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Abstract

Visual grounding aims at localizing the target object in
image which is most related to the given free-form nat-
ural language query. As labeling the position of target
object is labor-intensive, the weakly supervised methods,
where only image-sentence annotations are required during
model training have recently received increasing attention.
Most of the existing weakly-supervised methods first gen-
erate region proposals via pre-trained object detectors and
then employ either cross-modal similarity score or recon-
struction loss as the criteria to select proposal from them.
However, due to the cross-modal heterogeneous gap, these
method often suffer from high confidence spurious associa-
tion and model prone to error propagation. In this paper, we
propose Confidence-aware Pseudo-label Learning (CPL) to
overcome the above limitations. Specifically, we first adopt
both the uni-modal and cross-modal pre-trained models and
propose conditional prompt engineering to automatically
generate multiple ‘descriptive, realistic and diverse’ pseudo
language queries for each region proposal, and then es-
tablish reliable cross-modal association for model training
based on the uni-modal similarity score (between pseudo
and real text queries). Secondly, we propose a confidence-
aware pseudo label verification module which reduces the
amount of noise encountered in the training process and the
risk of error propagation. Experiments on five widely used
datasets validate the efficacy of our proposed components
and demonstrate state-of-the-art performance. Code can be
found at https://github.com/zjh31/CPL.git

1. Introduction
Visual grounding is an important task with vast poten-

tial applications in visual question answering [1], robot ma-
nipulation [38, 51], etc. The goal is to find the target ob-
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Figure 1. Our method compare with other weakly supervised vi-
sual grounding methods. (a) Existing weakly supervised methods.
(b) Our approach.

ject (region) in an image associated with a given free-form
natural language query. Fully supervised visual ground-
ing [6, 42, 43, 46, 48, 15, 21] has witnessed remarkable
progress recently. However, accurate box annotations for
each target object are unfortunately expensive to obtain and
thus difficult to scale. Therefore the weakly supervised set-
ting, where only image-level descriptions are available dur-
ing training, is more practical and draws increasing atten-
tion from the community.

Most existing weakly supervised solutions generate re-
gion proposals via pre-trained object detectors and then em-
ploy either the contrastive learning-based or reconstruction-
based paradigms to select from them. As shown in Fig-
ure 1(a), the proposal selection is conducted based on the
cross-modal (region-textual) (directly compute the match-
ing score between the proposal and query). Specifically,
contrastive learning-based methods learn the cross-modal
alignment in the image level by maximizing the matching
scores of the image and the paired descriptions while sup-
pressing that of the unpaired ones. Reconstruction-based
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methods perform the proposal selection with the cross-
modal reconstruction loss, assuming that the proposals that
match the text should best reconstruct the entire query.

However, both paradigms have the following two limi-
tations. Firstly, due to the heterogeneous gap between the
high-level concepts of text descriptions and the pixel-level
contents of the image region, using cross-modal matching
score or reconstruction query directly for proposal selection
is not reliable. Such matching ambiguity often misleads
the grounding model to learn spurious association, which
greatly hinders the grounding performance. Secondly, ex-
isting approaches are trapped by the error propagation and
accumulation as they neglect the confidence of the learned
cross-modal association and unavoidably keep overfitting to
some incorrect ones encountered during the model training.
A recent work [13] proposes generating pseudo queries for
proposals in an unsupervised method and using them for
training a grounding model directly. However, it can only
generate short and unreliable descriptions with limited style
and structure based on hand-crafted templates.

To address the above limitations, we introduce a novel
weakly supervised method for visual grounding by us-
ing more reliable uni-modal matching for proposal selec-
tion and perform association verification before leverag-
ing them in model training. We call it Confidence-aware
Pseudo-label Learning (CPL). Firstly, to establish more re-
liable region-text association for model training, we pro-
pose to use three complementary pipeline to automati-
cally generate multiple ‘descriptive, realistic and diverse’
pseudo language queries for each region proposal and form
<Region − PseudoQuery> pairs. As shown in Figure
1(b), our method then perform proposal selection based
on the uni-modal similarity score (between real query and
pseudo queries) and form <Region−RealQuery> pairs.
All region-query pairs are used to train a fully-supervised
grounding model. To reduce the contribution of error
region-query pairs, we propose an confidence-aware cross-
modal verification module that estimates the confidence
score of the region-query associations. We propose a se-
lective grounding loss based on the confidence score to re-
balance the weight of each sample in the training process.

