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Abstract

This paper is concerned with the matching stability prob-
lem across different decoder layers in DEtection TRans-
formers (DETR). We point out that the unstable matching
in DETR is caused by a multi-optimization path problem,
which is highlighted by the one-to-one matching design in
DETR. To address this problem, we show that the most im-
portant design is to use and only use positional metrics (like
10U) to supervise classification scores of positive examples.
Under the principle, we propose two simple yet effective
modifications by integrating positional metrics to DETR’s
classification loss and matching cost, named position-
supervised loss and position-modulated cost. We verify our
methods on several DETR variants. Our methods show con-
sistent improvements over baselines. By integrating our
methods with DINO, we achieve 50.4 and 51.5 AP on the
COCO detection benchmark using ResNet-50 backbones
under 1x (12 epochs) and 2x (24 epochs) training settings,
achieving a new record under the same setting. We achieve
63.8 AP on COCO detection test-dev with a Swin-Large
backbone. Our code will be made available at https://
github.com/IDEA-Research/Stable-DINO.

1. Introduction

Object detection is a fundamental task in vision with
wide applications. Great progress has been made in the last
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Figure 1: Comparison of our methods (named Stable-DINO
in figures) and baselines. We compare models with ResNet-
50 backbones in the left figure and models with Swin-
Transformer Large backbones in the right figure. All mod-
els use a maximum 1/8 resolution feature map from a back-
bone, except AdaMixer uses a maximum 1/4 resolution fea-
ture map.

decades with the development of deep learning, especially
the convolutional neural network (CNN) [36, 14, 16, 7].

Detection Transformer (DETR) [3] proposed a novel
Transformer-based object detector, which attracted a lot
of interest in the research community. It gets rid of the
need for all hand-crafted modules and enables end-to-end
training. One key design in DETR is the matching strat-
egy, which uses Hungarian matching to one-to-one assign
predictions to ground truth labels. Despite its novel de-
signs, DETR also has certain limitations associated with
this innovative approach, including slow convergence and
inferior performance. Many follow-ups tried to improve
DETR from many perspectives, like introducing positional
prior [32, 41, 28, 14], extra positive examples [22, 4, 5],
and efficient operators [47, 34]. With many optimizations,
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Prediction A:
high loU, low CLS
Condition Default Loss Position-Supervised

Loss

Query A matched encourage A encourage A
Ground Truth

) Query B matched encourage B
Ground Truth

No encouragement

Multi optimization One optimization
path path

Figure 2: Explanation of the multi-optimization path prob-
lem. We use the term “CLS” as classification scores. Each
prediction has a probability to be assigned as the positive
example in bipartite matching and be encouraged towards
ground truth during training, which can be different opti-
mization paths. With the position-supervised loss, only one
optimization path will have in the training, which can stabi-
lize the matching.

DINO [46] set a new record on the COCO detection leader-
board, making the Transformer-based method become a
main-stream detector for large-scale training.

Although DETR-like detectors' achieve impressive per-
formance, one critical issue that has received insufficient
attention to date, which may potentially compromise the
model training stability. This issue pertains to the unstable
matching problem across different decoder layers. DETR-
like models stack multiple decoder layers in the Trans-
former decoder. The models assign predictions and calcu-
late losses after each decoder layer. However, the labels
assigned to these predictions may differ across different lay-
ers. This discrepancy may lead to conflict optimization tar-
gets under the one-to-one matching strategy of DETR vari-
ants, where each ground truth label is matched with only
one prediction.

To the best of our knowledge, only one work [22] has at-
tempted to address the issue of unstable matching problem
to date. DN-DETR [22] proposed a novel de-noising train-
ing approach by introducing extra hard-assigned queries to
avoid mismatching. Some other work [19, 5] added extra
queries for faster convergence but did not focus on the un-
stable matching problem. In contrast, we solve this problem
by focusing on the matching and loss calculation process?.

