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Abstract

Vision-language navigation (VLN), which entails an
agent to navigate 3D environments following human in-
structions, has shown great advances. However, current
agents are built upon panoramic observations, which hin-
ders their ability to perceive 3D scene geometry and easily
leads to ambiguous selection of panoramic view. To address
these limitations, we present a BEV Scene Graph (BSG),
which leverages multi-step BEV representations to encode
scene layouts and geometric cues of indoor environment un-
der the supervision of 3D detection. During navigation,
BSG builds a local BEV representation at each step and
maintains a BEV-based global scene map, which stores and
organizes all the online collected local BEV representations
according to their topological relations. Based on BSG, the
agent predicts a local BEV grid-level decision score and
a global graph-level decision score, combined with a sub-
view selection score on panoramic views, for more accu-
rate action prediction. Our approach significantly outper-
forms state-of-the-art methods on REVERIE, R2R, and R4R,
showing the potential of BEV perception in VLN.

1. Introduction
Vision-language navigation (VLN) task [1] requires an

agent to navigate through a 3D environment [2] to a target

location, according to natural language instructions. Ex-

isting work has made great advances in cross-modal rea-

soning [3–8], path planning [9–13], and auxiliary tasks for

pretraining [14–18]. Their core ideas are learning to relate

the language instructions to panoramic images of the envi-

ronment. Though straightforward, these approaches heav-

ily rely on 2D panoramic observations. As a result, they

lack the capacity to preserve scene layouts and 3D structure,

which are critical for navigation decision-making in embod-

ied scenes. Moreover, indoor environments [2, 19–21] are

characterized by substantial occlusion [22–24], posing chal-

lenges for the agent to accurately identify the objects and

landmarks referenced by the instructions [1, 25].

*Corresponding author: Wenguan Wang.

Instruction: Go to the dining room by front door and push in the chair furthest from the front door.Instruction: Go to the dining room by front door and push in the chair furthest from the front door.

(a) Previous Methods with Panoramic Decision Space.

(b) Our Method with BEV Decision Space.
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Figure 1: For panoramic view (a), two candidate nodes ( & )

correspond to the same image leading to ambiguity. For Bird’s-

Eye-View (b), they are represented by discriminative grids ( ).

For example (Fig. 1(a)), given the instruction “Go to the
dining room by front door and push in the chair furthest
from the front door”, previous approaches [3–5, 14, 15,

17, 26–30] formulate VLN as a sequential text-to-image

grounding problem by matching navigable candidate nodes

with adjacent panoramic views. At each time step, given a

set of subviews captured from different directions, the agent

selects a navigable direction as the next step for navigation.

However, this strategy tends to introduce ambiguity, when

the agent needs to discriminate between multiple candidate

nodes corresponding to the same subview. In addition, the

agent struggles to ground the associated objects and explore

their spatial relation in 3D scene, such as identifying “the
chair furthest from the front door”. Consequently, relying

solely on panoramic view presents difficulties in both com-

prehensive scene perception and efficient navigation.
To address the challenges encountered by panoramic

methods, Bird’s-Eye-View (BEV) perception emerges as a

viable solution, employing discriminative grid representa-

tions to model the 3D environment. Meanwhile, BEV grid

representation effectively captures spatial context and scene

layouts [31, 32], facilitating both perception [33–36] and

planning [37–40]. Building upon these insights, we present

a BEV Scene Graph (BSG), which harnesses the power of
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BEV representation to construct an informative navigation

graph. During navigation, the agent collects local BEV rep-

resentations at each navigable node. A global scene graph is

established by connecting these BEV representations topo-

logically. At each step, the agent makes an informed de-

cision by predicting a BEV grid-level decision score and a

BSG graph-level decision score, combined with a subview

selection score on panoramic views [13, 28, 41].

Specifically, the agent acquires multi-view observations

at each step and performs view transformation [35, 42–44]

on the corresponding image features. Later, a 3D detection

head [44–46] is employed on these BEV representations to

predict oriented bounding boxes, encoding object-level ge-

ometric and semantic information. During navigation, the

node embeddings of BSG are represented by neighboring

BEV grids. Then they are updated by querying the overlap

region between BEV representations from different steps.

Previous semantic maps in robot navigation, includ-

ing occupancy grids [47–50] and learnable spatio-semantic

representations [51–55], have only provided top-down in-

formation without crucial 3D object information. Differ-

ently, BSG leverages the BEV representations to achieve

consistency between 3D perception and decision-making

while encoding geometric context. Our approach is eval-

uated on three benchmarks (i.e., REVERIE [25], R2R [1],

R4R [56]). For the referring expression comprehen-

sion in REVERIE, BSG outperforms the state-of-the-art

method [28] by 5.14% and 3.21% in SR and RGS on

the val unseen split, respectively. BSG also achieves 4%
and 3% improvement in SR and SPL on the test split of

R2R, respectively. The impressive results shed light on the

promises of BEV perception in VLN task.

