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Figure 1: We introduce novel, concise and comprehensive contact representation for hand-object interaction (indicated by the dashed box).
We demonstrate the process of generating contact representations from a given input object (on the left) and inferring the underlying grasp
from the contact representation via model-based optimization (on the right).

Abstract

This paper presents a novel object-centric contact rep-
resentation ContactGen for hand-object interaction. The
ContactGen comprises 3 components: a contact map indi-
cates the contact location, a part map represents the contact
hand part, and a direction map tells the contact direction
within each part. Given an input object, we propose a con-
ditional generative model to predict ContactGen and adopt
model-based optimization to predict diverse and geomet-
rically feasible grasps. Experimental results demonstrate
our method can generate high-fidelity and diverse human
grasps for various objects.

1. Introduction

Modeling hand-object interaction [2,9, 14,21, 30, 37,45,
57,67] has gained substantial importance across various do-
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mains in animation, games, and augmented and virtual real-
ity [23,26,62,64]. For instance, given an object, one would
like to create a computational model to reason about the dif-
ferent ways a human hand can interact with it, e.g., how to
grasp the object using a single hand. To ensure realism and
authenticity in these interactions, a precise understanding
of contacts is crucial [5-7]. A thorough contact modeling
should account for factors such as which regions of the ob-
ject are likely to make contact, which parts of the hand will
touch the object, the strength of the contact force, and the
direction of the contact, among others. In contrast, the lack
of thorough and precise modeling can result in unnatural
and unrealistic interactions, such as insufficient contact or
excessive penetration.

Previous approaches often rely on a contact map [17,25,
27,44, 56] applied to object point clouds, where values are
bounded within the [0, 1] range to indicate the status of point
contacts. Nevertheless, simply modeling contact maps does
not fully capture the details of contact. Specifically, even
with the contact map, ambiguities remain regarding which
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regions of the hand are in contact and the manner of contact.
Moreover, a single contact map falls short of representing
the structured uncertainty inherent in hand-object interac-
tions.

In this paper, we address the aforementioned challenges
by introducing a novel contact representation called Con-
tactGen. ContactGen provides a comprehensive presenta-
tion that encodes the specific contact parts of both the object
and hand, along with the precise touch direction. Specif-
ically, for each point on the object’s surface, ContactGen
models: (1) the contact region on the object’s surface, rep-
resented as a contact probability; (2) the specific part of the
hand making contact, be it various fingertip regions or the
palm, in the form of a categorical probability; and (3) the
orientation of the touch with respect to the hand part mak-
ing contact, represented as a spherical coordinate. Fig. 1
depicts the three components of the presented ContactGen.
Our approach significantly expands the traditional contact
map, offering a precise and unambiguous representation of
hand-object interactions.

Next, we introduce a novel, generative method that
learns to produce diverse yet realistic ContactGen for any
given object during inference. To account for uncertain-
ties, we implement a hierarchical conditional Variational
Autoencoder (CVAE) [54]. This CVAE sequentially mod-
els the contact map, the hand part map, and the contact co-
ordinate. When provided with a 3D object as a conditional
input, our CVAE initially models the probabilities of con-
tact maps. From this, one can sample contact maps, using
these samples as additional conditioning variables, to infer
the distribution of the hand part map and sample from the
distribution. Lastly, direction maps can be generated based
on the sampled contact map and hand part map. This se-
quential generation strategy separates variations within the
entire space into distinct components, ensuring explicit un-
certainty modeling for each component.

The proposed ContactGen is applied to human grasp
synthesis [28,34,35,46], whose objective is to generate a di-
verse physically plausible human grasps for various objects.
In contrast to existing work [10, 27,29, 30, 56], which pri-
marily addresses grasp uncertainty within the hand space,
our key innovation lies in addressing this uncertainty within
the object space. We achieve this by designing a novel con-
tact solver that effectively derives hand grasp poses from
ContactGen. The ContactGen is sampled from our CVAE
model and linked to the specific object. As a result, our de-
sign yields more realistic and organic hand grasps, as shown
by improved contact, diminished penetration, and increased
stability. Additionally, the hierarchical contact modeling
fosters greater diversity in the generated grasps. Our exper-
iments validate the efficacy of our method in ensuring both
diversity and fidelity in hand-object interactions, surpassing
the performance of current state-of-the-art techniques.

