecture of the proposed UNIC framework. It adopts a cDETR-like encoder-decoder architecture [27] to predict aesthetic
plausible view cpred from initial view Iinit . To mitigate the difficulty in predicting cpred beyond image borders, a feature extrapolation
module is deployed to predict the invisible tokens Zpad from visible ones Zvis . The FEM is supervised by tokens extracted from larger
view I with the exponential moving averaged CNN and encoder during training.

Network Design. In specific, as shown in Fig. 2, follow-
ing cDETR [27], the base model contains a CNN back-
bone, a transformer encoder, a transformer decoder, as
well as two heads Hpred and Hconf for predicting candi-
date bounding boxes and their corresponding confidence,
respectively. The initial view Iinit is extracted into deep
feature hinit with the CNN backbone, which is reorganized
into patches. Then the patches with positional embeddings
attached according to their spatial positions are processed
by the transformer encoder, resulting in a group of latent
features denoted by Zvis . Finally, the transformer decoder
and two head branches predict candidate image composi-
tion results from a group of learnable anchors denoted by
A = {a1,a2, . . . ,an}. Specifically, the bounding box
head Hbox generates the coordinate of n possible bound-
ing boxes from the anchors (i.e., cpred ), and the confidence
head Hconf predicts the confidence (or possibility) for each
candidate bounding box (denoted by ppred ).

However, as one can see, Zvis only contains the feature
of visible parts in the range of vinit . For improving the
prediction accuracy beyond the initial camera view vinit , a
feature extrapolation module (FEM) is inserted into the base
model. The FEM is intended to predict the latent features
outside vinit , and the padded features are denoted by Zpad .
For predicting patches in Zpad , a learnable token m is fed
into the FEM together with the positional embeddings. We
will give more details about the FEM in Sec. 3.3.

Model Training. For training the UNIC model, we de-
sign the learning objective for composition mainly follow-
ing Jia et al. [16], i.e.,

Lcomp = Lreg(cpred , c) + λIoULIoU(cpred , c)

+ λfocalLfocal(ppred ,p),
(5)

where λIoU and λfocal are hyper-parameters for balancing
different loss terms. Note that there may exist multiple
ground-truths for each Iinit , and the number of ground-
truths might be different from the number of predicted
bounding boxes. Following [16, 27, 1], we find the cor-
responding ground-truth for the predicted bounding boxes
cpred via bipartite matching. In this way, only the results
with a corresponding ground-truth contribute to the regres-
sion loss Lreg and IoU loss LIoU.

Another key factor is the construction of p. An intuitive
way is to assign 1 or 0 according to the existence of ground-
truth bounding box for the i -th prediction result. Jia et
al. [16] further proposed two strategies to generate soft la-
bels for GAICD [38] and CPC [33], respectively. In spe-
cific, the one for GAICD [38] is a soft label according to the
aesthetic score of the ground-truth (denoted by quality guid-
ance), while for CPC [33] whose labels are more sparse,
they use the prediction of the exponential moving averaged
model as ground-truth (denoted by self-distillation). In this
work, we find that adopting the quality guidance strategy
at first can stabilize the training process, and switching to
the self-distillation strategy afterward further promotes the
performance. More details about the learning objectives are
given in the supplementary material.

3.3. Feature Extrapolation Module

To obtain an image composition result that may exceed
the range of the initial view, Zhong et al. [43] expand the
image by out-paining and predict the cropping scheme on
the expanded image. However, the out-painting manner
may lead to unreal and inconsistent regions in the final im-
age composition results, and there may be redundant or even
harmful information in the generated pixels. On the con-
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trary, the space of the latent features Zvis is dedicated to
image composition tasks, which motivates us to extrapolate
in the feature space of Zvis .

Recent advances in masked image modeling [4, 41, 13,
34, 5] have achieved significant performance in predicting
the representations of masked patches from visible parts of
an image. Inspired by their architectural design and learning
schemes, we build our FEM module by stacking 6 trans-
former blocks. The visible features Zvis are involved in
the feature extrapolation process through the cross-attention
mechanism in the transformer block, and the detailed struc-
ture of the FEM is given in the supplementary material.