To sum up, the main contributions of our work are:

• In contrast to performing proposal selection based on
cross-modal matching scores, we propose to generate
multiple ‘descriptive, realistic and diverse’ pseudo lan-
guage queries for each region proposal, and then estab-
lish more reliable cross-modal association for model
training based on the uni-modal similarity (between
pseudo and real text queries).

• We propose a confidence-aware cross-modal verifica-
tion module and selective grounding loss to suppress
the contribution of spurious association, which reduces

the risk of error propagation in the training process.

• Experiments on the RefCOCO [47], RefCOCO+ [47],
RefCOCOg [25], ReferItGame [14] and Fliker30K
Entities[28] datasets demonstrate the effectiveness of
our method in weakly supervised visual grounding.

2. Related Work

2.1. Fully supervised Visual Grounding

Recent advances in visual grounding can be roughly
divided into two categories, including two-stage methods
[10, 11, 21, 37, 38, 41, 46, 52, 49] and one-stage methods
[43, 3, 20, 42, 12]. Two-stage approaches generate a set of
candidate objects from images by leveraging uni-modal pre-
trained models (i.e., off-the-shelf detectors [49]) in the first
stage, then compute the matching scores between the can-
didate objects and referring expression and select the top-
ranked one. One-stage methods localize referred objects
without generating object proposals in advance. Instead
of generating proposals, the visual feature is densely fused
with the text feature, and the language-fused feature map
is further leveraged to predict the final bounding box. Re-
cently, transformer-based methods [6, 40] achieve remark-
able results. Transformer-based methods take the visual and
linguistic feature tokens as inputs, then input them into a set
of transformer encoder layers to perform cross-modal fu-
sion and predict the target region directly. However, fully
supervised methods need laborious manual annotation of
target object bounding box in model training thus limiting
its scalability and practicability.

2.2. Weakly-supervised Visual Grounding

Different from fully supervised methods, the weakly-
supervised aims to learn region-query correspondence with
only image-query pairs. Most works employ contrastive
learning [36, 9] and reconstruction strategies [22, 23, 33,
31, 2, 24] for the weakly-supervised visual grounding task.

The reconstruction strategies usually generate a set of re-
gion proposals from an image with an external object detec-
tor, and reconstruct the entire query with the selected pro-
posal. Contrastive learning strategy maximize compatibility
of the attention-weighted regions and the query in the cor-
responding caption, compared to non-corresponding pairs
of images and expression. However, all paradigms ignore
the heterogeneous gap between the textual descriptions and
image regions, and these methods implicitly align language
and visual space in the training process, which makes cross-
modal matching scores or proposal reconstruction quality
unreliable. Besides, these methods do not take the the prob-
lem of error-propagation into account because some queries
do not have corresponding proposals due to limitations in
the number and quality of proposals.
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Recently, Pseudo-Q [13] proposes a novel unsupervised
method which produces pseudo region-query pairs based
on rule-based template for supervised training, in which
pseudo query is less realistic. However, Pseudo-Q ignores
the distribution shift between the pseudo and real queries
and also does not take the problem of incorrect queries
which harms final performance. Different from it, we pro-
pose three complementary pipeline to generate ‘descriptive,
realistic and diverse’ pseudo language query for each region
proposal and a confidence-aware pseudo label verification
module to surpass the contribution of error association in
the training process.

2.3. Pre-trained Models

Uni-modal pre-trained models have witnessed remark-
able progress in vision understanding and natural language
understanding tasks. Most of the existing visual ground-
ing methods leverage the Uni-modal pre-trained models
(e.g., off-the-shelf detectors [30, 26], sentence encoders
[7]). However, in principle, the uni-modal pretraining is
sub-optimal for visual grounding tasks as it requires cross-
modal region-text semantic alignment.

Vision and language cross-modal pre-training [34, 4, 19,
29, 18, 17, 39] aims to learn multi-modal representations
from large-scale image-text pairs to improve downstream
vision and language tasks. CLIP [29] uses a separate im-
age and text transformer and a contrastive pre-training ob-
jective. BLIP [17] establishes a unified understanding and
generation of multi-modal models based on transformers.
However, most existing cross-modal models are pretrained
from image-text pair without any box-wise region-text pair
annotation, thus lacking region-level grounding capability.
Recently, a zero-shot approach ReCLIP [32] utilizes the dis-
criminative capability of the cross-modal pre-trained model
and simple rules with respect to spatial relation for visual
grounding. However, the proposal selection still suffers
from the spurious association due to the cross-modal het-
erogeneous gap. In contrast, to the best of our knowledge,
we are the first to utilize both the discriminative and gener-
ative capability of the pre-trained model for visual ground-
ing. We propose conditional prompt learning to obtain
the object-centric and relation-aware region-level pseudo
queries and then perform proposal selection based on the
uni-modal similarity score. We also propose a confidence-
aware pseudo-label verification module to reduce the risk of
error propagation.