2. Related Work
Vision-Language Navigation (VLN). VLN task [1] has

drawn significant attention in embodied AI domain. Early

work typically adopts recurrent neural networks with cross-

modal attention [1, 3, 5, 57, 58]. Later, various techniques

have been developed to improve VLN, including: i) us-

ing more powerful vision-and-language embedding meth-

ods based on pre-trained transformer models [14, 15, 17, 18,

28–30, 59–61]; ii) exploiting more supervisory information

from environment augmentation [62–64], instruction gen-

eration [3, 5, 65–67], and other auxiliary tasks [4, 9, 16,

68, 69]; iii) designing more efficient action planning and

learning strategies by incorporating self-correction [11, 57],

global action space [12, 26, 41, 70, 71], map building [13,

28, 41, 55], knowledge prompts [8, 72, 73], or ensemble of

IL [1] and RL [4, 74]; and iv) developing more large-scale

benchmarks [2, 25, 70, 75–81] and platforms [2, 79–81].

However, existing work heavily relies on panoramic sub-

views for navigation, suffering from the limitations of 2D

perspective view. These limitations, including occlusion

and a narrow field of subview, introduce ambiguity in action

prediction, thereby hindering efficient navigation. In con-

trast, we leverage BEV representations to facilitate naviga-

tion decision-making through view transformation. These

BEV representations encode geometric context of environ-

ment under the supervision of BEV-based 3D detection.

Map Representation for Navigation. To achieve accu-

rate navigation, it is critical to develop an efficient rep-

resentation of surrounding environments. In robot nav-

igation, classical SLAM-based approaches build a map

based on geometry and plan the path on this semantic-

agnostic map [48, 50, 82, 83]. These approaches are built

upon sensors and thus highly susceptible to measurement

noises [49, 54]. To explore semantic information, learn-

able semantic map [10, 47–52, 54, 84] is proposed using

the learnable spatial representations from a top-down view.

These two types of metric maps focus on dense represen-

tations with explicit location information of environment.

Moreover, topological maps [12, 13, 28, 41] are developed

to model the relationship among sparse nodes in the envi-

ronment, mitigating the burden of heavy computation. In

addition, some efforts build topo-metric maps to combine

the advantages of metric and topological maps [55, 85–87].

Existing map-based methods neglect the role of 3D per-

ception for navigation. In contrast, BSG encodes scene lay-

outs and geometric cues by 3D detection for comprehensive

scene understanding, eventually facilitating path planning.

Perceptual Organization of 3D Scenes. Scene representa-

tion should provide information about both object semantics

and layout composition [24, 88–93]. For indoor scene un-

derstanding, visual representation can take various forms,

including an RGB image and depth map [19–21], voxel

grids [94], and point clouds [95, 96]. As pointed by [24],

structural representation [6, 97, 98] also plays a significant

role, as it models the spatial relationships among different

objects. Therefore, modeling visual and structural prop-

erties is critical for scene understanding. Recently, BEV

feature provides a unified representation for perception and

motion planning [31, 32, 37–40].

Motivated by the recent efforts that achieve learnable

projection between BEV plane and perspective view [33–

35, 42, 43, 99–103], we collect oriented 3D bounding boxes

in Matterport3D dataset [2] and perform camera-based BEV

perception for embodied amodal detection [22, 104], as op-

posed to previous point cloud-based detection [105–107].

Under the supervision of 3D detection, we employ BEV

feature to establish scene representations that effectively

capture object-level geometry information for navigation.

3. Approach
Task Setup. We illustrate our approach using R2R [1] task,

where the environment is discretized as a set of navigable

nodes and navigability edges. The agent observes the sur-
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Figure 2: Overview of BSG. View transformation is first employed to project the multi-view images into BEV plane (§3.1). Then, BEV

feature is encoded using 3D detection (§3.3). Through the integration of BEV representations during navigation, we predict a graph-level

decision score on BSG and a grid-level decision score based on BEV. These scores are fused to facilitate effective decision-making (§3.2).

roundings at each node and finds a route to the target loca-

tion, specified by the instruction X ={xl}Ll=1 with L words.

Panoramic Methods. Previous VLN agents [4, 5, 28, 30]

are built as panoramic view selectors [3] where navigable

candidate nodes are represented by adjacent observations

from different viewing angles. However, the adjacency

rule in panoramic navigation will cause multiple candidate

nodes to correspond to the same panoramic view, thus intro-

ducing ambiguity in action prediction (Fig.1(a)). Inaddition,

the geometric cues of 3D environment cannot be captured by

visual features of2D panoramic views, such as occluded ob-

jects [22, 104, 108, 109] and scene layouts [39, 110].