For training the FEM, it is insufficient if solely relies on
the image composition loss Lcomp. In order to provide ex-
tra supervision for FEM, we leverage the full view image
I (the initial view Iinit is extracted from I), and obtain the
full view latent features Z via the CNN backbone and trans-
former encoder. Then Z is split into two categories, i.e.,
Zin in the range of Iinit and Zout outside Iinit . As such,
we can construct another supervision with Zout for the ex-
trapolation via FEM, where a robust smooth-ℓ1 loss [11] is
adopted, i.e.,

Lextra = smooth-ℓ1(Zpad , sg(Zout)), (6)

where sg(·) is the stop gradient operator. Note that to im-
prove training stability, the parameters of the CNN back-
bone and transformer encoder for extracting Z are from the
exponential moving averages (EMA) of the corresponding
UNIC parameters. The overall learnng objective for train-
ing the UNIC model is defined by,

L = Lcomp + Lextra. (7)

3.4. Unbounded Image Composition Dataset

Even though there are several datasets [33, 38, 6] for im-
age composition tasks, all of them are intended for crop-
ping based image composition tasks, and there is no pub-
licly available dataset for unbounded image composition.
To make full use of the aesthetic annotations in existing
image cropping datasets, we recreate an unbounded image
composition dataset based on GAICD [38] and CPC [33].

In specific, for a sample in image cropping datasets, a
full-view image is provided with one or multiple ground-
truth bounding boxes. All these ground-truths are located
in the range of the full-view image, making it infeasible for
unbounded image composition tasks. As a remedy, we ran-
domly sample a bounding box (i.e., vinit ) in the full-view
image, then the ground-truths may not fully lie in the range
of vinit . In other words, the ground-truths for cropping
based image composition are adapted to unbounded image
composition tasks.

However, randomly sampling vinit with no constraints
may be improper in particular situations. For example, if

the interested object is outside of vinit , it is unreasonable
to require that the predicted bounding box can cover that
object. Therefore, we set up some rules as follows when
recreating the unbounded image composition dataset.

Size of Iinit . To ensure the initial camera view contains suf-
ficient image content, we set the lower bound of the height
and width of Iinit as

hv
init ≥ α · h and wv

init ≥ α · w , (8)

where h and w denote the height and width of full-view
image I, and α is the scale threshold empirically set to 0.7.

Position of Iinit . Apart from high aesthetic qualities, an im-
portant property of the ground-truth bounding boxes is that
they well describe the range of desired objects or scenes.
To ensure that the initial view contains the desired objects
or scenes, we constrain the intersection of union (IoU) of
the initial view vinit and the ground-truth v. Specifically,
the constraint is defined as,

IoU(vinit ,v) ≥ β, (9)

where the threshold β is set to 0.7 in this paper.

Aspect ratio of Iinit . Considering that the camera view
ratio is typically kept unchanged during the photography
process, without loss of generality, we sample Iinit with an
aspect ratio of 4 : 3, which is the most common setting for
DLSRs and smartphones.

Since the cameras could take photos vertically or hori-
zontally, we have

wv
init :h

v
init = 4:3 or wv

init :h
v
init = 3:4. (10)

4. Experiments
4.1. Implementation Details

Datasets. We adopt two widely-used datasets for training,
i.e., GAICD [38] and CPC [33]. GAICD [38] is a grid an-
chor based image cropping dataset, where each image has
exhaustive annotations for the cropping candidates. It con-
tains 2,636 images for training, 200 images for validation,
and 500 images for testing. We train our model on the train-
ing split and evaluate it on the testing split. CPC [33] dataset
is sparsely annotated for training purposes only, which con-
tains 10,800 images with 24 annotated views per image.
We evaluate our model trained with CPC [33] on FLMS
dataset [9] following [16]. Both datasets are pre-processed
for unbounded image composition as shown in Sec. 3.4.

Evaluation metrics. The camera view recommendation ac-
curacy could be measured with the intersection of union
(IoU) and boundary displacement (Disp) between the pre-
dicted view and the ground-truth view with the highest aes-
thetic score following [33]. However, there may exist multi-
ple human-annotated ground-truth bounding boxes in each
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Table 1. Quantitative comparison for unbounded image composition on GAICD [38] and FLMS [9] datasets. The best results are high-
lighted with bold. The results marked by † and ‡ are retrained with our data or reproduced in our framework, respectively.

