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Abstract

We study the task of weakly-supervised point cloud se-
mantic segmentation with sparse annotations (e.g., less than
0.1% points are labeled), aiming to reduce the expensive
cost of dense annotations. Unfortunately, with extremely
sparse annotated points, it is very difficult to extract both
contextual and object information for scene understand-
ing such as semantic segmentation. Motivated by masked
modeling (e.g., MAE) in image and video representation
learning, we seek to endow the power of masked model-
ing to learn contextual information from sparsely-annotated
points. However, directly applying MAE to 3D point clouds
with sparse annotations may fail to work. First, it is non-
trivial to effectively mask out the informative visual con-
text from 3D point clouds. Second, how to fully exploit
the sparse annotations for context modeling remains an
open question. In this paper, we propose a simple yet ef-
fective Contextual Point Cloud Modeling (CPCM) method
that consists of two parts: a region-wise masking (Region-
Mask) strategy and a contextual masked training (CMT)
method. Specifically, RegionMask masks the point cloud
continuously in geometric space to construct a meaning-
ful masked prediction task for subsequent context learning.
CMT disentangles the learning of supervised segmentation
and unsupervised masked context prediction for effectively
learning the very limited labeled points and mass unlabeled
points, respectively. Extensive experiments on the widely-
tested ScanNet V2 and S3DIS benchmarks demonstrate the
superiority of CPCM over the state-of-the-art.

1. Introduction
With the growing demand for autonomous driving and

robotic navigation, point cloud semantic segmentation be-

comes an indispensable technique for accurate 3D environ-

†Corresponding author.

Figure 1: Effectiveness of the proposed CPCM on context

comprehension ability compared to the consistency-based

baseline [16, 53]. We conduct masked evaluations to in-

spect the model’s contextual understanding ability. The vi-

sual comparison of results from different methods (mask ra-

tio = 40%) and the performance w.r.t. different mask ratios

are shown in the top and bottom panels, respectively.

ment perception [18, 27, 51]. Recent years have witnessed

great progress in fully-supervised learning in point cloud

segmentation [2, 6, 10, 14, 31, 32, 39, 47, 56]. However,

densely-annotating point-wise labels are time-consuming,

labor-intensive as well as economic-inefficient to obtain

since the number of points in point cloud data can easily

reach tens of thousands of magnitude [42, 48]. It goes with-

out saying that diving into point cloud semantic segmenta-

tion from sparse labels is crucial to reduce the annotation

cost and expand the application boundary [9, 20, 22].

Very recently, to reduce the reliance on dense labels
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while still delivering satisfactory point cloud semantic seg-

mentation performance, most effort has been put into learn-

ing from the weakly-annotated labels [9, 16, 25, 42, 48,

49, 52, 53]. Among several types of weakly-annotated la-

bels, the partial point-wise labeling scheme offers the best

trade-off between annotation cost and segmentation perfor-

mance [9, 22]. In the partially annotated point cloud data,

the labeled part typically occupies a very small portion of

points (e.g., 0.1%) per scene [9]. In this case, directly ap-

plying supervised cross-entropy loss only on the limited la-

beled part is prone to overfitting [25, 33, 43]. As a result, the

primary challenge is learning from a significant proportion

of unlabeled points to improve model generalization perfor-

mance, rather than utilizing only the labeled points [16, 53].

Existing methods seek to tackle the challenge by ex-

ploiting different levels of feature consistency under vari-

ous data augmentations. To be specific, researchers resort

to enforcing feature consistency between differently aug-

mented or geometrically calibrated point clouds by discrim-

inating points from different scenes with contrastive learn-

ing [8, 11, 16, 45], exploring color & geometric smooth-

ness [48, 52], more advanced consistency loss such as JS-

divergence [53] and similarity weighted loss [43]. How-

ever, given limited annotations, exploring feature consis-

tency only would be insufficient to capture the complex

structures of point clouds, making it very difficult to extract

both contextual and object information for satisfactory seg-

mentation performance. To inspect the consistency-based

methods’ comprehension of scene context, we conduct a

pilot study by masked evaluation: evaluate the segmenta-

tion performance given a context-to-be-filled point cloud.

As shown in Figure 1, the performance of the consistency-

based method degenerates drastically, indicating a poor un-

derstanding of the scene context, even in this simple case.

Thus, comprehending the complex scene context from mass

unlabeled points remains an unresolved issue.