3. Method
3.1. Problem Formulation

Given a paired image and natural language query {I, t} ,
by using the detectors to extract some salient regions as the
proposals, our objective is to find the target region (object)

in image I that is most aligned with query t in semantic.
Although image-query pairs are available in training, there
is no access to the ground-truth box annotations for the tar-
get object. We propose a Confidence-aware Pseudo-label
Learning (CPL) framework for this task, as shown in Fig-
ure 2. It consists of four main stages: Pseudo-Query Gener-
ation, Uni-modal real query propagation, Cross-modal ver-
ification and Grounding model training. We discuss each of
these stages and their interactions in the following.

3.2. Pseudo-Query Generation

In this section, the ultimate goal is to form multiple ‘de-
scriptive, realistic and diverse’ high-quality <Region −
PseudoQuery> pairs, which can be safely leveraged in
later grounding model training. ’Descriptive’ means that
the query is highly correlated with the image to avoid er-
rors; ’diversity’ means that the generated text is as different
as possible to increase the robustness of the model; ’realis-
tic’ means that the generated query is as syntactic as possi-
ble, so as to be closer to the real query and avoid distribution
drift. Therefore, we propose three complementary pipelines
to generate multiple ‘descriptive, realistic and diverse’ plau-
sible pseudo language queries for each region proposal. As
shown in Figure 2, the pij represents j-th pseudo query gen-
erated by i-th proposal. The three pseudo-query Generation
pipelines are described as follows.

(1) Heuristic+ pipeline
A recent work [13] first proposes to generate pseudo

queries for training the grounding model directly. How-
ever, it can only generate short descriptions with limited
style and structure and also neglects the distribution shift
between the pseudo-queries and the real queries. To ad-
dress the above limitations, we propose the first pipeline:
Heuristic+, which consist of a series of technical improve-
ment to the model of [13].

Specifically, for Nouns, to minimize the influence of the
pseudo and real queries distribution shift, different from
[13] that select top-N objects with the highest confidence
score of the off-the-shelf object detector, we propose to re-
move the candidate regions (outliers) which the semantic
is far away from the vocabulary in the real queries. For
Attributes, to make pseudo query more descriptive, differ-
ent from [13] that neglect tiny object, we treat some tiny
object oi as the attribute of the bigger object oj if the ra-
tio between the area of the intersection of boxes i, j com-
pared to the area of box i is above a threshold. For ex-
ample, we assign ”black hair” as attributes for the left per-
son in Fig 2. For Spatial Relationship, we observe that
there are around 80% images containing more than two
instances from the same category; different from [13] de-
scribing a simple pair-wise relationship, we add some com-
pound words (e.g, left top, right bottom), ordinal numbers
(e.g, leftmost, second right) by comparing relative coordi-
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Real-query: man in 
blue shirt

Relation-aware 𝑝!": right man talks to another man

Object-centric 𝑝!!: man is holding a phone

Heuristic+ 𝑝!#: right man  

Relation-aware 𝑝#": left man listens to another man 

Object-centric  𝑝#!: man is wearing a blue t-shirt

Heuristic+ 𝑝##: left black hair man 

① Pseudo-query Generation

𝑟"

𝑟#

②Real Query Propagation

<Real-query, 𝑟#> 

< 𝑝##, 𝑟#>
< 𝑝#!, 𝑟#>
< 𝑝#", 𝑟#> 

< 𝑝!#, 𝑟!>
< 𝑝!!, 𝑟!>
< 𝑝!", 𝑟!> 

③ Cross-Modal verification

< 𝑝##, 𝑟#, 𝑐#>
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④ Grounding Module
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Figure 2. Overview of our CPL method. Our approach consists of a pseudo query generation module, a uni-modal real query propagation
module, a cross-modal verification module and a grounding module. The pseudo query generation module generates multiple <Region−
PseudoQuery> associations through three pipelines for each proposal, the pij represents the j-th pseudo query generated by proposal ri.
Then the uni-modal real query propagation selects proposal based on the uni-modal similarity between pseudo and real query, and establish
<Region − RealQuery> association. Cross-modal verification module calculate the confident score ci of all region-query association
before leveraging them to train the grounding module. The grounding module trains on region-query pairs.

Figure 3. Conditional Prompt Learning.

nates with multiple boxes to make the description more ac-
curate.

However, even with the above modifications, Heuristic+
still suffers from the short description with limited style,
which looks unreal and lacks diversity.