We present that the key to the unstable matching problem
is the multi-optimization path problem. As shown in Fig. 2,
there are two imperfect predictions during training. Predic-
tion A has a higher Intersection over Union (IoU) score but
a lower classification score, while prediction B is the op-
posite. This is the simplest but most common case during
training. The model will assign one of them to the ground
truth, resulting in two optimization preferences: one that
encourages A, which means encouraging predictions with
high positional metrics to get better classification results,

'We focus on DETR-like models with Huagurian matching for label
assignments in this paper.

2We have tried some direct but useless solutions for the problem, which
will be shown in Sec. A.

and the other is to encourage B, which means encourag-
ing predictions with high semantic metrics (classification
scores here) to get better IOU scores. We refer to these
preferences as different optimization paths. Due to the ran-
domness during training, each prediction has a probability
of being assigned as a positive example, with the other be-
ing viewed as a negative example. Given the default loss
designs, whether A or B is selected as the positive exam-
ple, the model will optimize it towards its alignment with
the ground truth bounding box, which means the model
has multi-optimization paths, as shown in the right table
in Fig. 2. This issue is less significant in traditional de-
tectors, as multiple queries will be selected as positive ex-
amples. However, the one-to-one matching in DETR-like
models magnifies the optimization gap between predictions
A and B, which makes model training less efficient.

To solve the problem, we find the most critical design
is to use and only use positional metrics (e.g., IOU) to su-
pervise the classification scores of positive examples. More
formal presentations are available in Sec. 2.2. If we use
position information to constrain classification scores, the
prediction B will not be encouraged if it is matched since
it has a low IoU score. As a result, only one optimiza-
tion path will be available, mitigating the multi-optimization
paths issue. If extra classification score-related supervision
is introduced, the multi-optimization path will still impair
the model performance, since the prediction B has a bet-
ter classification score. With this principle, we propose two
simple but effective modifications to the loss and matching
cost: position-supervised loss and position-modulated cost.
Both of them enable faster convergence and better perfor-
mance of models. Our proposed approach also establishes
a link between DETR-like models and traditional detectors,
as both encourage predictions with high positional scores to
have better classification scores. More detailed analyses are
available in Sec. 2.4.

Moreover, we have observed that fusing the backbone
and encoder features of models can facilitate the utiliza-
tion of the pre-trained backbone features, leading to faster
convergence, especially in early training iterations, and bet-
ter performance of models with nearly no extra costs. We
propose three fusion ways and empirically select the dense
memory fusion for the experiments. See Sec. 3 for more
details.

We verify our methods on several different DETR vari-
ants. Our methods show consistent improvement in all ex-
periments. We then build a strong detector named Stable-
DINO by combining our methods with DINO. Stable-
DINO presents impressive results on the COCO detection
benchmark. The comparison between our model and other
DETR variants is shown in Fig. 1. Stable-DINO achieves
50.4 and 51.5 AP with four feature scales from a ResNet-50
backbone under 1x and 2Xx training schedulers, with +1.4
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and 41.1 AP gains compared with DINO baselines. With a
stronger backbone Swin Transformer Large, Stable-DINO
can achieve 57.7 and 58.6 AP with 1x and 2X training
schedulers. To the best of our knowledge, these are the best
results among DETR variants under the same settings.

2. Stable Matching

This section presents our solution to the unstable match-
ing problem in DETR-like models. We first review the loss
functions and matching strategies in previous work (Sec.
2.1). To solve the unstable matching problem, we demon-
strate our modifications on losses and matching costs in Sec.
2.2 and Sec. 2.3, respectively.

2.1. Revisit DETR Losses and Matching Costs

Most DETR variants [3, 32, 41, 28, 22, 46, 47] have a
similar loss and matching design. We use the state-of-the-
art model DINO as an example. It inherits loss and match-
ing from Deformable DETR [47] and the design is com-
monly used in DETR-like detectors [47, 32, 28, 22, 15].
Some other DETR-like models [3] may use a different de-
sign but with only minor modifications.

The final losses in DINO are composed of three parts, a
classification loss L.;s, a box L1 loss Lypor, and a GIOU
loss Larou [37]. The box L1 loss and GIOU loss are used
for object localization, which will not be modified in our
model. We focus on the classification loss in the paper.
DINO uses the focal loss [26] as the classification loss:

Npos Nneg
Las= Y |1=pi|"BCE(p;, 1)+ > p/BCE(p;,0),
=1 =1

ey
where N, and N, are the number of positive and neg-
ative examples, BCE means binary cross-entropy loss, the
p; is the predicted probability of the i example, the ~ is a
hyperparameter for focal losses, and the notation | - | is used
for absolute value.