Method
GAICD FLMS

Acc1/5 Acc1/10 IoU ↑ Disp ↓ IoU ↑ Disp ↓
ϵ =0.90 ϵ =0.85 ϵ =0.90 ϵ =0.85

VFN [7] 0.6 5.2 1.7 9.5 0.577 0.124 0.622 0.122
VEN [33] 2.6 8.9 3.4 11.5 0.600 0.095 0.688 0.065
GAIC [38] 7.2 21.8 10.6 31.5 0.683 0.074 0.723 0.060
CGS [21] 7.2 25.8 10.9 33.5 0.682 0.074 0.703 0.064

A2-RL [18] 6.9 22.9 11.2 34.7 0.686 0.076 0.731 0.059
CACNet† [15] 16.9 49.1 25.8 60.7 0.779 0.052 0.813 0.044

Zhong et al. ‡ [43] 22.3 53.5 28.7 67.2 0.795 0.050 0.818 0.042
Jia et al. † [16] 21.4 48.0 26.8 57.2 0.786 0.052 0.817 0.042

Ours 23.2 59.0 32.7 72.8 0.801 0.048 0.828 0.040

image, these metrics ignore such situations, which limits
their flexibility. As a remedy, AccK/N calculates how many
of K predicted views falls into the N ground-truth views
with highest score. Therefore, we adopt AccK/N as an-
other evaluation metric for grid annotated GAICD [38]. As
the predicted views may not align perfectly with the pre-
defined grid views, we follow [16] and regard two crops the
same when their IoU is sufficiently large. Two thresholds
ϵ = {0.9, 0.85} are used in this paper. For FLMS dataset [9]
without grid annotation, we use IoU and Disp metrics.

Training details. The amount of data in the image cropping
datasets is not sufficiently enough for training DETR-like
models from scratch. Thus, we initialize the CNN back-
bone with ImageNet pre-trained weights [14]. The layer
numbers of the transformer encoder and decoder are both
set to 6. During training, we take views with an aesthetic
score larger than 4 in GAICD [38] and that larger than 2
in CPC dataset [33] as ground-truth views. The trade-off
parameters λIoU and λfocal are set to 0.4 and 0.1, respec-
tively. The model is trained with an AdamW [23] optimizer
with weight decay of 1 × 10−4 for 50 epochs. The initial
learning rates for the CNN backbone and the transformer
encoder/decoder are set to 1 × 10−5 and 1 × 10−4, which
are decreased to 1/10 at the 30-th epoch. We apply data aug-
mentation via color jittering and resizing following [27].

4.2. Results of Unbounded Image Composition

Due to the lack of competing methods for unbounded
image composition, we adopt several state-of-the-art image
cropping methods with source code publicly available, in-
cluding anchor evaluation based methods, i.e., VFN [7],
VEN [33], GAIC [38], and CGS [21], as well as coor-
dinate regression based methods, i.e., A2-RL [18], CAC-
Net [15], and Jia et al. [16]. Among them, the anchor evalu-
ation based methods require the cropped image for scoring.
Directly applying them for unbounded image composition
tasks will lead to poor results due to the incomplete im-

age for views exceeding the initial view borders. Therefore,
we show the results of cropping based image composition
for these anchor evaluation based methods. As for coor-
dinate regression based methods, we show cropping based
results of A2-RL [18] since it is based on VFN [7], and re-
train CACNet [15] and the method of Jia et al. [16] with
our training data. Zhong et al. [43] can predict cropping
schemes via image extrapolation, which is the most simi-
lar method to our UNIC. Since the source code is unavail-
able, we reimplement their method in our framework, where
the extrapolation module is replaced by a StyleGAN2 [17]
based image out-painting model [42].

Quantitative comparison. We conduct comprehensive
experiments to assess the effectiveness of the proposed
method, and the quantitative results are shown in Tab. 1.
From the Acc1/5 and Acc1/10 metrics with two IoU thresh-
olds ϵ ∈ {0.90, 0.85} on GAICD [38], we can see that
anchor evaluation based methods [7, 33, 38, 21] are lim-
ited by the border of the current view. Regression based
methods [18, 15, 16] show inferior results as they are not
properly designed for unbounded image composition tasks.
Our method instead shows significant improvement for un-
bounded image composition tasks compared to the previ-
ous methods. The IoU and Disp metrics in GAICD [38]
and FLMS [9] datasets also demonstrate the effectiveness
of the proposed UNIC model.