(2) Object-Centric pipeline
We draw inspiration from the work of BLIP [17] that

achieves strong performance on both understanding and
generation tasks. In this work, to address the problem suf-
fered in the Uni-modal Heuristic+, we propose the second
pipeline that leverages pretrained Cross-modal Model to
generate pseudo queries, named Object-Centric. Specif-
ically, we propose to crop individual proposals and feed-
forward them to the pretrained cross-modal models to gen-
erate multiple object-centric free-form natural language
queries for each image region (proposal). To make the gen-

erated description more object-centric, we propose condi-
tional prompt learning. The key idea is to make a prompt
conditioned on the uni-modal knowledge captured for each
region, rather than a fixed one for all regions. We use the
pre-prompt template ‘object name {}’ and ‘object name is
{}’ to the decoder and ask the BLIP model to complete the
missing part of the sentence. As shown at the top of Figure
3, the former pre-prompt style focuses more on the attribute
of the given object, and the latter leans towards describing
the action. Such design can guide the model to generate
descriptions based on the prior knowledge given in the pre-
prompt (captured from the uni-modal knowledge).

However, this object-centric pipeline cannot perform re-
lationship reasoning among multiple objects.

(3) Relation-aware pipeline
To make the model capable of generating relation-

aware description, we propose the third pipeline that feed-
forward the holistic image to the pretrained cross-modal
models to generate multiple free-form natural language
queries, named Relation-Aware. As an image contains
many salient regions (concepts) and multiple levels of de-
tails, this generation pipeline can generate a variety of
captions that express different concepts and details. The
challenge in this generation pipeline is that due to the de-
coder now having a full receptive field of the full im-
age, the generated description might suffer referring am-
biguity. To alleviate the problem mentioned above and
make the generated description more region-sensitive and
relation-aware, we combined the object name and its cor-
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responding spatial relationship to form the pre-prompt tem-
plate so as to guide the decoder to complete the missing
part of the sentence. It is worth noting that such region-
conditional pre-prompt is not only depending on the ob-
ject name captured from the uni-modal pretrained model,
but also on their spatial relationship. For example, as
shown in Figure 3, we can input the whole image and the
prompt ”left man is” into BLIP to generate a pseudo-query:
”left man is listening to another man”. It is worth noting
that this generation pipeline allows the model not only to
describe the spatial relationship among different instances
but also to deal with other relationships, i.e., human-object
interact, human-human interaction, etc., thus further boost-
ing the diversity of the generated pseudo queries.

Note that the cross-modal model is pretrained on image-
text pairs (without any box-wise region-text annotation), the
generated <Region − PseudoQuery> pair in this way
might still contain some spurious association, we propose
a verification model later to address this issue.

3.3. Uni-Modal Real Query Propagation

Most of the existing weakly supervised grounding meth-
ods first generate region proposals via pre-trained object de-
tectors and then employ either cross-modal similarity score
or reconstruction loss as the criteria to implicitly select pro-
posals from them. In contrast, we propose to explicitly cal-
culate the uni-modal similarity score between the real and
pseudo query, and propagate the box of the top-1 most simi-
lar pseudo query to the real query to form new training sam-
ples. In principle, the better the quality and coverage of the
generated pseudo queries is, the higher chance we could es-
tablish more reliable < Region-RealQuery > associations.
The Uni-Modal Real Query propagation is shown as:

ri = argmax
i

Sim(t, pij),∀i, j (1)

where ri denotes the ith proposal of image, t is the real
query, pi,j represents the jth pseudo query generated for
the ith proposal. Sim(·) represents the similarity function
as:

Sim(t, pij) =
ϕ(t)ϕ(pi,j)

|ϕ(t)||ϕ(pi,j)|
(2)

where ϕ(·) represents the function to transform the queries
to its semantic text embedding. In principle, we can use any
off-the-shelf pre-trained text embedding,i.e.,word2vec [5] ,
glove [27], bert [7], etc. In this paper, we use word2vec in
all following experiments unless otherwise specified.

3.4. Cross-Modal Verification Module

Since some pseudo queries generated by the unimodal
model are not realistic and the cross-modal pretrained
model generate incorrect pseudo queries, we propose a

confidence-aware cross-modal verification module to ver-
ify the quality of the <Region − PseudoQuery> as-
sociation (obtained from Pseudo-Query Generation) and
<Region − RealQuery>association (obtained from Uni-
Modal Real Query propagation) before leveraging them to
train the grounding module.