Method Hand Model Contact Modeling Object-centric

location part direction

Grasping Field [30]  point cloud v v X X
GraspTTA [27] mesh v X X X
ContactOpt [17] mesh v X X X
TOCH [73] mesh v v X v
Ours mesh/sdf v v v v

Table 1: Contact representation comparison between different
methods of hand-object interaction. Most existing work adopt con-
tact map, which is insufficient to recover the underlying grasp.

In summary, our contributions are as follows:

* We introduce ContactGen, a novel object-centric rep-
resentation that concurrently models the contact parts
of both the hand and the object, as well as the contact
direction relative to each part.

* We propose a sequential CVAE model that learns to
grasp the uncertainty inherent in hand-object interac-
tions using our contact representation.

* We develop a novel human grasp synthesis algo-
rithm, merging our suggested generative modeling
with model-based optimization. This combination pro-
duces enhanced fidelity and diversity compared to cur-
rent methods.

2. Related Work

Contact Modeling Various contact representations have
been proposed in hand-object interaction [17, 18, 27, 34,
36,49, 67, 68], and human-object interactions [3, 8, 16, 20,
25,52, 66, 70, 71].  As shown in Tab. I, existing stud-
ies [17,27,55,59, 65] primarily adopt the contact map as
a standard representation. Zhou et al. [73] proposed an
object-centric TOCH field by encoding contact locations
and hand correspondences on the object aimed for temporal
hand pose denoising. Nonetheless, we argue the informa-
tion provided by contact maps [17] or sparse hand-object
correspondences on contact locations [73] falls short. Con-
tact maps lack information about their counterparts, while
sparse correspondences cannot provide detailed contact di-
rections. In our approach, we not only infer the contact
location, but also the hand part in contact and the local di-
rection of that part. This novel representation is point-wise
and object-centric, which does not require any input from
the hand, but enables the comprehensive decoding of hand
information.

Grasp Synthesis Grasp synthesis has gained extensive
attention across both robot hand manipulation [1, 6, 24,
39, 41], animation [4, 15, 28, 49], digital human synthe-
sis [34,35,51,69], and physical motion control [22,31,46].
In this work, we focus on realistic human grasp synthe-
sis [10,27,29,30,56]. The objective is to generate authentic
human grasps of diverse objects. The key challenge is to
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achieve both physical plausibility and diversity within the
generated grasps. A majority of existing approaches employ
CVAE to sample hand MANO parameters [27, 55, 56, 58]
or hand joints [29], which primarily model grasp variations
within the hand space. These model tends to easily overfit
to common grasp patterns, lacking diversity despite the use
of CVAE. Karunratanakul ef al. [30] proposed to learn an
implicit grasping field. However, hand articulations are not
considered, and posed hands are treated as rigid objects, the
solution space spans the whole space and the generated re-
sults do not guarantee to be valid. In contrast to existing
methods, we suggest learning the object-centric Contact-
Gen within the object space. This involves breaking down
the variability in hand grasping into distinct components
within the ContactGen: contact location, hand part, and
touching direction. This decomposition allows us to sample
from the ContactGen, generating physically realistic grasps
with increased diversity. Existing approaches model grasp
uncertainty in the hand space often lean towards learning
generalized grasp patterns with poor diversity.

Grasp Optimization Another distinct research direction
focuses on analytical grasp solution [1,13,21,31,33,41,43,
53,60, 61,67]. The objective is to optimize grasps to mini-
mize penetration, enhance contact, and improve overall sta-
bility. In human grasp generation, prior research [17,27,73]
has formulated contact loss and penetration loss on MANO
model [50] by optimizing MANO parameters. However,
the optimization proves challenging. First, the objectives
of promoting contact and reducing penetration inherently
conflict with one another. Striking a balance between en-
couraging hand-object contact while preventing penetration
is computationally intricate. Second, as shown in previous
work [12,40], the inherent discretization and limited spatial
resolution of mesh structures pose constraints. To address
these challenges, we propose a hand articulation model that
employs part-wise Signed Distance Function (SDF) for op-
timization. The SDF neatly partition the space for contact
(SDF = 0) and penetration (SDF < 0). It captures fine-
graind deformation and supports contact direction within
each part. The piecewise model also shares the same pa-
rameters as MANO, making it seamlessly compatible with
our contact representations. By incorporating the piecewise
hand model into our optimization process, we substantially
enhance the grasp quality, leading to more effective and di-
verse grasp results.