Our Idea. To overcome the above limitations, we uti-

lize BEV features as geometry-enhanced visual represen-

tations, supervised by BEV-based 3D detection. Then, we

construct BEV Scene Graph (BSG) online using BEV fea-

tures (Fig. 1(b)). With BSG, the agent effectively predicts

the next step on candidate nodes, which are represented by

discriminate BEV grids. Before detailing BEV detection

(§3.3), we first introduce how to build BSG (§3.1) and how

to predict decision score for action prediction(§3.2).

3.1. BSG Construction

During navigation, the agent collects local BEV rep-

resentations of surrounding environment online, and con-

structs a global scene graph gradually. Specifically, at time

step t, BSG is denoted as Gt = {Vt, Et}, where each node

v ∈ Vt incorporates observed information (Fig. 3), corre-

sponding to each navigable location in the environment.

View Transformation. At current location v∗, the agent

acquires multi-view camera images1. We perform voxel sam-
pling [31, 32, 35, 44, 111] on each image feature F2D ∈
R

HcWc×D to construct 3D voxel feature F3D ∈ R
HWZ×D,

where HcWc and HW are the spatial dimensions of image

1As there are no specific camera parameters available for panoramic

images from the simulator [1], we utilize the images captured by raw cam-

era with intrinsic and extrinsic parameters [2]. Both types of images en-

compass identical visual content (see Appendix for details).

feature and BEV plane, respectively. Predefined 3D refer-

ence points P ∈R
HWZ are used to query the image feature

via cross-attention for voxel feature (Fig. 2), where HWZ
denotes the number of reference points:

F3D(h,w, z) = CrossAtt
(
P (h,w, z),F2D(hi, wi)

)
. (1)

Then,F3D is squeezeddownto BEV space by voxel pool-
ing as B={bi}HW

i=1 ∈RHW×D, where each grid cell contains

aD-sizedlatentvector, representingthecorrespondingregion

in environment. Then, BEV feature is connected with a 3D

detection head (cf.§3.3) to predict bounding boxes, provid-

ing the agent with object-level geometry information.

Node Representation from BEV Grids. At the start of

navigation (i.e., t=0), BSG G0 is initialized with the node

set V0 and its associated BEV feature B0 (Fig. 3). It is

noted that there is an overlapping region Ωo between Bt

and Bt+1, since the perception range is greater than the

moving step. At time step t+1, the same spatial region will

be captured by different BEV grid features from Ωo. Then,

we execute temporal modeling on Bt and Bt+1 to integrate

history information, thereby facilitating the representation

of stationary objects [35, 112, 113]. In particular, we adopt

cross-attention [114] on the grid features to update Bt+1:

b̃j,t+1 = CrossAtt
(
bi,t, bj,t+1

)
, i, j ∈ Ωo. (2)

Since local scene information is captured by correspond-

ing BEV features, we construct node representations of

BSG by incorporating the features of surrounding BEV

grids, which are identified by nearest neighbor search [115,

116]. At step t+1, for current node v∗ and its navigable

candidate nodes {v+k }Kt+1

k=1 ∈Vt+1, we average the BEV grid

features of corresponding neighborhood Ωn
t :

Vt+1 = Ave
({bi,t+1}i∈Ωn

t

)
. (3)

Each node representation Vt+1 ∈ R
D attends to a certain

area. For the candidate nodes that have been observed (or

visited) multiple times, we average the previous representa-

tions as its node embedding [28, 41]. After updating BSG,

we preserve Bt+1 for subsequent action prediction (§3.2).
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Figure 3: The node embeddings of BSG are represented by BEV grids in their neighborhood. From step t to t+1, BSG is updated using

temporal modeling (§3.1). Both global graph-level and local grid-level decision space are also used for accurate action prediction (§3.2).

3.2. BEV-based Navigation Action Prediction

With the current BSG Gt = {Vt, Et} and navigation in-

struction X , the agent predicts next step by combining grid-

level decision score on BEV feature Bt and graph-level de-

cision score on BSG Gt. Following [12, 28], we add a hal-

lucination “stop” node to existing Nt (= |Vt|) nodes.

BSG-based Graph-level Decision Score. The word embed-

dings X ∈R
L×D and node embeddings V g={Vn}Nt+1

n=1 ∈
R

(Nt+1)×D are fed into a cross-modal encoder [117] with

several cross-attention and self-attention layers to model the

relations between instruction and graph representations:

Ṽ g={Ṽn}Nt+1
n=1 =CrossMod

(
[V g,X]

)
, (4)

where [·] indicates the concatenation operation. After that,

we adopt a feed-forward network (FFN) to predict the

global graph-level decision score sn ∈ R
Nt+1 of Gt:

sg={sgn}Nt+1
n=1 =FFN

(
Ṽ g). (5)