Motivated by masked modeling (e.g., MAE [7]) in im-

age and video that learns good representations by mask-

ing random patches of the input image and reconstructing

the missing information, we seek to endow the power of

masked modeling for weakly-supervised point cloud seg-

mentation. However, directly employing MAE to 3D point

clouds with sparse annotations may fail to work due to the

following reasons. First, since 3D point clouds are typi-

cally unordered and irregular, it is nontrivial to mask out

the informative visual context from the 3D point clouds for

subsequent context learning. Second, considering the lim-

ited but valuable labeled data in the weakly-annotated point

cloud, how to fully exploit the labeled points in masked

modeling remains an open question.

To address the above issues, we propose a simple yet ef-

fective Contextual Point Cloud Modeling (CPCM) that con-

sists of two parts: region-wise masking (RegionMask) strat-

egy and a contextual masked training (CMT) method. To

be specific, RegionMask evenly divides the geometric space

into a set of cuboids and masks all points within the cuboids

selected with a given mask ratio. Different from the trivial

point-wise masking solution [26] that performs point-wise

random masking, our RegionMask masks the point cloud

continuously in the geometric space to provide a meaning-

ful masked context prediction task. Beyond that, Region-

Mask is able to control the difficulty of the masked feature

prediction task by adjusting a hyper-parameter region size,

showing flexibility in handling different amounts of annota-

tion. Similar to MAE [7], we expect that with a very high

mask ratio (i.e., 0.75), the model is able to learn more visual

concepts [7], thereby mastering the contextual information.

However, as shown in our experiments, directly incorpo-

rating the masked modeling objective into the consistency-

based training framework impedes learning from the limited

but valuable labeled points, resulting in degenerated perfor-

mance. To resolve this problem, we propose a contextual

masked training (CMT) method that adds an extra masked

feature prediction branch into the consistency-based frame-

work, which not only paves the way for learning labeled

data but allows the model to effectively learn the complex

scene context. The proposed CPCM achieves state-of-the-

art performance on two widely-tested benchmarks ScanNet

V2 and S3DIS. For example, on ScanNet V2 [4], CPCM

outperforms SQN [9] by 5.6% mIoU on online test set.

Our contributions are summarized as follows:

• We propose contextual point cloud modeling that

incorporates masked modeling into the consistency-

based training framework to effectively learn contex-

tual information from sparsely-annotated data.

• We propose a region-wise masking strategy that masks

the point cloud continuously to construct the meaning-

ful masked prediction task and a contextual masked

training method that facilitates the learning from lim-

ited labeled data and masked context prediction.

• To the best of our knowledge, we are the first to

explore 3D masked modeling on weakly-supervised

point cloud segmentation. Extensive experiments on

widely-tested benchmarks demonstrate the superior

performance of the proposed CPCM.

2. Related Work
Fully-supervised point cloud segmentation. There are

mainly three kinds of fully-supervised methods proposed to

encode the 3D point cloud into effective representations for

semantic segmentation, including point-based [10, 13, 15,

31, 32, 41, 54], voxel-based [3, 6, 14, 17, 23, 24, 34, 35, 44]

and hybrid methods [2, 47]. Early attempts [37, 39, 56]
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Figure 2: Overall scheme of our CPCM method. Given a point cloud P, we first apply two random augmentations and our

region-wise masking to obtain the augmented point clouds P1,P2 and the masked point cloud Pm, respectively. Then, the

features Z1,Z2,Zm are extracted by a weight-sharing 3D UNet. The supervised cross-entropy loss Lseg is computed over

labeled features and a consistency loss Lconsis is computed on Z1,Z2. Last, our masked consistency loss Lmask enforces

the feature consistency between Z1,Zm and Z2,Zm to help the model focus on learning contextual information.

simply employ the 2D convolution on the projected point

cloud image, which is efficient but the projection pro-

cess causes the loss of 3D geometric detail. The point-

based methods are proposed to directly process the irregu-

lar and unordered points with order-agnostic architectures

such as PointNet [31] and PointNet++ [32] that can be

naturally applied to the point cloud but are less effective

than 2D convolution in encoding the contextual informa-

tion [10, 13, 15, 41, 54]. The voxel-based methods [3, 6, 14]

combine the neighboring points into regular grids and often

leverage sparse convolution [6, 17, 34, 35, 44] to handle

the sparse voxelized data. The latest works combine the

merits from both worlds and form hybrid methods, but also

bring more complex architecture design and extra training

costs [2, 47]. Overall, the fully-supervised point cloud seg-

mentation methods have a strong dependence on densely-

annotated labels, limiting their application scenarios.