A matching process determines the positive and negative
examples. Typically, a ground truth will be assigned only
one prediction as the positive example. Predictions with no
ground truths assigned will be viewed as negative examples.

To assign predictions with ground truths, we first cal-
culate a cost matrix C € RNrredXNot between them. The
Npreq and Ny; are the number for predictions and ground
truths. Then a Hungarian matching algorithm will perform
on the cost matrix to assign each ground truth a prediction
by minimizing sum costs.

Similar to the loss functions, the final cost includes three
items, a classification cost C.;s, a box L1 cost Cppoz, and a
GIOU cost Cgrou [37]. We focus only on the classification
cost as well. For the i prediction and the j™ ground truth,
the classification cost is:

The formulation is similar to the focal cost but has a lit-
ter modification®. The focal loss only encourages positive
examples to predict 1, while the classification cost adds an
additional penalty term to avoid it to 0.

2.2. Position-Supervised Loss

To solve the multi-optimization problem, we only* use
a positional score to supervise the training probabilities of
positive examples. Inspiring by previous work [13, 25], we
can simply modify the classification loss Eq. 1 as:

Npos
L5 =" (| f1(s:) — pil "BCE(py, f1(s:))
=1
Nneg
+ Z p; BCE(p;,0),
=1

3)

where we mark the difference with Eq. 1 in red. We use the
s; as a positional metric like IOU between the i ground
truth and its corresponding prediction. As some examples,
we can use f1(s;) as s;, s7, and e*’ in implementations.

In our experiments, We found that f;(s;) = (s?) works
best in our implementations, where € is a transformation
to rescale numbers to avoid some degenerated solutions, as
IOU values may be very small sometimes. We tried two
rescale strategies, first is to ensure the highest s? is equal to
the max JOU value among all possible pairs in a training
example, which is inspired by [13], and the other is to en-
sure the highest s? is equal to 1.0, which is a simpler way.
We find the former works better for detectors with more
queries like DINO (900 queries), and the latter works better
for detectors with 300 queries.

The design tries to supervise classification scores with
positional metrics like IOU. It encourages predictions with
low classification scores and high IOU scores, while pe-
nalizing predictions with high classification scores but low
IOU scores.

2.3. Position-Modulated Matching

The position-supervised classification loss aims to en-
courage predictions with high IOU scores but low classifica-
tion scores. Following the spirit of the new loss, we would
like to make some modifications to the matching costs. We
rewrite Eq. 2 as follows:

3We formulate the implementations of Deformable DETR (https:
//github.com/fundamentalvision/Deformable-DETR/
blob/main/models/matcher.py#L79-181) and DINO
(https://github.com/IDEA-Research/detrex/
blob/main/detrex/modeling/matcher/matcher.py#
L132-1134).

4The “only” means that the f1(-) function in Eq. 3 is related to posi-
tional metrics only.
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CO (i, 7) =|1 — pifo(s))"BCE(p; f2(s), 1)
- (pifAQ(sé))’yBCE(l - szz(é;)» 1)7

where we mark the difference with Eq. 2 in red. s} is an-
other positional metric, which we use a rescaled GIOU in
our implementations. As GIOU ranges from [-1,1], we shift
and rescale it to the range [0,1] as a new metric. f5 is an-
other function to tune. We empirically use fa(s:) = (s;)%®
in our implementations.

Intuitively, the fo(s}) is used as a modulated function
to down-weight the predictions with inaccurate prediction
boxes. It helps to align classification scores and bounding
box predictions better as well.

One interesting question is why we do not directly use
the new classification loss (Eq. 3) as a new classification
cost. The matching is calculated between all predictions and
ground truths, under which there will be many low-quality
predictions. Ideally, we hope a prediction with a high IOU
score and a high classification score will be selected as a
positive example for its low matching cost. However, a pre-
diction with a low IOU score and a low classification score
will also have a low matching cost, making the model de-
generative.