BEV-based Grid-Level Decision Score. Grid-level deci-

sion score on Bt is crucial for the agent to understand the

3D scene and learn effective navigation policies. A similar

cross-modal transformer [117] is used to mine fine-grained

visual clues and object-related textual information from the

instructions, such as “front door” and “the chair furthest
from the front door”:

B̃t={b̃i}HW
i=1 =CrossMod

(
[Bt,X]

)
. (6)

Then the instruction-aware representations B̃t is used to

predict local grid-level decision score sl∈R
HW by FFN:

sl={sli}HW
i=1 =FFN

(
B̃t

)
. (7)

We propose a distance-dependent weighted pooling to

convert the grid-level score sl to local candidate score sc ∈
R

Kt+1 (containing the stop node) [1, 25]. For k-th naviga-

ble candidate node, the score is calculated as follows:

sck =
∑

i∈Ωn
k

Wk,is
l
i, (8)

where Ωn
k is the grid neighborhood of k-th candidate node

(cf. Eq. 3), andWk=[Wk,i]
|Ωn

k|
i=1 is a truncated Bivariate Gaus-

sian weight, as the contribution of BEV grids to candidate

nodes is considered contingent on relative distance:

Wk,i = ĝ(Δxk,i,Δyk,i), (9)

where (Δxk,i,Δyk,i) is the relative coordinates of the i-th
BEV grid center to k-th candidate node coordinates, ĝ(·) is

normalized Bivariate Gaussian probability N (μx,y,σx,y),
μx,y is the mean vector, and σx,y is the covariance matrix.

Fused Action Prediction. To fuse the global graph-level

decision score and local grid-level decision score, a back-

tracking strategy [12, 28] is adopted to convert the local

score sc ∈ R
Kt+1 into global space ŝc ∈ R

Nt+1. Specif-

ically, when navigating to the nodes that are not connected

to the current node, we assume the agent needs to backtrack

through the visited candidate nodes as:

ŝc =

{
sback, if backtrack,

sc, otherwise.
(10)

More specifically, we compute a backtracking score for

unconnected nodes in Vt by summing the decision scores

of visited candidate nodes as sback. Then, a weight Wf is

employed to fuse the local and global decision scores:

sn = Wf ŝ
c
n + (1−Wf )s

g
n. (11)

Using the fused prediction, BSG can complement existing

works [12, 28, 41] with global action space. We will adopt a

previous method [28] as basic agent for experiment (cf. §4).

3.3. BEV Representation Encoding

BEV detection endows the agent with awareness of

object-level geometry information, facilitating more ac-

curate action prediction [118, 119]. In this section, we

learn 3D object detection on the top of BEV feature (see

§3.1) [33–35]. Accordingly, the details on collecting a

Matterport3D-based detection dataset for embodied amodal

perception [22, 23, 120], called Matterport3D2, will be pre-

sented. We also introduce the details of detection head.

Multi-view Image Acquisition. To enable an agent to per-

ceive the surroundings through camera, we build a new 3D

detection dataset Matterport3D2 on multi-view images cap-

tured by camera [2], which differs from the previous whole-

scene detection [19–21, 110] based on point clouds [95, 96].
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During navigation, the agent revolves around the direction

of gravity to capture the RGB images in 90 building-scale

scenes. The original dataset [2] provides information on the

object center and segments throughout the entire scene.

Amodal Perception for Embodied Agent. Apart from rec-

ognizing the semantics and shapes for visible part of the

object, the ability to perceive the whole of an occluded ob-

ject (i.e., amodal perception) [22, 104, 108, 109] is also

significant for navigation. Since occlusion frequently oc-

curs in the indoor scenes, embodied amodal perception aids

the agent in comprehending the persistence of scene lay-

outs that objects possess extents and continue to exist even

when they are occluded. We consider the occlusion rela-

tionship between objects on center visibility criterion, i.e.,

an object is considered to be visible if its center is not oc-

cluded. To determine the visibility of objects in each im-

age from multi-views, we project the object center onto the

multi-view image planes and ascertain whether it is located

within the camera frustum [21, 121]. Specifically, we estab-

lish the transformation from 3D world coordinates to pixel

coordinates in the image using the intrinsic and extrinsic

parameters of the camera. Then, we obtain a group of cor-

responding objects for the multi-view images (more details

are shown in Appendix).

3D Oriented Bounding Box Generation. We spatially reg-

ister all objects into an egocentric coordinate system at each

panoramic viewpoint. To annotate the objects, we utilize a

custom algorithm (cf. Appendix) which automatically gen-

erates 3D oriented bounding boxes (OBB) for 17 categories

of indoor objects, as opposed to the axis-aligned bounding

box (AABB) annotations with a fixed yaw angle of zero in

the original dataset [2]. OBB surrounds the outline of the

objects more tightly than AABB, resulting in more accu-

rate route planning for VLN (see Table10). In addition, the

amodal detection on Matterport3D2 follows the same train/-

val/test splits as previous VLN tasks [1, 25].