Specifically, we propose to use image-text matching
module BLIP model (pretrained with Image-Text Con-
trastive Loss or Image-Text Matching Loss) to estimate the
confidence score ci of the ith learned association. Based
on the confidence score, we can filter and remove spurious
association where the paired pseudo or real queries do not
accurately describe the corresponding proposal of the im-
ages.

3.5. Grounding Module and Training

We finally use both the <Region−PseudoQuery> as-
sociation pair and <Region−RealQuery>association to
train a fully-supervised grounding module. We follow the
design of previous work [13], which uses a simple stack
of transformer encoder layers (consists of a visual encoder,
language encoder, a cross-modal fusion module and a re-
gression head) and formulate the grounding task to a co-
ordinate regression problem. The grounding module takes
image and query as input and output the bounding box
bi = (x̂i, ŷi, ŵi, ĥi). the training objective of the ith sample
is:

Li = Lsmooth−L1(bi, b̂i) + Lgiou(bi, b̂i) (3)

where bi = (xi, yi, wi, hi) is the normalised ground truth
box, Lsmooth−L1 and Lgiou are the smooth L1 loss and
GIoU loss.

We propose a selective grounding loss L based on the
confidence weight to help model distinguish between clean
and noisy samples as shown in:

L =
∑
i∈D

[
αi∑

j∈D αj
]Li, (4)

with

αi =

{
0 ci < τ
ci ci ≥ τ

(5)

where D ∈ 1, ..., N indexes the subset of non-zero ele-
ments of α. Please note again that the confidence score ci is
predicted from the cross-modal verification module (image-
text matching score). We set the weight αi to 0 if the confi-
dence score is below the threshold τ to remove the noisy or
incorrect association. Then re-normalize the remaining ver-
ified association by re-normalizing the remaining weights to
sum to one (practically conducted in a batch manner). The
selective grounding loss highlights the reliable association
while suppressing the spurious ones during training. This
enables the model to avoid overfitting to some incorrect as-
sociation (error accumulation).
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4. Experiment
4.1. Datasets

RefCOCO/RefCOCO+/RefCOCOg: RefCOCO [47], Re-
fCOCO+ [47] and RefCOCOg [25] are collected from
MSCOCO. RefCOCO [47] contains 19,994 images with
142,210 referring expressions for 50,000 referred objects.
RefCOCO+ [47] contains 19,992 images with 49,856 re-
ferred objects and 141,564 referring expressions. Ref-
COCOg [25] has 25,799 images with 95,010 referring ex-
pressions for 49,856 referred objects. Following previous
visual grounding methods [13, 6], we report the perfor-
mance on the validation, testA and testB splits for Ref-
COCO and RefCOCO+, validation split for RefCOCOg-
google, validation and test splits for RefCOCOg-umd.
ReferItGame: ReferItGame contains 20,000 images col-
lected from the SAIAPR-12 dataset [8]. We follow the pre-
vious works [40, 6] to split the dataset into three subsets,
including a train set (54,127 referring expressions), a valida-
tion set (5,842 referring expressions), and a test set (60,103
referring expressions).
Flickr30K Entities: Flickr30k Entities contains 31,783 im-
ages with 427k referred expressions. We follow the same
split as in works [6, 40] for train, validation and test.

4.2. Implementation Details

For a fair comparison, we use an existing open-sourced
model pretrained on Visual Genome data [16] like other
papers. The cross-modal pretrained model BLIP used in
our paper is trained on image-query pairs instead of region-
query pairs, so the BLIP model itself is lack of region-level
grounding capability. we select top-10 objects according
to the detection confidence for the cross-modal pre-trained
model pipeline. For the uni-modal real query propagation
Module, we adopt the word2vec model (300-dim) with the
Google-News corpus. We follow the common practice in
[20, 42, 43] to perform data augmentation and model ini-
tial for model training. Our grounding model is optimized
end-to-end with the Adamw optimizer. The initial learn-
ing rate is set to 1 × 10−4 except 1 × 10−5 for the visual
and language encoder. All the datasets use cosine learning
rate schedule and our model is trained with 20 epochs in all
datasets.

4.3. Comparisons with State-of-the-art Methods

We show the top-1 accuracy (%) results following pre-
vious works [6, 13]. Once the Jaccard overlap between the
predicted region and the ground-truth box is above 0.5, the
prediction is regarded as a correct one.