Qualitative comparison. The qualitative results of compet-
ing methods are shown in Fig. 3. Anchor evaluation meth-
ods [7, 38, 21] are restricted by the boundary of the initial
view, which cannot adjust the camera toward a larger view
and show inferior results. After training with our dataset,
the regression based methods [16] could predict outward
views, but due to the implicit regression from inbound con-
tents, their accuracy in the out-of-border regions is also lim-
ited. For [43], the extrapolated regions may be included in
the cropped image, which harms the aesthetic quality such
as the abnormal arm in the first row and the artifacts near
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Input VFN [7] GAIC [38] CGS [21] Zhong et al. [43] Jia et al. [16] Ours

Figure 3. Qualitative comparison with other methods. Our method goes beyond the border of the image to predict a well-composed region
with the main objects in reasonable places.

Table 2. Quantitative comparison for image cropping on
GAICD [38] and FLMS [9] datasets. Acc1/5 and Acc1/10 are
calculated according to [16].

Method GAICD FLMS
Acc1/5 Acc1/10 IoU ↑ Disp ↓

VFN [7] 26.6 40.6 0.577 0.124
VEN [33] 37.5 48.5 0.837 0.041
GAIC [38] 68.2 85.8 0.834 0.041
CGS [21] 63.0 81.5 0.836 0.039

A2-RL [18] (ϵ=0.90) 7.6 12.6 0.821 0.045A2-RL [18] (ϵ=0.85) 28.6 43.2
CACNet [15] (ϵ=0.90) 50.7 66.0 0.854 0.033CACNet [15] (ϵ=0.85) 78.0 89.3
Jia et al. [16] (ϵ=0.90) 72.0 86.0 0.838 0.037Jia et al. [16] (ϵ=0.85) 85.0 92.6

Ours (ϵ=0.90) 74.7 89.6 0.840 0.037Ours (ϵ=0.85) 87.2 95.5

the woman in the fourth row. In contrast, our method not
only learns to predict beyond image borders, but also pre-
dicts a more accurate and aesthetically pleasurable view by
extrapolation in the feature space. More qualitative results
are given in the supplementary material.

4.3. Results for Image Cropping

Although our UNIC is delicately designed for un-
bounded image composition tasks, it can degrade to an im-
age cropping model with the absence of the FEM. Tab. 2
shows the results for image cropping task on the original

Table 3. Ablation study on the extrapolation (Extra.) strategies.
Extrapolation in the feature space achieves the best results.

Method
Acc1/5

(ϵ = 0.90)
Acc1/5

(ϵ = 0.85)
Ours w/o Extra. 22.6 48.1

Ours w/ SRN [32] 19.9 51.0
Zhong et al. [43] 22.3 53.5

Ours w/ QueryOTR [37] 23.1 53.7
Ours w/ Feature Extra. 23.2 59.0

GAICD [38] and FLMS [9] datasets. One can see that our
method outperforms all existing methods that are specifi-
cally designed for image cropping tasks on the GAICD [38]
dataset and achieves comparable performance to the state-
of-the-art methods on the FLMS [9] dataset, showing the
effectiveness of the proposed UNIC framework.

4.4. Ablation Study

Effects of extrapolation strategy. As illustrated in
Sec. 3.3, we apply extrapolation in the feature space to
boost the performance of our unbounded regression model.
In this subsection, we make detailed experiments to assess
the effects of different extrapolation strategies, e.g., no ex-
trapolation, image extrapolation, and feature extrapolation.
We take the UNIC without FEM as the model with no ex-
trapolation, and several state-of-the-art out-painting meth-
ods [32, 42, 37] are applied to the input image for evalu-
ating the image-level extrapolation. As shown in Tab. 3,
image-level extrapolation may suffer from generative arti-
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Table 4. Ablation study on the Lextra for feature extrapolation.