Weakly-supervised point cloud segmentation. Learn-

ing from weakly annotated point cloud data has become

a hot research topic [9, 25, 42, 43, 48, 52, 53], which not

only reduces the annotation cost but also turns out to be

a more general solution for real-life segmentation scenar-

ios [22, 42]. For the partially labeled point cloud, the su-

pervised cross-entropy loss is suitable to learn from the la-

beled points, which, however, is prone to learn an over-

fit segmentation model due to the very limited annota-

tions [25, 33, 43]. Thus, existing approaches focus on learn-

ing the major unlabeled part and can be grouped into two

paradigms: pseudo labeling [9, 25, 42] and consistency-

based regularization [16, 48, 49, 52, 53]. The pseudo-

labeling methods predict pseudo-labels of the unlabeled

points to explore them. MPRM [42] trains a segmentation

model on the sub-cloud labels and uses the class activation

map [55] to pseudo-label the whole sub-cloud to train the

final model. OTOC [25] improves the quality of the pseudo

labels with multi rounds self-training. SQN [9] leverages

the geometric prior to better use limited labels. Since the

pseudo label is destined to be inaccurate, consistency-based

approaches learn the feature consistency across augmenta-

tions [16, 43, 48, 49, 52, 53] or calibrated views [43] to use

mass unlabeled data. MIL [49] enforce scene-level feature

consistency for model optimization. Moreover, point-wise

consistency is also leveraged by considering the color or

geometric smoothness [48, 52], feature similarity [43, 53]

or using pseudo-labeling as guidance [16]. However, fea-

ture consistency across augmentations may not fully com-

prehend the complex structures of weakly-annotated point

clouds. Instead, we propose to learn masked feature consis-

tency to better explore the contextual information.

Masked modeling for vision. Masked modeling has been

a long endeavor to learn effective representation from vi-

sion data. Early attempts reconstruct RGB features from

masked images [30], which are improved by masking a very

high ratio of image content to learn meaningful visual rep-

resentation [7, 21, 46, 50]. Moreover, masked supervised

learning improves the perception of contextual information

in fully-supervised image semantic segmentation [57]. Re-

cently, researchers apply the masked modeling approach to

learn unlabeled point cloud data [19, 26, 28]. Unlike the

above settings, weakly-supervised point cloud segmenta-

tion provides both labeled and unlabeled data. Moreover,

applying masked modeling tailored for unsupervised / fully-
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supervised learning to both labeled and unlabeled data si-

multaneously is rarely explored. In this paper, we propose

a contextual masked training method to learn from the lim-

ited supervision and the masked feature prediction task for

weakly-supervised point cloud semantic segmentation.

3. Contextual Point Cloud Modeling
Notations. Formally, a point cloud data is a collection of

N points P = {p1, p2, . . . , pN}, where each point pn of-

ten comprises the geometric location and RGB informa-

tion, i.e., pn = P[n] = (xn, yn, zn, rn, gn, bn). We use

[·] as the index operation that retrieves the corresponding

element (can be a vector or a scalar) from a set or a ma-

trix. To accomplish the point cloud semantic segmentation

task, given a point cloud P and a segmentation network

fθ(·) parameterized by θ, we expect the model to produce

point-wise classification features1 Z = Softmax
(
fθ(P)

)
,

where Z[n] ∈ (0, 1), argmax
(
Z[n]

) ∈ C and C =
{0, 1, 2, . . . , C − 1} is a predefined category set with C
classes. Unlike the fully-supervised point cloud semantic

segmentation that provides the label of every point in P,

only sparse annotations are available in weakly-supervised

point cloud semantic segmentation. The weakly-labeled

point cloud data comprises two parts, the labeled part and

the unlabeled part, i.e., (P,Y) = {(ps, ys) | s ∈ S} ∪
{(pu,�) | u ∈ U}, where S,U denote the index sets of the

labeled and unlabeled points respectively and � is a spe-

cial token denoting the label is unavailable. During model

training, a dataset D = {(P,Y)} includes hundreds of or

thousands of point cloud & weak-label pair is provided.

3.1. Problem Definition

With the limited labeled data and a mass of unla-

beled data, weakly-supervised point cloud semantic seg-

mentation focuses on learning useful representations from

a large amount of unlabeled data to improve model gen-

eralization. Existing approaches often achieve this by en-

forcing point-wise feature consistency across augmenta-

tions [16, 48, 49, 53]. Given a weakly-labeled point cloud

data (P,Y), two random augmentations2 are applied P1 =
Aug1(P) and P2 = Aug2(P). Based on this, point-wise

classification for two point clouds is calculated by Z1 =
Softmax

(
fθ(P1)

)
,Z2 = Softmax

(
fθ(P2)

)
. The general

form for the consistency-based method is as follows:

LCB = Lseg + αLconsis, (1)

where Lseg and Lconsis denote supervised cross-entropy

loss and the consistency loss introduced below and α is a

hyper-parameter that controls optimization strength on the

consistency loss. The supervised loss Lseg is computed

1We use the term features and logits interchangeably for convenience.
2Details on the data augmentation are put in the supplementary.