3. Overview

Our technical sections are organized as follows: In
Sec. 4, we introduce an object-centric contact representa-
tion. Our novel representation encodes contact information
into three maps: the contact probability map, the hand part
map, and the direction map. In Sec. 5, we use a sequen-
tial CVAE network, trained on hand-object interaction data,
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Figure 2: Illustration of the contact part and direction in Contact-
Gen representation. The piecewise hand SDF model is partitioned
into B=16 parts, represented in different color.
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to infer the contact representation in a generative manner.
Finally, in Sec. 6, we derive a grasp from the predicted
ContactGen using our specially-developed contact solver.
This incorporates our proposed piecewise hand articulation
model. Fig. 1 provides a summary of our approach.

4. Object-Centric Contact Representation

Our object-centric contact representation F =
(C,P,D) consists of three maps, contact map C,
part map P and direction map D. All maps are defined
on a set of N points O € RY*3 sampled from the object
surface, as shown in Fig. 1.

Contact Map The contact map C € RN*1 each¢; € C
is within [0, 1], representing the contact probability of the
point. This contact map closely resembles the original con-
tact map proposed in [17]. Intuitively, the contact map il-
lustrates which part of the object will likely be contacted by
hand. However, relying solely on contact maps is insuffi-
cient for complex human-object interaction modeling due
to ambiguities regarding how and where the hand touches
the objects. To address this, our object-centric representa-
tion is extended by explicitly modeling the other two maps.

Part Map To locate the in-contact point on the hand sur-
face, we use a part map P € RV*B (one-hot vector) to
indicate the hand part label in {1,--- , B} in contact with
the object point O. The hand is divided into B parts, the
partition is shown in Fig. 2. Each value p; in P is taken as
the closest hand part label.

Direction Map Within each part, to describe an arbitrary
point exactly on the part surface, we use its direction to
the part center. The direction map D € RV*3, d; € D
records the direction of this point w.r.t. part b, as shown in
Fig. 2. Imagine each part as a unit sphere, the contact di-
rection could be any ray shooting from the part center to the
sphere surface. Given the direction d;, the contact point lo-
cation in part b could be uniquely determined by searching
along the ray direction d; until its part SDF = 0.
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Figure 3: ContactGen CVAE model Architecture. Conditioned on
the input object point cloud, we decompose the ContactGen into
individual components by a sequential encoder-decoder model.

5. Generative Contact Modeling

Given an object input, we use a conditional generative
model to infer possible object-centric contact representa-
tions F. We train the model by modeling the underlying
distribution p(F|O) from sampled object point clouds O.

Sequential CVAE. As shown in Fig. 3, we model p(F|O)
sequentially using a CVAE framework. We choose CVAE
for its simplicity and its capability to model multi-modal
uncertainty. We factorize the joint distribution of the contact
feature F = (C, P, D) into a product of three conditional
probability functions:
p(F|O) = p(D[P,0)p(P|C,0)p(C|O) (1)
The contact map C is conditioned on object input O; the
part map P is additionally conditioned on contact map
C; direction map additionally conditioned on part map P.
We control each component in Eq. (1) by a latent code
z sampled from Gaussian distribution. We sample latent
code from posterior z. ~ N (e, X.), 2, ~ N (pp, ),
zq ~ N(pg,Xq) during training, and sample latent code
from prior z. ~ N(0,1), z, ~ N(0,I), z4 ~ N(0,I) at
inference. G., G, and G4 denote the conditional decoder for
contact map, part map and direction map. Thus, we could
sample prediction C, 15, D using:
C = gc(zc; O)a P = gp(zp; Ca O), f) = gd(zd; Pa O)
2
This guarantees the three generated maps are consistent
with each other and decompose the complicated structured
sampling of the contact representation into the conditional

generation of each component. We could later recover full
hand information from the sampled representation C, P, D.

Model architecture Our generative model is a point-
based network that operates on the sampled point cloud of
an input object. We extract shared object features using
PointNet++ [48]. The Gaussian parameters of each com-
ponent are inferred by an encoder modeled as a MLP. After
sampled latent code, we have 3 sequential PointNet [47]
decoders G, G, and G, to decode each map. For part infor-
mation, we employ an embedding layer to encode each part
label into an embedded feature before introducing it to the
network. The detailed architecture is shown in the supple-
mentary.