Bipartite Matching for BEV Detection. We construct

the 3D detection head [33–35] upon BEV features B on

Matterport3D2. A bipartite matching loss [44–46, 122] is

used to establish a correspondence between the ground-

truth and box prediction, which consists of a focal loss [123]

for class labels and a L1 loss for bounding box regression.

We evaluate different BEV methods [34, 35, 42, 44] for

indoor detection (see Table 8). Note that BSG is not con-

strained to any specific BEV model, allowing for seamless

integration of advanced BEV frameworks for VLN.

3.4. Implementation Details

For ease of training, we employ a separate training

strategy of the BEV detection and navigation policy net-

works, as the initial perception module cannot offer a cor-

rect feedback (or rewards) to the navigation policy [22, 23].

Therefore, BSG utilizes BEV features encoded by BEV-

Former [35]. Following recent VLN practice [14, 15, 17,

29], pretraining and finetuning paradigm is adopted on a ba-

sic model [28] equipped with BSG. In this section, we will

mainly introduce the details of BSG branch and present the

detailed results in Table 4 (see Appendix for more details).

Voxel Sampling. For view transformation, we introduce the

voxel sampling here (Eq.1). The default size of BEV queries

is 11 × 11 with four reference points (i.e., Z =4) for each

query, and the perception ranges are [−5.0 m, 5.0 m] for x
and y axes. Considering the practical height of camera and

rooms in [2], the predefined height anchors are uniformly

sampled from [−1.0 m, 2.0 m] for z axis. The number of

neighboring grids for node embedding is 9 (Eq.3).

BSG Architecture. Following the recent transformer-based

methods [14, 17, 18, 28–30], the pretrained LXMERT [117]

is utilized for initialization. We use 9, 2, and 4 trans-

former layers in the text encoder and cross-modal encoder

(Eq.4&6), respectively. We keep the other parameters con-

sistent with prior works [28, 117]. During the finetuning

process, the similar structure variants in the cross-modal en-

coder are adopted as previous studies [17, 28]. The fused

weight Wf in Eq. 11 is set to 0.5. For the Bivariate Gaus-

sian weight (Eq.9), μx,y is the zero vector, and σx,y is the

diagonal matrix with diagonal elements of 2. We set the

weight of 0.7 for OCM and 0.3 for [28].

Pretraining. For the R2R [1] and R4R [56], we adopt the

Masked Language Modeling (MLM) [60, 114] and Single-
step Action Prediction (SAP) [17, 30] as auxiliary tasks in

the pretraining stage. For REVERIE [25], an additional

Object Grounding (OG) [28, 124] is used for object rea-

soning. During the pretraining stage, we train the model

with a batch size of 32 for 100k iterations, using Adam op-

timizer [125] with 1e-4 learning rate. Four RTX 3090 GPUs

are used for network training, and only one pretraining task

is adopted at each mini-batch with the same sampling ratio.

Finetuning. Following standard protocol [17, 28], we fine-

tune the pretrained network with a mixture of teacher-
forcing [126] and student-forcing on different VLN datasets.

On REVERIE, the OG loss [28, 124] is also employed for

finetuning, and a predefined weight 0.20 is adopted to bal-

ance navigation and object grounding. Moreover, we set the

learning rate to 1e-5 and batch size to 8 with 25k iterations.

Inference. Once trained, the agent is capable of route plan-

ning while considering object context and scene layouts

(§3.3). During the testing phase, we update BSG online

(§3.1) and predict a fused action score (§3.2). The agent is

forced to stop if it exceeds the maximum action steps [1].

4. Experiment
We first provide the results on VLN benchmarks (§4.1).

To verify efficacy of core model designs, we conduct a set of

diagnostic studies (§4.2). For comprehensive analysis, we

investigate the impact of BEV perception on VLN (§4.3).
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REVERIE

val seen val unseen test unseenModels

TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑
RCM [4] 10.70 29.44 23.33 21.82 16.23 15.36 11.98 14.23 9.29 6.97 4.89 3.89 10.60 11.68 7.84 6.67 3.67 3.14

FAST-MATTN [25] 16.35 55.17 50.53 45.50 31.97 29.66 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08

SIA [124] 13.61 65.85 61.91 57.08 45.96 42.65 41.53 44.67 31.53 16.28 22.41 11.56 48.61 44.56 30.80 14.85 19.02 9.20

RecBERT [30] 13.44 53.90 51.79 47.96 38.23 35.61 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51

Airbert [29] 15.16 48.98 47.01 42.34 32.75 30.01 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28

HAMT [17] 12.79 47.65 43.29 40.19 27.20 25.18 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 13.08