Algorithm 1 Training method for CPCM

Require: The training dataset D = {(P,Y)}, the point cloud

segmentation network fθ(·), the region size G, the mask ratio

R, the weighting factor α, β, the learning rate η.

Ensure: Optimized point cloud segmentation network fθ .

1: Randomly initializes the model parameters θ.

2: while not converge do
3: Obtain a weakly-labeled point cloud data (P,Y) from D.

4: Obtain the labeled indexes S from Y.

5: // perform two random augmentations
6: P1 ← Aug1(P),P2 ← Aug2(P).
7: Compute region-wise masking flag M by Eqn. (4).

8: Compute region-wise masked point cloud Pm by Eqn. (7).

9: // perform segmentation for augmented point clouds
10: Z1 ← Softmax

(
fθ(P1)

)
,Z2 ← Softmax

(
fθ(P2)

)
.

11: // perform segmentation for the masked point cloud
12: Zm ← Softmax

(
fθ(Pm)

)
.

13: Compute the cross-entropy loss Lseg by Eqn. (2).

14: Compute the consistency loss Lconsis by Eqn. (3).

15: Compute the masked consistency loss Lmask by Eqn. (9).

16: Compute the overall training objective LCPCM by Eqn. (8).

17: // update network parameters via gradient descent
18: θ ← θ − η∇θLCPCM.

19: end while

over limited labeled points:

Lseg =
1

|S|
∑

s∈S
CE

(
Z1[s],Y[s]

)
+CE

(
Z2[s],Y[s]

)
, (2)

where CE(·, ·) is the cross-entropy loss. In the mean-

while, the consistency loss Lconsis enforces point-wise fea-

ture consistency as follows:

Lconsis =
1

N

∑
n
JS

(
Z1[n],Z2[n]

)
, (3)

where JS(·, ·) minimizes the Jensen-Shannon divergence

of different features. Feature consistency from different

augmentations can exploit the unlabeled data but may not be

informative enough to comprehend the complex structure of

the point cloud data, failing to effectively explore the con-

textual information such as space, color and semantic conti-

nuity that is crucial for satisfactory segmentation. Attracted

by the strong context modeling ability of masked modeling

in image and video representation learning, we seek to en-

dow the power of masked modeling to weakly-supervised

point cloud segmentation. However, designing an effective

masking strategy for 3D point cloud data and developing a

compatible training scheme to fully exploit the limited la-

beled data for masked modeling remain open questions.

Overview. To answer the above questions, we propose

Contextual Point Cloud Modeling (CPCM) to model the

contextual information effectively with two steps: First, we

propose a region-wise masking strategy that masks the point

cloud in the continuous geometric space, providing mean-

ingful missing context to be filled. Second, we propose a
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Figure 3: Comparisons of different masking strategies. The

proposed region-wise masking removes meaningful context

to be filled. We set the mask ratio = 25% for visualization.

contextual masked training that facilitates the learning of

limited labeled points and masked feature prediction tasks

by adding an extra stream for masked feature extraction.

Then, we enforce the feature consistency between masked

and unmasked features to learn effective contextual repre-

sentations. The overall framework and algorithm of CPCM

are shown in Figure 2 and Algorithm 1, respectively.

3.2. Region-wise Point Cloud Masking

In this section, we introduce our region-wise mask-

ing scheme that provides an effective supervision signal

for the model to learn contextual information. To formu-

late the masking strategy, we first define M ∈ R
N as a

zero-one vector to indicate whether a point in point cloud3

P ∈ R
N×6 is masked or not and denote the mask ratio as

R (0 ≤ R ≤ 1), i.e., the number of the masked points is

R ∗N . Then, the masked point cloud Pm is computed in a

point-wise setting the color information to zero4:

Pm[n] =
[
xn, yn, zn,M[n] · rn,M[n] · gn,M[n] · bn

]
. (4)

To obtain a masked point cloud, a straightforward solu-

tion, termed PointMask, is to randomly sample each point

(or voxel) with the given mask ratio R

M[n] = 1{q ≤ R}, q ∼ U [0, 1], (5)

where 1{·} is the indicator function and q is a random vari-

able drawn from the uniform distribution U [0, 1]. As shown

in Table 4, PointMask delivers unsatisfactory improvement

compared to the baseline, especially with a very high mask

ratio (i.e., 0.75). We attribute this failure to the following

reasons: The PointMask strategy tends to decrease the res-

olution of the point cloud (see Figure 3b), which does not

effectively mask meaningful visual words [7] to predict.