Training We train the network in an end-to-end fashion.
All networks are trained jointly. We use teacher forcing [63]
and send GT contact map and part map as conditioning dur-
ing training. The VAE loss consists of a reconstruction term
and a KL regularization term. The total loss L is the follow-
ing:

L=~Lrect+ ALLKL 3)
The reconstruction L, is defined as:

Lree=We (|c — Ol + MpLop(P, P) + \aLa(D, [7))
“)

Lok is the standard cross-entropy loss between the pre-
dicted part label P and ground-truth (GT) P, L4 com-
putes the cosine similarity between the GT direction d;
and predicted direction d; for each point. All losses are
computed per-point and further weighted by Weo = C +
d, where C € [0,1] is the GT contact map value as
we focus more on those contact locations and ¢ is a de-
fault weight for non-contacted points. L, regularizes
the latent z-space close to normal distribution N(0,T),
Lxr(p,X) = KLIN(u,x%)||N(0,I)]. The whole KL
loss consists KL regularization from each latent space
Lrxr =Lrr(pe,Be) + Lrr(pp.Xp) + Lxr(pa, Xa).

6. Grasp Synthesis

Next, we will discuss how to convert the sampled object-
centric contact representation into a corresponding artic-
ulated hand pose. To achieve this, we parameterize the
hand using the piecewise SDF model, formulate a model-
based optimization, and solve this optimization to recover
the most plausible hand pose.

6.1. Piecewise hand articulation model

Following [38], we convert MANO model [50] to a
piecewise SDF model. This modification enhances the com-
patibility of the hand model with the proposed Contact-
Gen for grasp synthesis. The piecewise model partitions
the hand into B parts and use piecewise SDF as representa-
tion {SDF,} |. The model is parameterized by part pose
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T, € SE(3) and a global shape vector 3, T, is the transfor-
mation from part to global coordinate frames. We use axis-
angle 6, as pose code for each part, T}, = T(6,). Given part
b, the signed distance from a point o; to its surface is given
by SDF,(Ty 0i; 3) = SDFy,(T(f) ‘01; 3). The direc-
T, 'o;
T, oill”
The overall piecewise hand SDF model parameters are pose
parameters concatenated from all parts = ©26, € RE*3
and shape code 8. The parameters ¢ and (3 are shared across
the MANO model [50] and the piecewise SDF hand model.
One can easily convert between each other. Training details
of the SDF model are provided in the supplementary.

tion of the point w.r.t the part is given by d; =

6.2. Contact solver

_ Given the sampled points O and predicted ContactGen
C e RV*1 P e RNV*B i one-hot format, D € RN*3,
the goal is to infer the hand model {SDF;}Z_; parameters

0 and (3. The optimization objective is the following:

Igiﬁn AL+ AgLy+ )\pﬁp + AL, (@)

The L. denotes the contact map loss, Given object points O,
For each part b we compute SDF,(T(6,)~10; 8) € RV*1,
P, denotes the b-th column of P. The contact map loss is:
B
L.=C) P,-|SDF (©)
b=1
For o; with higher contact value ¢; and predicted part
arg max p; = b, we encourage the SDF of hand part b to
be close to 0, driving the hand to touch the contact loca-
tion. The second term £4(D, D) encourages the direction
d(0;, 0p) of hand part b to match the predicted direction d;.

Lq=Weo (1 — cos(D, 15)) %)

The penetration loss £, prevents object sampled points
from being inside the hand:

B

L, = Z —max (SDFy, 0) 8)

b=1
The last term £, is the regularization term that prevents the
model from being too complex, £, = \.([|0]|* + ||B]%).
For each object and predicted ContactGen, we optimized
the above objective function to get the hand grasp.

Inference We optimize € and 3 from scratch. Follow-
ing [65, 73], we adopted a two-stage optimization strategy.
In the first stage, we only optimize the global pose of the
hand. In the second stage, we freeze the hand’s global pose
and optimize the hand’s pose and shape parameters. We use
Adam [32] optimizer for both stages.

7. Experiments
7.1. Datasets

We use the GRAB dataset [56] to train the ContactGen
CVAE and test grasp synthesis performance. GRAB con-
tains real human grasps for 51 objects from 10 different
subjects. We follow the official train/test split. The test set
contains six unseen objects. Following [27,29,30], we also
test on out-of-domain objects from HO3D dataset [19] test
set to evaluate the generalization ability of the model.