HOP [18] 13.80 54.88 53.76 47.19 38.65 33.85 16.46 36.24 31.78 26.11 18.85 15.73 16.38 33.06 30.17 24.34 17.69 14.34

TD-STP [71] − − − − − − − 39.48 34.88 27.32 21.16 16.56 − 40.26 35.89 27.51 19.88 15.40

DUET [28] 13.86 73.86 71.75 63.94 57.41 51.14 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06

LANA [67] 15.91 74.28 71.94 62.77 59.02 50.34 23.18 52.97 48.31 33.86 32.86 22.77 18.83 57.20 51.72 36.45 32.95 22.85

Ours 15.26 78.36 76.18 66.69 61.56 54.02 24.71 58.05 52.12 35.59 35.36 24.24 22.90 62.83 56.45 38.70 33.15 22.34

Table 1: Quantitative comparison results on REVERIE [25]. ‘−’: unavailable statistics. See §4.1 for more details.

4.1. Performance on VLN

Datasets. The experiments are conducted on three datasets.

REVERIE [25] contains high-level instructions describing

target locations and objects, with a focus on grounding re-

mote target objects. R2R [1] contains 7,189 shortest-path

trajectories, each associated with three step-by-step instruc-

tions. The dataset is split into train, val seen, val unseen,

and test unseen sets with 61, 56, 11, and 18 scenes, respec-

tively. R4R [56] is an extended variant of R2R by concate-

nating two adjacent trajectories with longer instructions.

Evaluation Metric. Following the standard setting [1, 3,

17] of VLN task, we use five metrics for evaluation, i.e.,

Success Rate (SR), Trajectory Length (TL), Oracle Success

Rate (OSR), Success rate weighted by Path Length (SPL),

and Navigation Error (NE). Two additional evaluation met-

rics, Remote Grounding Success rate (RGS) and Remote

Grounding Success weighted by Path Length (RGSPL), are

used for REVERIE [25, 28, 30]. For R4R [17, 41, 56], Cov-

erage weighted by Length Score (CLS), normalized Dy-

namic Time Warping (nDTW), and Success rate weighted

nDTW (SDTW) are adopted (more details in Appendix).

Performance on REVERIE [25]. Table 1 compares our

model with the recent state-of-the-art VLN models on

REVERIE dataset. We find that our model outperforms pre-

vious approaches across all the evaluation metrics on the

three splits. Notably, on the val unseen split, our model out-

performs the previous best model DUET [28] by 5.14% on

SR, 1.86% on SPL and 3.21% on RGS. On the more chal-

lenging test unseen split, we improve over the baseline by

3.94% on SR, 2.64% on SPL, and 1.27% on RGS. This

demonstrates the effectiveness of our architecture design.

Performance on R2R [1]. Table2 presents the comparison

results on R2R dataset. We can find that our approach sets

new state-of-the-arts for most metrics. For instance, on val
unseen, our model yields SR and SPL of 74 and 62, respec-

tively, while those for the baseline method [28] are 72 and

60. Our approach improves the performance of DUET by

solid margins on test unseen (i.e., 69→73 for SR, 59→62

R2R

val unseen test unseenModels

TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑
Seq2Seq [1] 8.39 7.81 22 − 8.13 7.85 20 18

SF [3] − 6.62 35 − 14.82 6.62 35 28

EnvDrop [5] 10.70 5.22 52 48 11.66 5.23 51 47

AuxRN [16] − 5.28 55 50 − 5.15 55 51

PREVALENT [15] 10.19 4.71 58 53 10.51 5.30 54 51

RelGraph [6] 9.99 4.73 57 53 10.29 4.75 55 52

Active Perception [26] 20.60 4.36 58 40 21.60 4.33 60 41

RecBERT [30] 12.01 3.93 63 57 12.35 4.09 63 57

HAMT [17] 11.46 2.29 66 61 12.27 3.93 65 60

SOAT [27] 12.15 4.28 59 53 12.26 4.49 58 53

EGP [12] − 4.83 56 44 − 5.34 53 42

GBE [70] − 5.20 54 43 − 5.18 53 43

SSM [41] 20.7 4.32 62 45 20.4 4.57 61 46

CCC [66] − 5.20 50 46 − 5.30 51 48

HOP [18] 12.27 3.80 64 57 12.68 3.83 64 59

LANA [67] 12.0 − 68 62 12.6 − 65 60

TD-STP [71] − 3.22 70 63 − 3.73 67 61

DUET [28] 13.94 3.31 72 60 14.73 3.65 69 59

Ours 14.90 2.89 74 62 14.86 3.19 73 62

Table 2: Quantitative results on R2R [1] (more details in §4.1).

R4R val unseen
Models

NE↓ SR↑ CLS↑ nDTW↑ SDTW↑
SF [3] 8.47 24 30 − −

RCM [4] − 29 35 30 13

EGP [12] 8.00 30 44 37 18

SSM [41] 8.27 32 53 39 19

RelGraph [6] 7.43 36 41 47 34

RecBERT [30] 6.67 44 51 45 30

HAMT [17] 6.09 45 58 50 32

LANA [67] − 43 60 52 32

Ours 6.12 47 59 53 34

Table 3: Quantitative results on R4R [56] (more details in §4.1).

for SPL). In addition, it also shows significant performance

gains in terms of NE (i.e., 3.65→3.19).