To reasonably remove some contextual information

from a point cloud, we introduce Region-wise Masking

(RegionMask) that evenly splits the scene into cuboids

3For convenience, we refer to the point cloud data as a matrix.
4The coordinate x, y, z is left untouched since the sparse convolution

operation in 3D UNet requires it for the convolution kernel construction.

and masks the points within the randomly selected

cuboids. We first define the region size G to de-

note the number of cuboids. Note that a cuboid that

parallels the axes in a 3D coordinate system is repre-

sented by
[
(xmin, ymin, zmin), (xmax, ymax, zmax)

]
. Assum-

ing that the minimal cuboid covering a point cloud is[
(0, 0, 0), (l, w, h)

]
. We evenly partition the scene into a

set of cuboid regions H i.e., (|H| = G3) as follows:

H =
{[

(xi, yj , zk), (xi+1, yj+1, zk+1)
]}

,

xi = i · l

G
, yj = j · w

G
, zk = k · h

G
,

i, j, k ∈ {0, 1, . . . , G− 1},

(6)

where xi, yj , zk are the evenly split points along the x, y, z
axes and

(
l
G , w

G , h
G

)
are the length, width, height of a re-

gion, respectively. Then, we randomly select R ·G3 regions

Hm and compute the mask flag M as follows:

M[n] = 1
{
(xn, yn, zn) ∈ Hm}

, (7)

where ∈ denotes a point that lies within a cuboid or not.

Then, the masked point cloud is computed by Eqn. (4). As

shown in Figure 3c, RegionMask masks the unordered and

irregular point cloud continuously, providing meaningful

context-to-be-filled patterns such as partial inner-instance

mask and cross-instance mask. Moreover, as shown in Sec-

tion 4.3, RegionMask is able to flexibly cope with different

amounts of annotation by adjusting the region size.

3.3. Contextual Masked Training Method
In this section, we introduce our contextual masked

training method for learning the contextual information be-

tween the masked and unmasked data. We first consider the

mask operation as a “strong augmentation” and incorporate

it directly into the consistency-based training framework.

However, as shown in Figure 4, the training cross-entropy

error significantly increases and the performance drops con-

siderably. These results indicate that the input distribution is

significantly altered by the mask operation, which impedes

learning from limited but valuable labeled points.

Training objective. Taking both the learning from lim-

ited labeled data and the learning of contextual informa-

tion into account, we propose to add an extra branch to per-

form the masked features prediction task while leaving the

two weakly-supervised branches untouched. To be specific,

given a weakly-labeled point cloud data (P,Y), we ob-

tain two point clouds P1,P2 by two random augmentations

and the masked version Pm by the proposed RegionMask.

Then, we extract their corresponding features Z1,Z2,Zm

with the segmentation model Softmax
(
fθ(·)

)
. Last, the

overall training objective for our contextual masked train-

ing is as follows

LCPCM = Lseg + αLconsis + βLmask, (8)
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Method Setting mIoU (%) ceiling floor wall beam column window door chair table bookcase sofa board clutter

MinkNet∗ [3]

Fully

68.2 91.7 98.7 83.8 0.0 24.7 56.8 72.1 91.5 83.5 73.3 70.8 81.3 58.4

PointNet [31] 41.1 88.8 97.3 69.8 0.1 4.0 46.3 10.8 58.9 52.6 5.9 40.3 26.4 33.2

KPConv [40] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9

RandLA-Net [10] 62.4 91.2 95.7 80.1 0.0 25.2 62.3 47.4 75.8 83.2 60.8 70.8 65.2 54.0

RFCR [5] 68.7 94.2 98.3 84.3 0.0 28.5 62.4 71.2 92.0 82.6 76.1 71.1 71.6 61.3

Π Model [12]

10%

46.3 91.8 97.1 73.8 0.0 5.1 42.0 19.6 66.7 67.2 19.1 47.9 30.6 41.3

MT [38] 47.9 92.2 96.8 74.1 0.0 10.4 46.2 17.7 67.0 70.7 24.4 50.2 30.7 42.2

10×Fewer [48] 48.0 90.9 97.3 74.8 0.0 8.4 49.3 27.3 69.0 71.7 16.5 53.2 23.3 42.8

SPT [52]

1%

61.8 91.5 96.9 80.6 0.0 18.2 58.1 47.2 75.8 85.7 65.3 68.9 65.0 50.2

PSD [53] 63.5 92.3 97.7 80.7 0.0 27.8 56.2 62.5 78.7 84.1 63.1 70.4 58.9 53.2

HybridCR [16] 65.3 92.5 93.9 82.6 0.0 24.2 64.4 63.2 78.3 81.7 69.0 74.4 68.2 56.5

Π Model [12]