In order to enable a fair comparison with different ex-
isting approaches, we conduct experiment by using uni-
modal pretrained model1 and cross-modal pretrained model

1For uni-model preatined model, we first generate pseudo language

respectively.
RefCOCO/RefCOCO+/RefCOCOg Our method’s per-

formances on RefCOCO, RefCOCO+ and RefCOCOg
datasets are reported in Table 1. Our method outperforms
other unsupervised and weakly supervised methods in all
partitions of the three datasets. Under the set-up of us-
ing unimodal pretrained model, our method can surpass
the best unsupervised method Pseudo-Q [13] by a remark-
able margin on all three datasets when only. Our method
significantly outperforms DTWREG which is the second
best weakly supervised method using uni-modal method
by more than 23.54%, 7.44%, 11.95% on RefCOCO, Ref-
COCO+, RefCOCOg, respectively. Under the set-up of us-
ing cross-modal pretrained model, compared with the sec-
ond best weakly supervised method ReCLIP, we can still
improve the performance by up to 28.48%, 8.24%, 1.11%
respectively on RefCOCO, RefCOCO+ and RefCOCOg.
These results validate the superiority of our method un-
der different settings. Also, our method performs better in
the cross-modal pre-trained model setting than in the uni-
modal pre-trained model setting on all three datasets. The
phenomenon shows the effective of cross-modal pre-trained
model. Finally, there is still a gap between our method and
fully-supervised method.

ReferItGame/Flickr30K Entities We also report exper-
imental performance under different setting and show the
comparisons with other existing visual grounding methods
on ReferItGame and Flickr30K Entities dataset in Table 2.
Notably, our method under uni-modal pre-trained model
setting achieve 44.07% and 62.96% accuracy which out-
performs unspervised method and other weakly supervised
method. The experimental results demonstrate the superi-
ority of our proposed method. Also, the performance of
method under cross-modal pre-trained model setting is also
better than the method under uni-modal pre-trained model
setting. Finally, we can observe that the performance of our
method is still far from fully supervised methods.

The performance of our model fine-tuned with a
small number of labeled samples: We fine-tuned our
model with a few labeled training samples. The results in
Table 3 show that using just 5% labeled training data nar-
rows the gap with the fully supervised method and even
surpasses it by 0.88% on the testA split. With 10% la-
beled data, our approach outperforms the fully supervised
approach.

4.4. Ablation Study

In this section, we empirically investigate how the per-
formance of the proposed method is affected by different

queries for each region proposal with only Heuristic+ Pipeline. And then
propagate the box of the most similar pseudo query to the real query. We
do not utilize the BLIP model or cross-model verification in this process to
enable a fair comparison.

2833



Method Sup. Pre-trained RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g val-u test-u

TransVG [6] Full Uni-modal 80.32 82.67 78.12 63.50 68.15 55.63 66.56 67.66 67.44
VLTVG [40] Uni-modal 84.53 87.69 79.22 73.60 78.37 64.53 72.53 74.90 73.88

CPT [44] No Uni-model 32.20 36.10 30.30 31.90 35.20 28.80 - 36.70 36.50
Pseudo-Q [13] 56.02 58.25 54.13 38.88 45.06 32.13 49.82 46.25 47.44

VC [49]

Weak Uni-modal

- 33.29 30.13 - 34.60 31.58 33.79 - -
ARN [22] 34.26 36.43 33.07 34.53 36.01 33.75 33.75 - -

KPRN [23] 35.04 34.74 36.98 35.96 35.24 36.96 33.56 - -
DTWREG [33] 39.21 41.14 37.72 39.18 40.10 38.08 43.24 - -

Ours 66.75 69.77 63.44 50.65 55.30 45.52 55.19 53.8 53.92
ReCLIP[32] Weak Cross-modal 45.78 46.10 47.07 47.87 50.10 45.10 - 59.33 59.01

Ours 70.67 74.58 67.19 51.81 58.34 46.17 57.04 60.21 60.12
Table 1. Comparison with state-of-the-art methods on RefCOCO [47], RefCOCO+ [47], and RefCOCOg [14] datasets in terms of top-1
accuracy (%). “Sup.” refers to supervision level: No(unsupervised), Weak(only annotated queries, no box provided) and Full(query-region
pairs). “Pre-trained” represents pre-trained model the method utilize. The first and second best results are highlighted in bold and underline
(excluding the fully supervised approaches), respectively.