Performance on R4R [56]. Table 3 shows results on R4R

dataset. Our approach outperforms others in most metrics

and leads to a promising gain on SR (i.e., 45→47).

Visual Results. As shown in Fig. 4, “bedroom” is a criti-

cal landmark for instruction execution. There are two bed-
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Instruction: Go into the bedroom with the hand-shaped chair and pull the chair under the desk back.

(a) Groundtruth path in a top-down view (c) Our agent(b) Basic agent

Figure 4: A representative visual result on REVERIE dataset [25] (§4.1). There are two bedrooms and it is difficult to distinguish between

them. The basic agent in (b) steps into the bedroom #2 and ends in failure. With BSG, our agent in (c) returns back to the correction

direction and succeeds according to the object context and scene layouts.

REVERIE R2R
# Models

SR↑ SPL↑ RGS↑ SR↑ SPL↑
1 Basic agent [28] 46.98 33.73 32.15 71.52 60.36

2 BEV Branch 39.03 25.73 25.09 65.56 52.21

3 w/o. detection 49.25 32.44 33.21 72.65 60.20

4 Full model 52.12 35.59 35.36 73.73 62.33

Table 4: Ablation study of overall design on val unseen of

REVERIE [25] and R2R [1]. See §4.2 for more details.

REVERIE R2R
# |Ωn|

SR↑ SPL↑ RGS↑ SR↑ SPL↑
1 4 51.33 34.34 34.86 72.89 62.07

2 9 52.12 35.59 35.36 73.73 62.33
3 16 51.71 34.11 34.54 73.26 61.99

Table 5: Ablation study of node embeddings on val unseen of

REVERIE [25] and R2R [1]. See §4.2 for more details.

REVERIE R2R
Updating

SR↑ SPL↑ RGS↑ SR↑ SPL↑
w/o. BEV updating 50.30 34.05 35.05 72.29 60.77

w. BEV updating 52.12 35.59 35.36 73.73 62.33

Table 6: Ablation study of BEV updating on val unseen of

REVERIE [25] and R2R [1]. See §4.2 for more details.

rooms in the environment, which have different objects and

geometric context (Fig.4(a)). However, the basic agent [28]

navigates a wrong bedroom #2 and finally fails (Fig. 4(b)).

In Fig. 4(c), the BSG enables our agent to perceive the

object-aware 3D information, finding “the chair under the

desk” and “hand-shaped chair” to accomplish the task.

4.2. Diagnostic Experiment

To assess the efficacy of essential components of BSG,

detailed ablation studies are conducted and the results of val
unseen split of REVERIE [25] and R2R [1] are shown.

Overall Design. We first investigate the effectiveness of

Decision Space REVERIE R2R
# Models

Graph Grid SR↑ SPL↑ RGS↑ SR↑ SPL↑
1 Basic agent [28] − − 46.98 33.73 32.15 71.52 60.36

2

Variants

� 50.18 33.94 33.66 73.02 60.76

3 � 48.25 34.34 34.02 72.79 61.54

4* � 51.27 34.56 35.20 73.10 61.88

5 Full model � � 52.12 35.59 35.36 73.73 62.33

Table 7: Ablation study of fused decision-making on val unseen
of REVERIE [25] and R2R [1]. ‘∗’ denotes using uniform weight

instead of Bivariate Gaussian (Eq. 8). More details in §4.2.

our overall design. The results presented in row #1, #2, and

#4 of Table 4 indicate that adding BEV branch leads to a

promising gain over the basic agent [28] across all metrics.

From row #3 and #4, we improve the model by using ad-

ditional detection loss 2.87% on SR of REVERIE, 3.15%
on RGS of REVERIE, and 2.13% on SPL of R2R.

Neighborhood for Node Embeddings. We next validate

the design of node embeddings. For each navigable candi-

date node, we employ its neighboring grid representations

to construct the node embeddings (cf. Eq. 3). In Table 5, it

can be observed that insufficient neighboring grids, as seen

in rows #1 and #2, cannot represent the node well for nav-

igation. On the other hand, from row #2 and #3, selecting

too many neighboring grids can impact the discriminabil-

ity of node embeddings due to a large number of overlap

between candidate neighborhoods (see Fig.3).

BEV Updating Strategy. At each step, we update BEV

features by cross-attention, and then use the modified BEV

grids to revise node embeddings (cf. Eq.2). In Table6, the

variant of model that does not include BEV updating leads

to inferior performance compared to full model.