7.2. Implementation Details

The piecewise hand SDF model was trained on the Frei-
hand dataset [74] with 32,560 samples. The ContactGen
CVAE takes N = 2048 points sampled from object surface
as input. During training, we apply data augmentation by
randomly rotating the object by [, %] around each axis.
The latent dimension of the CVAE was set to 16. We set
Ap = 0.5, Ay = 1, and the KL weight Ax; was annealed
from O to 5e — 2 during training. We employed the standard
Adam optimizer [32] with a learning rate of 1.6e — 3 and a
batch size of 256. The CVAE was trained for 3000 epochs.

For grasp synthesis, we do 200 iterations with a learning
rate of 5e — 2 to optimize the global hand translation and
rotation, and 1000 iterations with a learning rate of 5e — 3
to optimize hand pose and shape. The regularization term
Ae =1le—1, g = le—2, A\, = le — 2, penetration weight
Ap = 3.0. We use the Adam optimizer for both stages.

7.3. Recovering Grasps from GT ContactGen

We first evaluate the effectiveness of the proposed Con-

tactGen representation and optimization procedure at recov-
ering hand grasps from ground truth ContactGen. We com-
pare two alternate representations from past work.
Baselines. ContactOpt [17], utilizes contact maps on both
the hand and object to refine hand pose. In our experiment,
we provide it with necessary GT contact maps. TOCH [73]
uses binary contact labels on the object’s surface and hand
correspondences on the MANO mesh [50] to represent con-
tacts. For our study, we adapt TOCH to work with a single
frame by removing temporal constraints. Additionally, we
convert the GT contact map into binary using a threshold of
0.5 and provide the associated GT contact vertices for opti-
mization. In all cases, the methods optimize the hand pose
from scratch.
Metrics. We use the same three metrics as used in past
works [19,74]. Mesh endpoint error (EPE) measures the
average Euclidean distance between the hand vertices of the
prediction and the GT. Mesh AUC measures the percentage
of correctly reconstructed vertices (vertices within Scm are
considered correct). Mesh F-Score calculates the harmonic
mean of recall and precision between two meshes given a
distance threshold. We report F-score at Smm and 15mm.
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F-score t  F-score 1 Penetration Contact Simulation Entropy Cluster
Method EPE (em) | AUCT @5mm @15mm Method Volume | Ratio T Displacement | T Size 1
ContactOpt [17] 7.00 0.26 0.24 0.50 GrabNet [56] 3.65 0.96 1.72 2.72 1.93
TOCH [73] 3.44 0.51 0.39 0.72 HALO [29] 3.61 0.94 2.09 2.88 2.15
Ours 1.49 0.77 0.55 0.91 Ours 2.72 0.96 2.16 2.88 4.11

Table 2: Contact reconstruction comparison. We compare
against ContactOpt and TOCH ’s representation ability to recover
GT hand grasps from contact. Due to the completeness of our rep-
resentation, we are able to effectively recover the hand pose from
the contact, achieving the lowest reconstruction error.

Results. The experimental results are presented in Tab. 2.
We observe that both ContactOpt and TOCH are unable to
accurately recover the GT hand pose due to the incomplete-
ness of their respective representations. ContactOpt [17],
despite having access to the GT hand and object contact
maps, faces challenges in determining the specific hand-
part that should establish contact with a given contact loca-
tion on the object. TOCH shows comparatively better per-
formance due to the richer contact information from hand-
object correspondences. However, the optimization remains
challenging as contact location is sparse. The hand pose
isn’t uniquely defined since the contact direction can also
vary. Due to the completeness of the representation, our
method is able to effectively recover the hand pose from the
contact and achieves the lowest reconstruction error.

7.4. Grasp Synthesis Evaluation

We follow the experimental setup from [29]. We test on
6 unseen objects from the GRAB dataset [56] and out-of-
domain test objects from the HO3D dataset [19].
Baselines. GrabNet [56] and GraspTTA [27] utilize CVAE
to generate MANO parameters. GraspTTA [27] also em-
ploys test-time adaptation to enhance generated grasps.
Grasping Field [30] (GF) uses a CVAE to predict 3D hand
point clouds and fit a MANO model afterward. HALO [29]
generates 3D keypoints using a CVAE and uses an im-
plicit occupancy network to transform these keypoints into
meshes. While all baselines predict within the hand space,
our approach makes inferences in the object space.
Metrics. Following [21,27,29, 30,56, 58, 65], we evaluate
the generated grasps based on their a) physical plausibility
and stability, b) diversity, and c) perceptual attributes.
* To assess physical plausibility, we use hand-object Inter-
penetration Volume and Contact Ratio following [21,27,29,
60,65,70,72]. We compute interpenetration volume by vox-
elizing the meshes into Imm? cubes and measuring over-
lapping voxels. Contact ratio calculates the proportion of
grasps that are in contact with objects. For grasp stability
assessment, consistent with [10,21,27,30,60,61], we place
the object and the predicted hand into a simulator [11], and
measure the average Simulation Displacement of the ob-
ject’s center of mass under the influence of gravity.