“4)

2.4. Analyses

2.4.1 Why Supervise Classification with Positional
Scores only?

We argue that the source of unstable matching is the multi-
optimization path problem. Discuss the simplest scenario:
We have two imperfect predictions, A and B. As shown in
Fig. 2, prediction A has a higher IOU score, but a lower
classification score since its center locates in the back-
ground. In contrast, prediction B has a larger classification
score but a lower IOU score. The two predictions will com-
pete for the ground truth object. If anyone is assigned a
positive example, the other will be set as a negative one.
A ground truth with two imperfect candidates is common
during training, especially in the early steps.

Due to the randomness during training, Each one of the
two predictions has a probability of being assigned as a pos-
itive example. Under the default DETR variants loss de-
signs, each possibility will be amplified since the default
loss design will encourage positive and restrain negative ex-
amples, as shown in table 1. Detection models have two
different optimization paths: models prefer high IOU sam-
ples or high classification score samples. The different op-
timization paths can confuse the model during training. A
good question is if the model can encourage both predic-
tions. Unfortunately, it will violate the requirements of one-
to-one matching. The problem is not significant in tradi-
tional detectors, which assign multiple predictions to each
ground truth. The one-to-one matching strategy in DETR-
like models will amplify the conflicts.
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Figure 3: Comparisons of the unstable scores of DINO and
DINO with stable matching.

In contrast, if we supervise classification scores with po-
sitional metrics (like IOU), the problem will be eliminated,
as shown in the last row of Table 1. Only Prediction A will
be encouraged toward the target. If prediction B is matched,
it will not be optimized continuously since it has a low IOU
score. There will be only one optimization path for the
model, which will stable the training.

How about using classification information to supervise
classification scores? Some previous work in traditional de-
tectors tried to align classification and IOU scores by using
a quality score [13, 25], which is a combination of both clas-
sification and IOU scores. Unluckily, the design is not suit-
able for DETR-like models, which will be shown in Sec.
4.4, as it cannot solve the root of the unstable matching,
multi-optimization path problem. Suppose both classifica-
tion and IOU scores are included in the targets. In that case,
prediction B will also be encouraged if matched since it
has a high classification score. The multi-optimization path
problem also exists, which damages the model training.

‘ Prediction A Matched ‘ Prediction B Matched

restrain A
encourage B

encourage A

Default Matching restrain B

restrain A slightly
No encourage

encourage A

Stable Matching restrain B

Table 1: Detailed explanation of the multi-optimization path
problem. Suppose we have two imperfect predictions: A
with a higher IOU score and lower classification score,
while B is on the opposite. An example is shown in Fig.2.

Another direct question is whether we can optimize the
model toward another path. If we would like to guide
models to prefer a high classification score, i.e., encourage
matching prediction B in the example. There will be am-
biguity if there are two objects of the same category. For
example, there are two cats in an image. The classification
score is determined by semantic information, which means
that a box near any cat will have a high classification score,
which can damage the model training.
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2.4.2 Rethink the Role of Classification Scores in De-
tection Transformers

The new matching loss connects the DETR-like models to
traditional detectors as well. Our new loss design shares a
similar optimization path as traditional detectors.

An object detector has two optimization paths: one is
to find a good predicted box and optimize its classification
score; the other is to optimize a prediction with a high clas-
sification score to the ground truth box. Most traditional
detectors assign predictions by checking their positional ac-
curacy only. The models encourage anchor boxes that are
near the ground truth. It means that most traditional detec-
tors select the first optimization way. Differently, DETR-
like matching additionally considers classification scores
and uses the weighted sum of classification and localiza-
tion scores as the final cost matrix. The new matching way
results in conflicts between the two ways.