0.2%

44.3 89.1 97.0 71.5 0.0 3.6 43.2 27.4 62.1 63.1 14.7 43.7 24.0 36.7

MT [38] 44.4 88.9 96.8 70.1 0.1 3.0 44.3 28.8 63.6 63.7 15.5 43.7 23.0 35.8

10×Fewer [48] 44.5 90.1 97.1 71.9 0.0 1.9 47.2 29.3 62.9 64.0 15.9 42.2 18.9 37.5

SQN [9]
0.1%

61.4 91.7 95.6 78.7 0.0 24.2 55.9 63.1 62.9 70.5 67.8 60.7 56.1 50.6

CPCM (Ours) 66.3 (+4.9) 91.4 95.5 82.0 0.0 30.8 54.1 70.1 87.6 79.4 70.0 67.0 77.8 56.6
PSD [53]

0.03%
48.2 87.9 96.0 62.1 0.0 20.6 49.3 40.9 55.1 61.9 43.9 50.7 27.3 31.1

HybridCR [16] 51.5 85.4 91.9 65.9 0.0 18.0 51.4 34.2 63.8 78.3 52.4 59.6 29.9 39.0

MIL [49]

0.02%

51.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MIL∗ [49] 52.1 89.2 95.5 74.8 0.2 19.2 41.1 23.1 76.3 64.7 62.6 27.8 57.8 44.8

CPCM (Ours) 62.3 (+10.2) 92.6 95.6 79.4 0.0 17.8 49.3 59.4 85.7 75.6 69.1 60.7 68.2 55.8

Table 1: Comparisons with state-of-the-art methods on S3DIS area5 test set. ∗ denotes results based on our reimplementation.

where β is a hyper-parameter to control the optimization

strength of contextual masked learning and Lmask is our

masked consistency loss introduced below.

Masked consistency loss. We seek to learn contextual in-

formation through masked and unmasked features. To this

end, we propose to minimize the distribution gap between

masked and unmasked features. In this way, the model

shall learn to leverage the unmasked part in the masked

point cloud i.e., the surrounding context, thereby improving

segmentation performance. Specifically, with the features

Z1,Z2,Zm respectively extracted from the two randomly

augmented and the masked point clouds, we introduce our

masked consistency loss as follows:

Lmask =
1

N

∑

n

JS
(
Z1[n],Zm[n]

)
+JS

(
Z2[n],Zm[n]

)
, (9)

where the unmasked features Z1,Z2 are considered as the

“ground truth” and we detach the gradients of Z1,Z2 during

masked consistency loss calculation.

4. Experiments
Datasets. We consider two benchmark datasets ScanNet

V2 [4] and S3DIS [1]. ScanNet V2 has 20 semantic classes

and the number of training / validation / testing scans is

1,201 / 312 / 100 respectively. We evaluate our model on

both val and online test set following [9, 16, 49]. S3DIS,

a large-scale point cloud dataset, contains 6 areas with 271

rooms and 13 semantic categories. We adopt the widely-

used area5 test set [48, 53] for evaluation, where the number

of training and testing scans is 204 and 68, respectively.

Implementation details. We implement our method using

MinkowskiEngine [3], a sparse convolution library based

on PyTorch [29], as done in previous works [9, 49]. As

for the model architecture, we adopt the 34-layer Sparse

Residual U-Net [36] following previous works [8, 45].

For evaluation, we use the class-wise Intersection over

Union (IoU) and mean IoU (mIoU) metrics. For opti-

mization, we employ the SGD optimizer with lr = 1e−2,

weight decay = 1e−3, the polynomial learning rate sched-

uler with decay rate = 0.9 and set the batch size to 2

and 4 for ScanNet V2 and S3DIS, respectively. During

training, the voxel size is set to 2cm and 5cm for Scan-

Net V2 and S3DIS, respectively. All models are trained

for 180 epochs. We choose JS-divergence as our consis-

tency loss [53]. We refer to the annotation ratio < 0.1%
(including 20 points on ScanNet V2) as the extreme-limited

annotations and ≥ 0.1% as the limited annotations. As

for the region size G and mask ratio R in RegionMask,

we set the mask ratio R = 0.75 and set G = 8 and

= 4 for the extreme-limited and limited annotations, respec-

tively. As for (α, β) in LCPCM, we set (α, β) = (5, 10) and

= (1, 5) for the extreme-limited and limited annotations,

respectively.5 All experiments are conducted on 2 and 1

TITAN 3090 GPU(s) for ScanNet V2 and S3DIS, respec-

tively. Our source code is publicly available at https:
//github.com/lizhaoliu-Lec/CPCM.