Method Sup. Pre-trained ReferIt Flickr30K
PIN [15]

Full Uni-modal

59.13 72.83
DDPN [48] 63.00 73.30
FAOA [43] 60.67 68.71
RSC [42] 64.60 69.28

TransVG [6] 69.76 78.47
VLTVG [40] 71.60 79.18

UTG [45]
No Uni-modal

36.93 20.91
PLM[35] 26.48 50.49

Pseudo-Q [13] 43.32 60.41
KAC [2]

Weak Uni-modal

33.67 46.61
MATN [50] 33.10 13.61
ARN [22] 26.19 -

CLWPL [9] - 51.67
RIR[24] 37.68 59.27

CKD [36] 38.39 53.10
Ours 44.07 62.96
Ours Weak Cross-modal 45.23 63.87

Table 2. Comparison with state-of-the-art methods on Refer-
ItGame and Flickr30K Entities datasets in terms of top-1 accu-
racy (%). “Sup.” refers to supervision level: No(unsupervised),
Weak(only annotated queries, no box provided) and Full(query-
region pairs). “Pre-trained” represents pre-trained model the
method utilize. The first and second best results are highlighted
in bold and underline, respectively.

Number val testA testB
0% 50.65 55.33 45.52
5% 59.32 69.05 48.59

10% 64.76 70.93 55.91
TransVG 63.50 68.15 55.63

Table 3. Performance of model fine-tuned with different numbers
of fully annotated samples on RefCOCO+.

model settings on the RefCOCO+ dataset.
Network Components The method Pseudo-Q [13]

serves as a baseline in the comparison. As shown in Ta-
ble 4, the 5 different components of the proposed model all
boost recognition performance compared to the baseline.

Firstly, we observe that the heuristic+ pipeline improves
the performance compared with Pseudo-Q, which veri-
fies the effectiveness of our improvement over the original
heuristic method. Then adding object-centric and relation-
aware pipeline can boost the performance. The result can
demonstrate the effectiveness and compatibility of the three
pipeline. Also, it is observed that real query propagation
contributes to the most performance gain as an individ-
ual module under different settings. We attribute this im-
provement to that our method avoids the distribution shift
between the pseudo and real query. And the improve-
ment of the model performance by the Cross-modal veri-
fication module verifies that our method can suppress the
contribution of the spurious association in the training pro-
cess.An interesting observation is that the ’H+, O, R, Real-
query’ approach performs only slightly better than ”H+,
real-query”, sometimes even worse(on the testB split). We
conjecture the reason for this is that the BLIP model is
trained on image-text pairs without any region-text annota-
tion. This leads to the generation of some erroneous pairs,
which have a negative impact on the model’s overall perfor-
mance.

We also investigated the performance on visual ground-
ing tasks using only BLIP model. As shown in Table 5, we
can observe that the performance is poor, well below base-
line [13]. This is because the cross-modal model we use is
trained with image-text pairs instead of region-query pairs,
which makes it difficult to be utilized directly on the more
fine-grained visual grounding task.

Number of proposal The number of proposals is an im-
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H H+ O R Real-Query Verification Pre-trained val testA testB
✓ Uni-modal 38.88 45.06 32.13

✓ Uni-modal 40.36(↑ 1.48) 45.28(↑ 0.22) 34.83 (↑ 2.70)
✓ ✓ Uni-modal 50.65(↑ 11.77) 55.30(↑ 10.24) 45.52 (↑ 13.39)
✓ ✓ Cross-modal 42.21 (↑ 3.33) 45.62(↑ 0.56) 38.14 (↑ 6.01)
✓ ✓ ✓ Cross-modal 44.32(↑ 5.44) 48.38(↑ 3.32) 38.79(↑ 6.66)
✓ ✓ ✓ ✓ Cross-modal 51.08(↑ 6.76) 56.51(↑ 8.13) 44.46(↑ 5.67)
✓ ✓ ✓ ✓ ✓ Cross-modal 51.81(↑ 0.73) 58.34(↑ 1.83) 46.17(↑ 1.71)

Table 4. Ablations of each component. “H” represents Pseudo-Q method. “H+”, “O” and “R” denote three pipeline of pseudo query
generation respectively. “Real-Query” represents the uni-modal real query propagation. “Verification” means the confidence-aware cross-
modal verification module. “Pre-trained” represents pre-trained model the method utilize.

ReBLIP Object Relation val testA testB
✓ 12.07 13.20 12.07

✓ 36.96 41.92 31.31
✓ 31.92 34.71 28.94

Table 5. Ablations of cross-modal pre-trained model. “ReBLIP”
means that utilize BLIP model directly select proposal for model
training. “Object” and “Relation” denote two pipeline using cross-
modal of pseudo query generation respectively.

Heuristic+ BLIP val testA testB
4 4 40.83 39.49 40.22
6 6 43.93 46.84 40.43
8 8 47.12 49.55 43.17

10 10 48.77 50.89 44.11
All 10 51.81 58.34 46.17

Table 6. Ablation of the number of object proposals. “Heuristic+”
denotes Heuristic+ pipeline, ”BLIP” represents the others pipeline.
“All” means to filter only tiny objects.