Since then, why still DETR-like models used classifi-
cation scores during Training? We argue that it is more
like a reluctant design for one-to-one matching. Previous
work [40] has shown that introducing classification cost is
the key to one-to-one matching. It can ensure only one
positive example of the ground truth. As the localization
losses (box L1 loss and GIOU loss) do not restrain nega-
tive examples, all predictions near a ground truth will be
optimized toward the ground truth. There will be unsta-
ble results if only position information is considered during
matching. With the classification scores in the matching,
the classification scores are used as marks to denote which
prediction should be used as positive examples, which can
promise a stable matching during training compared with
position-only matching.

However, as the classification scores are optimized in-
dependently, without any interaction with positional infor-
mation, it sometimes leads the model to another optimiza-
tion path, i.e., encourage the box with a larger classification
score but a worse IOU score. Our position-supervised loss
can help to align the classification and localization, which
not only ensures a one-to-one matching, but also solves the
multi-optimization problem.

With our new loss, the DETR-like models work more
like traditional detectors as they both encourage predictions
with larger IOU scores but a worse classification score.

2.4.3 Comparisons of Unstable Scores

To present the effectiveness of our methods. We compare
the unstable scores between vanilla DINO and DINO with
stable matching in Fig. 3. The unstable scores are the in-
consistent matching results between adjacent decoder lay-
ers. For example, if we have 10 ground truth boxes in an
image, and only one box has a different prediction indexed
matched in the (i — 1) and i™ layers, then the unstable

Decoder

Encoder Layer

Decoder Decoder

Encoder Layer Encoder Layer

Decoder

Encoder Layer

Encoder Layer Encoder Layer Encoder Layer Encoder Layer

Encoder Layer Encoder Layer Encoder Layer Encoder Layer

Encoder Layer

I
Backbone

Encoder Layer

i
Backbone

Encoder Layer Encoder Layer

[ Backbone ] [ Backbone ]
(a) Original (b) Simple Fusion (¢) U-Fusion (d) Dense Fusion

Figure 4: Comparison of our methods and baselines. We
compare the (a) original memory feature with our proposed
three memory fusion ways: (b) simple memory fusion, (c)
U-like memory fusion, and (d) dense memory fusion.

score of the layer ¢ is 1/10 x 100.00 = 10.00%. Typically,
a model has six decoder layers. The unstable score of layer
1 is calculated by comparing the matching results of the en-
coder and the first decoder layer.

We use model checkpoints at the 5000th step and evalu-
ate models on all images in the COCO val2017 dataset.
The results show that our model is more stable than DINO.
The unstable score generally decreases from the first de-
coder layer to the last decoder layer, which means the higher
decoder layers (with larger indexes) may have more stable
predictions.

3. Memory Fusion

To further enhance the model convergence speed at the
early training stage. We proposed a straightforward feature
fusion technique termed memory fusion, which involves
merging the encoder output features at different levels with
the multi-scale backbone features. We propose three dif-
ferent memory fusion ways, named simple fusion, U-like
fusion, and dense fusion, which are shown in Fig. 4 (b),
(c), and (d). For multiple features to fuse, we first con-
catenate them along the feature dimension and then project
the concatenated feature to the original dimensions. More
implementation details of memory fusion are available in
Appendix Sec. B.

The dense fusion achieves better performance in our ex-
periments, which is used as our default feature fusion. We
compare the training curves of DINO and DINO with dense
fusion in Fig.5. It shows that the fusion enables a faster
convergence, especially in the early steps.