4.1. Comparison with State-of-the-arts
Quantitative results on S3DIS. We provide the quantita-

tive results on S3DIS in Table 1. For fair comparisons,

our approach is evaluated under the same settings used by

prior works i.e., the annotation ratio being 0.2%, 0.1%, and

0.02%. The proposed CPCM consistently outperforms the

previous state-of-the-art across different annotation ratios,

often by a large margin. To be specific, CPCM outperforms

SQN by 4.9% under the 0.1% setting and beats MIL by

10.2% under the extreme-limited annotation setting 0.02%.

Notably, our CPCM trained by 0.1% label is able to sur-

5Analysis on hyper-parameters α, β are put in the supplementary.
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Method Setting Val Test

PointNet++ [32]

Fully

N/A 33.9

KPConv [40] N/A 68.4

MinkNet [3] 72.9 73.6

MPRM [42]

Scene

21.9 N/A

WYPR [33] 29.6 24.0

MIL [49] 26.2 N/A

MPRM [42]
Subcloud

43.2 41.1

MIL [49] 47.4 45.8

SPT [52]

1%

N/A 51.1

PSD [53] N/A 54.7

HybridCR [16] 56.9 56.8

SQN [9]
0.1%

58.4 56.9

CPCM (Ours) 63.8 (+5.4) 62.5 (+5.6)

WYPR [33]

20 pts

51.5 N/A

OTOC† [25] 55.1 N/A

MIL [49] 57.8 54.4

CPCM (Ours) 62.7 (+4.9) 62.8 (+8.4)

Table 2: Comparisons with state-of-the-art methods on

ScanNet V2. † indicates results reproduced by MIL [49].

pass the HybridCR trained by 1% label. By diving into

per-class mIoU, we observe that our CPCM performs well

in relatively small instance categories in a scene such as

“chair”, “table”, and “sofa” that tend to be misclassified,

which cannot be accomplished without effectively under-

standing the scene context. Moreover, with 0.1% annota-

tions only, CPCM achieves competitive performance to the

fully supervised MinkNet (66.3 vs. 68.2), closing the gap

between fully and weakly supervised methods.

Quantitative results on ScanNet V2. We evaluate our ap-

proach under 0.1% and 20 points (pts) settings on ScanNet

V2 and the quantitative results are shown in Table 2. Al-

though the amount of annotation is very limited, the pro-

posed CPCM provides substantial improvements over prior

SoTAs. Specifically, on the validation set, CPCM leads

SQN by 5.4% under the 0.1% setting and MIL by 4.9%
under the 20 pts setting. Moreover, on the private test set,

CPCM still leads SQN and MIL by 5.6% and 8.4% respec-

tively, showing the strong generalization ability of CPCM.

4.2. Ablation Analysis on CPCM
Comparisons to baselines. Since our implementation is

based on the fully-supervised MinkNet and the weakly-

supervised consis-based method, we directly compare them

to investigate the effectiveness of CPCM. The results are

shown in Table 3. MinkNet performs decently with 0.1%

annotation ratio but suffers from extreme-limited annota-

tion 0.01%. The consis-based method delivers noticeable

improvements on both datasets for all settings, showing that

it is a strong baseline. Unsurprisingly, the proposed CPCM

completely beats the MinkNet and the consis-based base-

line, often by a large margin. Notably, when it comes to

the extreme-limited 0.01% setting, CPCM boosts the per-

formance of MinkNet by 14.6% and 11.6% on ScanNet V2

and S3DIS, respectively. These results demonstrate the ad-

vantage of CPCM that effectively comprehends the scene

Method Lconsis Lmask
ScanNet V2 S3DIS

0.01% 0.1% 0.01% 0.1%

MinkNet � � 37.6 60.3 47.7 62.9

Consis-based � � 44.2 (+6.6) 61.8 (+1.5) 52.9 (+5.2) 64.9 (+2.0)

CPCM (Ours) � � 52.2 (+14.6) 63.8 (+3.5) 59.3 (+11.6) 66.3 (+3.4)

Table 3: Comparisons with two strong baselines: fully-
supervised method MinkNet trained on weakly-annotated

labels and the weakly-supervised consis-based method.

context over the strong consis-based baseline.

Masking Strategy
ScanNet V2 (0.01%) S3DIS (0.01%)

0.15 0.75 0.15 0.75

Consis-based 44.2 52.9

PointMask 42.3 (-1.9) 48.2 (+4.0) 52.3 (-0.6) 55.1 (+2.2)

RegionMask (Ours) 46.5 (+2.3) 52.2 (+8.0) 55.8 (+2.9) 59.3 (+6.4)

Table 4: Ablation studies on different masking strategies.

The contextual masked training modeling scheme is em-

ployed. Otherwise, all masking strategies show degenerated

performance compared to the consis-based baseline.

Region masking. Since random point masking is a com-

mon solution in masked vision modeling and has recently

been applied to unsupervised point cloud data learning [26].