Fused Decision-Making. The results in row #1, #2, and

#3 of Table 7 suggest that both graph and grid-level deci-

sion space of BSG facilitate the navigation (cf. §3.2). From

row #4, using Bivariate Gaussian weights results in better
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Matterport3D2 REVERIE R2R
BEV Models

mAP↑ mAR↑ SR↑ SPL↑ RGS↑ SR↑ SPL↑
LSS [42] 0.188 0.270 50.83 34.43 33.19 72.25 61.30

BEVDepth [34] 0.252 0.443 51.06 34.35 34.13 72.77 61.38

BEVFormer [35] 0.299 0.488 52.12 35.59 35.36 73.73 62.33

Table 8: Ablation study of different BEV models on val unseen of

REVERIE [25] and R2R [1]. See §4.3 for more details.

(a) mAP on Matterport3D2 (b) SR on R2R

(c) SR on REVERIE (d) RGS on REVERIE

Figure 5: Ablation study of BEV scale and perception range on

val unseen of REVERIE [25] and R2R [1] (more details in §4.3).

performance compared to assigning uniform weights, as it

takes into account the varying contribution of each BEVgrid

to the node based on the relative distances.

4.3. Analysis on BEV Encoding

In this section, we present the detection results on val
unseen of Matterport3D2. For evaluation, we utilize mean

Average Precision (mAP) and mean Average Recall (mAR),

with Intersection over Union (IoU) thresholds of 0.50, fol-

lowing standard protocols [19, 20, 127, 128]. Then, we pro-

vide a quantitative analysis of how BEV detection affects

VLN performance, including different types of BEV mod-

els (depth prediction [34, 42] and voxel sampling [35]) and

the ablation study on the superior model [35].

Different BEV Models. We first compare several repre-

sentative open-source BEV models [34, 35, 42], which are

divided into two aspects based on different view transfor-

mations. BEVFormer [35] utilizes voxel sampling to en-

code 2D features to 3D space (cf. Eq. 1), while LSS [42]

and BEVDepth [34] employ 2D features to predict depth

information and then lift these features to 3D space. Note

that BEVDepth [34] requires explicit depth information as

additional supervision.As listed in Table8, BEVFormer [35]

outperforms all other methods with 0.299 mAP and 0.488
mAR. We adopt BEVFormer [35] as our BEV baseline.

Matterport3D2 REVERIE R2R
# Z

mAP↑ mAR↑ SR↑ SPL↑ RGS↑ SR↑ SPL↑
1 2 0.260 0.443 51.49 35.07 36.27 72.81 60.50

2 4 0.299 0.488 52.12 35.59 35.36 73.73 62.33
3 8 0.266 0.438 50.98 33.56 35.34 72.30 60.44

Table 9: Ablation study of reference points on val unseen of

REVERIE [25] and R2R [1]. See §4.3 for more details.

Matterport3D2 REVERIE R2R
Annotation

mAP↑ mAR↑ SR↑ SPL↑ RGS↑ SR↑ SPL↑
AABB 0.266* 0.491* 49.25 32.44 34.14 73 60

OBB 0.299 0.488 52.12 35.59 35.36 74 62

Table 10: Ablation study of OBB and AABB on val unseen of

REVERIE [25] and R2R [1]. ‘∗’ denotes the detection perfor-

mance on AABB annotations. See §4.3 for more details.

Moreover, our performance can be further improved with

more advanced BEV models.

BEV Scale and Perception Range. We next delve into

the core parameters of our BEV, i.e., scale and perception

range (cf. Eq.1). The results are summarized in Fig.5. We

find that different scales and perception ranges will affect

detection accuracy (cf. Eq. 1). Since node representations

are associated with BEV features (cf. §3.1), better detection

performance can bring more gain to navigation.

Reference Points. Table9 presents a comprehensive analy-

sis of the number of reference points proposed in §3.1. Ref-

erence points enable the sampling of multi-view features

and their integration into BEV feature (cf. §3.1).

OBB vs AABB for Perception and Navigation. The ori-

ented bounding box (OBB) is more commonly used in 3D

perception of real-world scenarios, such as collision detec-

tion [129, 130] and grasp detection [131–133], compared to

the axis-aligned box (AABB). In Table10, using the OBB,

the agent’s perception performance is better as it provides

accurate orientation and scale information (cf. §3.3), result-

ing in the improved performance in all navigation tasks.

5. Conclusion

Scene understanding is crucial for intelligent navigation

in 3D environments. However, current VLN agents rely

solely on panoramic observations, lacking the capacity to

preserve 3D layouts and geometric cues, and hence limiting

their planningability. In this paper, we propose a BEV scene

graph (BSG) for 3D perception-based VLN, that enables the

agent to perceive the scene and access the object layouts.

By fusing BSG-based action score and BEV grid-level ac-

tion score, our approach achieves promising results. This

highlights the great potential of BEV perception in VLN.
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