Table 3: Grasp result on the GRAB dataset [56]. Our method
achieves the lowest penetration, highest contact, and comparable
stability compared to previous approaches, while showcasing sig-
nificantly larger generation diversity.

* Following [29, 72], we evaluate diversity in generated
grasps by first clustering generated grasps into 20 clusters
using K-means and then measuring the Entropy of cluster
assignments and the average Cluster Size. Higher entropy
and cluster size values indicate better diversity. Following
previous work [29], we perform K-means clustering on 3D
hand keypoints for all methods.

* Following [27,30, 58,65], we also perform Human Evalu-
ation on the naturalness and stability of generated grasps.
Results on GRAB dataset. Tab. 3 shows comparison of our
method with GrabNet [56] and HALO [29] on the GRAB
dataset. For each method, we randomly generate 20 grasps.
Our method achieves the lowest penetration, highest con-
tact ratio, and comparable stability compared to previous
approaches. It stands out in terms of grasp variability, as
indicated by the significantly larger cluster size value com-
pared to previous methods. Qualitative results are shown
in Fig. 4. Further assessment of diversity against HALO
is presented in Sec. 7.4. HALO tends to generate similar
grasps for a given object. Our method produces significant
diversity in terms of contact locations and grasp poses.
Results on HO3D dataset. We evaluate the generaliza-
tion capability of our models on the HO3D dataset [19].
Apart from the previously mentioned baselines, we ex-
tended our comparison to include Grasping Field [30] and
GraspTTA [27], both trained on the ObMan dataset [21]. As
indicated in Tab. 4 and shown in Fig. 6, our method achieves
performance close to the best method in each metric, while
keeping the highest diversity in the generated grasps. As
Grasping Field [30] struggles to produce valid grasps for
unseen objects, the computation of simulation displacement
is infeasible. GraspTTA [27] and Grabnet [56] produce
nearly identical grasps for a given object resulting in poor
diversity. In comparison to HALO, our method achieves
notably lower penetration and better stability.

Human evaluation. We also conduct a user study to assess
the perceptual quality and stability of the generated grasps
following [27,30, 65]. We evaluate 12 objects in total from
GRAB [56] and HO3D [19] dataset. The evaluation in-
volved 10 participants. For each object, we included 3 ran-
domly sampled GT grasps from the GRAB dataset, 3 gener-
ated grasps by HALO, and 3 generated grasps by ours. Par-
ticipants were asked to rate the quality of each grasp based
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GrabNet [56]

HALO [29]

Ours

binoculars camera fryingpan mug

Figure 4: Qualitative comparison on GRAB dataset [56]. Each pair displays sampled grasps from dual views. Our generated grasps
showcase improved object contact and reduced penetration.

HALO [29]

Ours

sample-1 sample-2 sample-3 sample-4

Figure 5: Generated grasp diversity comparison on GRAB dataset [56]. Each pair displays sampled grasps from two views. We
observe HALO generates similar grasps for a given input object, while ours generated grasps exhibit more diverse grasp poses.

GraspTTA [27]

GrabNet [56]

HALO [29]

Ours

meat can scissors power drill mustard bottle

Figure 6: Qualitative comparison on out-of-domain HO3D dataset [19]. Each pair displays sampled grasps from dual views. Our
method produces more plausible grasps for unseen objects.
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Penetration Contact Simulation

Entropy Cluster

Penetration Contact Simulation Entropy Cluster
Method Volume | Ratio{ Displacement | T Size 1
Joint 3.40 0.95 3.29 2.80 3.87
Separate 2.88 0.89 3.58 2.80 4.83
Ours 2.72 0.96 2.16 2.88 4.11

Method Volume | Ratio 1 Displacement | T Size 1
GraspTTA [27] 7.37 0.76 5.34 2.70 1.43
GrabNet [56] 15.50 0.99 2.34 2.80 2.06
GF [30] 93.01 1.00 - 2.75 3.44
HALO [29] 25.84 0.97 3.02 2.81 4.87
Ours 9.96 0.97 2.70 2.81 5.04

Table 4: Grasp result on the HO3D dataset [19]. Our method
achieves performance close to the best method in each metric,
while maintaining the highest diversity in the generated grasps.