We investigate the behavior of PointMask under both low

and high mask ratios and the results are put in Table 4. On

one hand, when the mask ratio is low (0.15), PointMask

performs even slightly worse than the consis-based baseline

while the proposed RegionMask boosts the performance by

2.3% and 2.9% on the ScanNet V2 and S3DIS, respectively.

On the other hand, when the mask ratio is high (0.75),

RegionMask considerably improves the performance while

PointMask brings only a relatively marginal boost. We con-

clude that RegionMask is able to mask more meaningful vi-

sual words than PointMask under both low and high mask

ratios, paving the path of promising masked vision model-

ing for weakly-supervised point cloud segmentation.
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Figure 4: Evolution of training cross-entropy (CE) error and

test mIoU w.r.t. training epochs on S3DIS (0.01%).

Contextual masked training. We investigate the effective-

ness of the proposed contextual masked training (CMT) by

removing the masking stream, resulting in a consistency-

based framework with a “masking augmentation”. As

shown in Figure 4, the training cross-entropy error dras-

tically increases without CMT, which indicates simply in-
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corporating “masking augmentation” hampers the learning

of limited but valuable labeled data. With CMT, the seg-

mentation model shows low training cross-entropy error as

well as high test mIoU. Moreover, we also put the quan-

titative results in Table 5 and observe a noticeable per-

formance drop when discarding CMT. Then, with CMT,

CPCM achieves substantial improvements over the consis-

based baseline. These results verify that CPCM facilitates

the learning of valuable annotation but also rich context in-

formation, achieving substantial improvements.

RM CMT
ScanNet V2 S3DIS

0.01% 0.1% 0.01% 0.1%

� � 44.2 61.8 52.9 64.9

� � 41.6 (-2.6) 58.6 (-3.2) 51.1 (-1.8) 63.6 (-1.3)

� � 52.2 (+6.7) 63.8 (+2.0) 59.3 (+6.4) 66.3 (+1.4)

Table 5: Ablation studies on our contextual masked training

scheme. RM and CMT are short for RegionMask strategy

and contextual masked training, respectively.
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(a) Effect of region size.
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(b) Effect of mask ratio.

Figure 5: Further analysis on the proposed CPCM. (a) We

investigate the effect of region size on S3DIS under 0.01%

and 0.1% settings. (b) We investigate the effect of mask

ratio on S3DIS and ScanNet V2 under the 0.01% setting.

4.3. Further Analysis on CPCM

Region size. As the region size increases, the task of con-

textual information comprehension becomes easier since

the masked region to predict becomes smaller. Therefore,

we are able to control the difficulty of the context compre-

hension task by varying the region size. With less annota-

tion, we may set the masked features prediction task easier.

In Figure 5a, the optimal region size becomes smaller when

the annotation ratio goes up i.e., 8 for 0.01% and 4 for 0.1%,

which verifies the flexibility of the proposed RegionMask

strategy for handling different annotation ratios.

Mask ratio. More meaningful visual context will be cov-

ered as the mask ratio grows. As shown in Figure 5b, the

segmentation performance is constantly boosted by a larger

mask ratio up to 0.75, showing the strong potential of our

CPCM to effectively explore the scene context. The optimal

mask ratio is 0.75 and exceeds which the masked context

prediction task becomes too hard to achieve the best result.

6More qualitative results can be found in the supplementary.

Figure 6: Qualitative comparison between the consis-based

method and our CPCM on the ScanNet V2 and S3DIS.6

Qualitative results. To intuitively understand our CPCM’s

ability to effectively comprehend contextual information,

we provide visual comparison results in Figure 6. We first

observe that CPCM shows advantages in understanding se-

mantic categories with diverse appearances (sofa, row 1)

and covering geometrically large objects (curtain and bed,

row 2). Moreover, we recognize that CPCM does an ex-

cellent job at distinguishing both geometric and appearance

similar categories (door and wall, row 3) and objects with

complex structures (window, row 4).

5. Conclusion
In this work, we study the learning of contextual infor-

mation in the weakly-supervised point-cloud segmentation

task which is not well-explored by existing methods. To

this end, we proposed CPCM to model the contextual re-

lationship among mass unlabeled points by enforcing the

masked feature consistency. We first introduce a region-

wise masking strategy to effectively and flexibly mask the

point cloud to produce context-to-be-filled data for subse-

quent learning. Then, we proposed a contextual masked

training method to help the model capture contextual infor-

mation from both limited labeled data and the masked fea-

tures prediction task. Extensive experiments on the weakly-

supervised point cloud segmentation benchmarks show the

superior performance of our method. In the future, we will

further explore the masked modeling scheme in the weakly-

supervised point cloud detection and instance segmentation.
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