Type
Acc1/5

(ϵ = 0.90)
Acc1/5

(ϵ = 0.85)
MSE 22.1 56.1

Cosine Distance 23.1 57.9
KL-Divergence 23.8 56.4

Smooth-L1 23.2 59.0

Table 5. Ablation study on multi-step adjustment.

step=1 step=2 step=3
Acc1/5 (ϵ = 0.90) 16.9 19.3 19.3
Acc1/5 (ϵ = 0.85) 48.2 51.8 54.2

facts due to the extrapolation model, as our model with
SRN [32] exhibits a performance drop in Acc1/5 (ϵ = 0.90)
and limited improvement on Acc1/5 (ϵ = 0.85). With more
powerful generative models [17, 37], image-level extrap-
olation shows consistent improvement. Nonetheless, our
model with feature extrapolation benefits from recent ad-
vances in mask image modeling [4] and end-to-end train-
ing, which shows the best results. It achieves a 2.5% im-
provement on Acc1/5 (ϵ = 0.90) and a 22.6% improve-
ment on Acc1/5 (ϵ = 0.85) over the base model, which
demonstrates the effectiveness of extrapolation in the fea-
ture space. More analysis and visual results are provided in
the supplementary material.

Effects of FEM loss. In order to assess the effects on
the loss function of the FEM for feature extrapolation,
we experiment on several commonly used loss functions
for regression, e.g., mean square error (MSE), cosine dis-
tance, KL-divergence, and smooth-ℓ1. As shown in Tab. 4,
smooth-ℓ1 yields the best overall performance. Thus we
choose smooth-ℓ1 loss for our FEM in this paper.

Effects of multi-step adjustment. The camera view pre-
dicted from our regression model may not be the most aes-
thetic view with the unseen regions, but is expected to move
closer toward it. Based on the above idea, the camera view
could be further improved with multi-step adjustment. Con-
cretely, we first apply our model to the initial view captured
by the camera, predict camera operations, and perform ad-
justments. Then the same process is applied on the new
view after adjustment, which could be operated multiple
times. Tab. 5 shows the results of multi-step adjustment.
We note that we use images in GAICD [38] as the whole
scene and a crop within the images as the initial view in our
experiment. Multi-step adjustment may exceed the border
of the scene, so we select 83 large images from GAICD [38]
to avoid this problem, thus the results in Tab. 5 are not con-
sistent with other tables in the paper. From the table, the
performance is promoted with increased adjustment steps,
which demonstrates the effectiveness of the multi-step ad-

Input

IoU=0.721

Step=1

IoU=0.810

Step=2

IoU=0.844

Step=3

IoU=0.852
Figure 4. Visual comparison for multi-step adjustment. Our model
predicts better view with increased adjust steps to approach the
ground-truth view within the red box.

Figure 5. Visualization of failure cases.

justment. As shown in Fig. 4, our model predicts bet-
ter views with increased adjustment steps to approach the
ground-truth view circled by the red box.

5. Limitation and Future Work

Although UNIC predicts well-composed views in most
scenarios, it may encounter failure in certain circumstances.
As shown in the left of Fig. 5, an unexpected people near
the border appears in the predicted view, which is unseen
in the initial camera view and may the affect the aesthet-
ics quality of the predicted view. This could be addressed
with multi-step adjustment as the predicted view becomes
stable. The right example shows the camera view adjust-
ment operations are limited to shifting and zooming in or
out in this paper, it’s hard to adjust the camera view without
camera pose adjustment. Besides, more scene information
(e.g., depth) could be leveraged for better camera view rec-
ommendation. We leave these problems as future work.

6. Conclusion

In this paper, we propose a novel framework for
UNbounded Image Composition, i.e., UNIC. Different
from previous image cropping methods that improve the
composition in a post-process manner, UNIC provides rec-
ommendations for camera view adjustment during pho-
tographing. To improve the model accuracy beyond bor-
ders, we introduce a feature extrapolation module based
on recent advances in mask image modeling. To assist
the model training and evaluation, we construct unbounded
image composition datasets based on existing image crop-
ping ones. Extensive experiments demonstrate that our
UNIC achieves better performance against the state-of-the-
art methods in both image cropping and unbounded image
composition tasks.
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