Claim: The grasp is natural and realistic Claim: The grasp is stable

strongly strongly
disagren EE halo |Goooty EEm halo
B ours | I ours
disagree disagree
gt gt

slightly slightly
disagree disagree

slightly slightly
agree agree

agree agree

strongly strongly
agree agree

0 10 20 30 40 0 10 20 30 40
Percentage (%) Percentage (%)

Figure 7: Grasp human studies score distribution. The distri-
bution of scores shows that our method achieves comparable per-
formance to the GT in both naturalness and stability.

GRAB [56] HO3D [19]
Method Natural 1 Stable 1 Natural 1 Stable 1

HALO 259 +1.69 2.68£1.63 223+ 141 2.09+ 145
Ours 321 £135 323+£1.23 3.17 £1.34 2.87 +1.52
GT 393 +1.18 3.73 £1.28 - -

Table 5: Grasp human study statistics. While the gap be-
tween ours and the GT exists, our method performs better than
HALO [29] in terms of naturalness and stability. As HO3D
dataset [19] isn’t intented for grasping, GT wasn’t provided.

on its naturalness and the stability of holding the object us-
ing a five-point scale ranging from strongly disagree (0) to
strongly agree (5). Fig. 7 shows the score distribution, and
Tab. 5 provides the mean and variance for each method’s
ratings. Our method outperforms HALO in terms of nat-
uralness and stability on both datasets, but still lags behind
ground truth grasps. As the HO3D dataset was not designed
for grasping, appropriate ground truth hand grasps weren’t
available for evaluation. Further details about the human
evaluation setup are available in the supplementary.

7.5. Ablations

Contact decomposition ablations. We start by comparing
our hierarchical ContactGen decomposition with two more
obvious choices: Joint and Separate modeling. Joint mod-
eling utilizes a shared encoder to encode the 3 maps and
a shared decoder to decode them jointly. Separate model-
ing encodes and decodes each ContactGen component inde-
pendently, using 3 separate encoders and decoders for each
map. The results are shown in Tab. 6. The separate model

Table 6: Impact of different ContactGen decomposition on
grasp quality. Two ablations model the contact latent space
jointly (Joint) or separately (Separate). Both approaches fail to
guarantee consistency, leading to lower contact ratios, larger pen-
etrations, and increased simulation displacements.

C P D |Penetration Contact Simulation Entropy Cluster
Hand Volume | Ratio T Displacement | T Size 1
MANO |V 7.41 0.88 4.38 2.66 2.54
MANO|V vV V 2.36 0.98 2.85 2.60 3.56
SDF |V 20.13 0.69 - 2.68 1.44
SDF |V V/ 2.81 0.66 6.81 2.80 5.51
SDF |V vV V/ 2.72 0.96 2.16 2.88 4.11

Table 7: Impact of different ContactGen components on grasp
quality. Contact as C, part as P, direction as D. Every part of the
ContactGen significantly influences grasp synthesis. The proposed
piecewise hand SDF model better captures intricate hand poses
and enhances generation stability and diversity.

Reference grasp sample 1 sample 2 sample 3

Example 1: Fix: none; Random sample: contact, part and direction codes

Example 2: Fix: contact code; Random sample: part and direction codes

Example 3: Fix: contact and part code; Random sample: direction codes

Figure 8: Visualizing grasp diversity by selectively fixing con-
tact code, part code, and direction code.. In the top row, grasps
use random contact, part, and direction codes. In the middle row,
contact is fixed, only part and direction vary. In the bottom row,
contact and part are fixed, only direction changes.

achieves the highest diversity, and the Joint model resulted
in reduced grasp diversity. But both choices struggled to
maintain consistency among the three components, failing
to yield physically plausible grasps. These outcomes are
characterized by either larger penetrations, decreased con-
tact ratios, or higher simulation displacements. In contrast,
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Figure 9: Hand-hand interaction synthesis on InterHand2.6M
dataset [42]. Each pair displays a sample from two views.

our proposed decomposition and the proposed sequential
structure perform optimally. The generated outcomes are
internally consistent and exhibit substantial diversity.