Pseudo-query val testA testB
200 49.94 55.20 44.93
400 50.73 56.20 44.95
800 51.60 56.28 45.56
All 51.81 58.34 46.17

Table 7. Ablation of pseudo-query number. “All” means sampling
all pseudo queries.

Method val testA testB
Pseudo-Q 38.88 45.06 32.13

Pseudo-Q (Our detectors) 38.03 42.88 37.20
Ours (Our detectors) 50.65 55.30 45.52

Table 8. Performance of Pseudo-Q with different detectors.

Method Pretrained Training val testA testB
DTWREG 81M+ 29M 39.18 40.10 38.08
Pseudo-Q 210M 155.5M 38.88 45.06 32.13

Ours (Frozen BERT) 230M 45M 46.19 51.09 40.44
Ours (Uni-modal) 230M 155.5M 50.65 55.30 45.52

Table 9. Pretrained and training parameters of different methods.

portant variable that limits many weakly supervised meth-

ods. We therefore investigated the effect of using different
number of proposals. As shown in Table 6, we easily ob-
serve that increasing the number of proposals can improve
the performance of our model. This is because the number
of proposals result in recall of the referred object.

Numbers of pseudo-query Another important factor is
the number of pseudo queries in image. We study the in-
fluence of sampling different number of pseudo-queries in
Table 7. It can be seen that a large number of pseudo-
query can reduce the distribution shift between pseudo and
real query thus improving the performance of our model.
Note that regardless of the number of pseudo queries gen-
erated, after real-query propagation, the number of samples
used for model training is comparable to the size of original
dataset to achieve a fair comparison.

Effectiveness of different detector: We compare the
sensitivity of the detectors used in Pseudo-Q with our de-
tectors in Table 8. Observations: (1) Comparing the first
2 rows, Pseudo-Q shows small variations (some splits bet-
ter while some splits worse) when different detectors are
used, indicating comparable detector accuracy. (2) Compar-
ing the last 2 rows, our approach consistently outperforms
Pseudo-Q with the same detectors, validating the effective-
ness of our method.

The parameters of different methods: We compared
the parameter sizes of previous SOTA models with our
model, including pre-training and training parameter sizes.
In Table 9, since the parameters of Stanford CoreNLP
model is difficult to count, it is replaced by “+” signs. Our
parameters in uni-modal setting is comparable to Pseudo-
Q, but the performance is improved by 11.77% on Ref-
COCO+ val. When freezing the BERT model, we have a
similar number of training parameters (line 3 of Table 9) to
DTWREG, but with a performance improvement of 7.01%
on RefCOCO+ val. These experimental results demonstrate
the superiority of our method in settings with comparable
amount of parameters.
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Figure 4. Four visualization examples. Sub-figure(a)(b) demon-
strates the effectiveness of the Uni-Modal Real Query propagation
module.The green and blue bounding boxes represent the ground
truth and those selected proposal by Uni-Modal Real Query prop-
agation module respectively. Sub-figure(c)(d) demonstrates the ef-
fectiveness of the verification module.

4.5. Qualitative Analysis

In order to further figure out the importance of uni-modal
real query propagation module, we show the qualitative re-
sults of two examples from the RefCOCO train set in Figure
4(a)(b). We observe that our approach can successfully se-
lect proposals that are close to ground-truth. We also show
the qualitative results of cross-modal verification module
from the RefCOCOg train set in Figure 4(c)(d). In the first
example, we can easily observe that the query is highly con-
sistent with the region in the image and our method also
gives high similarity scores. In the last examples, the query
does not match the region in the image and our method cor-
respondingly gives low similarity scores. The above exam-
ples demonstrate that our method can well select the correct
proposal and suppress the contribution of the spurious asso-
ciation.

5. Conclusion

In this paper, we propose Confidence-aware Pseudo-
label Learning (CPL) for weakly supervised visual ground-
ing task. Firstly, we propose a pseudo-query generation
module to automatically produce pseudo region-query pairs
for supervised training. The pseudo-query generation mod-
ule contains three complementary pipelines that can gen-
erate diverse pseudo-queries which makes up for previous
work. Secondly, we present an uni-modal real query prop-
agation which can solve the distribution shift between the

pseudo and real queries. Finally, to reduce the risk of con-
firmation bias, we propose a confidence-aware cross-modal
verification module that estimates the uncertainty of the
region-text association, and propose a selective grounding
loss based on the uncertainty weight to suppress the con-
tribution of the spurious association in the training process.
Extensive experiments show that our method achieves state-
of-the-art methods on five datasets under weak supervision.
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