We further illustrate the decomposition of diversity in
our generated grasps across different components of the
ContactGen in Fig. 8. In the top row, we present gener-
ated grasps with randomly sampled ALL three latent codes,
i.e., contact, part, and direction latent codes. The second
row showcases generated grasps with a fixed contact code
(matching the first sample in the row) and randomly sam-
pled the remaining two latent codes. The third-row exhibits
generated grasps with fixed contact and part codes (match-
ing the first sample in the row) and randomly sampled the
last direction latent codes. By conditioning on different
levels of map details, we can sample and produce diverse
grasp. However, as anticipated, the diversity of generated
grasps diminishes when we freeze more components of the
ContactGen representation, progressing from the top row to
the bottom row. This trend becomes particularly evident in
the bottom row, where the contact location and hand parts
are fixed, yielding slight variations in contact directions.
Contact representation ablations. We conduct another ab-
lation study to assess the contribution of different compo-
nents within our ContactGen representation. The study in-
volves evaluating the generated grasp quality by removing
specific components. Additionally, we compare the perfor-
mance of our proposed piecewise hand SDF model against
the MANO model [50] in contact optimization. The results
are shown in Tab. 7. The results highlight the critical na-
ture of all components (contact map, part map, and direc-
tion map) for achieving optimal performance. Without the
guidance of the part map, both hand model struggles to gen-
erate a coherent grasp, leading to consistently higher pene-
trations. The influence of the part map is more critical to
the piecewise hand SDF model, as it heavily relies on part
information for contact reasoning. Incorporating the direc-
tion map aids in enhancing contact and stability. Both the
MANO model and the piecewise SDF model exhibit similar
physical quality with the assistance of all three maps. Em-
ploying the SDF model better captures intricate hand poses,
resulting in enhanced diversity and more stable outcomes.

7.6. Synthesis Beyond Grasping

Our proposed contact representation can extend its ap-
plications beyond grasping to address more complex hand-
hand interactions scenarios. By substituting the object for

Figure 10: Failure modes of our method. Each pair displays
a sample from dual views. The left side shows a generated grasp
appears to be more of a touch rather than a proper grasp. The right
side shows an unsatisfactory grasp when the sampled ContactGen
is infeasible on out-of-domain objects.

another hand, our method, without any changes, can syn-
thesize two-hand interactions. Specifically, we train our
CVAE on a subset of the training set from InterHand2.6M
dataset [42]. We then use the CVAE to generate ContactGen
on the subset from the test split. We employ the same con-
tact solver to decode the hand pose. By using the left hand
as input, we generate corresponding right-hand poses. The
qualitative results are presented in Fig. 9. This demonstrates
the broad potential of our proposed ContactGen representa-
tion in addressing a wider range of interaction tasks.

8. Conclusion

In this work, we introduce ContactGen: an object-centric

contact representation for hand-object interaction. The rep-
resentation is compact and complete, enabling full grasp re-
covery from contact information. We propose a sequential
CVAE to learn the ContactGen from hand-object interaction
data and a model-based optimization to generate grasp from
ContactGen predictions of the input object. Experiments
demonstrate our method can synthesize high-fidelity and di-
verse grasps for various objects. The ContactGen could also
be potentially used for more complex interaction scenarios
synthesis beyond grasp.
Limitations and future work. We discuss two limitations
of our method. First, our approach can sometimes gener-
ate touch interactions instead of grasps. This is evident on
the left side of Fig. 10, where the generated grasp for a fry-
ing pan from the GRAB dataset [56] is realistic in terms
of touch but not suitable for grasp. This occurs because of
the inherent uncertainty in our ContactGen model. These
touches exhibit strong object contact but may not align well
with human grasp expectations. Second, when our method
is applied to objects outside of its training domain, like
those from the HO3D dataset [19], it occasionally creates
unrealistic combinations of contact map, part map, and di-
rection map, resulting in generated grasp with insufficient
contact or significant penetration, as shown on the right side
of Fig. 10. Addressing these limitations might involve more
accurately modeling the prior of the ContactGen. Rather
than using the simple Gaussian prior (V'(0,I)) in VAE, ad-
vanced techniques like diffusion models could offer poten-
tial solutions. We leave further exploration of these possi-
bilities for future work.
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