4. Experiments
4.1. Settings

Dataset. We conduct experiments on the COCO 2017 ob-
ject detection dataset [27]. All models were trained using
the train2017 set without extra data and evaluated their
performance on the val2017 set. We report our results
with two different backbones, including ResNet-50 [17]
pretrained on ImageNet-1k [10] and Swin-L [30] pretrained
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Model Backbone #epochs AP APsg AP75 APg APy APy,
Conditional-DETR [32] R50 108 43.0 64.0 45.7 22.7 46.7 61.5
SAM-DETR [45] R50 50 39.8 61.8 41.6 20.5 43.4 59.6
SAM-DETR + SMCA [45] R50 50 41.8 63.2 43.9 22.1 45.9 60.9
Anchor-DETR [41] R50 50 42.1 63.1 44.9 22.3 46.2 60.0
Dynamic-DETR [8] R50 12 42.9 61.0 46.3 24.6 44.9 54.4
SMCA-DETR [14] R50 108 45.6 65.5 49.1 25.9 49.3 62.6
AdaMixer [15] R50 36 47.0 66.0 51.1 30.1 50.2 61.8
CF-DETR [2] R50 36 47.8 66.5 52.4 31.2 50.6 62.8
Sparse-DETR [38] R50 50 46.3 66.0 50.1 29.0 49.5 60.8
Efficient-DETR [43] R50 36 45.1 63.1 49.1 28.3 48.4 59.0
BoxeR-2D [33] R50 50 50.0 67.9 54.7 30.9 52.8 62.6
Deformable-DETR [47] R50 50 46.2 65.0 50.0 28.3 49.2 61.5
Deformable-DETR [47] R50 50 46.9 65.6 51.0 29.6 50.1 61.6
DAB-Deformable-DETR [28] R50 50 46.8 66.0 50.4 29.1 49.8 62.3
DN-Deformable-DETR [22] R50 12 43.4 61.9 47.2 24.8 46.8 59.4
DN-Deformable-DETR [22] R50 50 48.6 67.4 52.7 31.0 52.0 63.7
H-DETR [19] R50 12 48.7 66.4 52.9 31.2 51.5 63.5
H-DETR [19] R50 36 50.0 68.3 54.4 32.9 52.7 65.3
Co-DETR [48] R50 12 49.5 67.6 54.3 324 52.7 63.7
DINO-4scale [46] R50 12 49.0 66.6 53.5 32.0 52.3 63.0
DINO-5scale [46] R50 12 49.4 66.9 53.8 32.3 52.5 63.9
DINO-4scale [46] R50 24 50.4 68.3 54.8 33.3 53.7 64.8
DINO-4scale [46] R50 36 50.9 69.0 55.3 34.6 54.1 64.6
Stable-DINO-4scale (ours) R50 12 50.4 (+1.4) 67.4 55.0 32.9 54.0 65.5
Stable-DINO-5scale (ours) R50 12 50.5 (+1.1) 66.8 55.3 32.6 54.0 65.3
Stable-DINO-4scale (ours) R50 24 51.5 (+1.1) 68.5 56.3 35.2 54.7 66.5

Table 2: Comparison to prior DETR variants on COCO val2017 with ResNet-50 backbones. The numbers in brackets are
AP improvements compared with corresponding DINO models under the same settings.

Model Backbone #epochs AP APs50 AP75 APg AP APy,
H-DETR [19] Swin-L (IN-22K) 12 56.1 75.2 61.3 39.3 60.4 72.4
H-DETR [19] Swin-L (IN-22K) 36 57.6 76.5 63.2 41.4 61.7 73.9
Co-DETR [48] Swin-L (IN-22K) 12 56.9 75.5 62.6 40.1 61.2 73.3
DINO-4scale [46] Swin-L (IN-22K) 12 56.8 75.6 62.0 40.0 60.5 73.2
DINO-4scale [46] Swin-L (IN-22K) 36 58.0 771 66.3 41.3 62.1 73.6
Stable-DINO-4scale (ours) Swin-L (IN-22K) 12 57.7 (+0.9) 75.7 63.4 39.8 62.0 4.7
Stable-DINO-4scale (ours) Swin-L (IN-22K) 24 58.6 (+0.6)* 76.7 64.1 41.8 63.0 4.7

Table 3: Comparison to prior DETR variants on COCO val2017 with Swin-Transformer Large backbones. * We compare

our 24-epoch Stable-DINO with 36-epoch DINO here.

251 DINO
DINO + Dense Memory Fusion

20

2 4 6 8 10 12
Epoch

Figure 5: Comparison of the convergence speed of DINO
and DINO with our dense memory fusion.

on ImageNet-22k [10].

Implementation Details. We test the effectiveness of our
stable matching strategy based on DINO [46]. We trained
our models on COCO training using AdamW optimizer [31,
21] with a learning rate of 1 x 10~* for 12 epochs, and
the learning rate is reduced by a factor of 0.1 at the 11"

epoch. In the case of 24-epoch settings, the learning rate
is decreased at the 20" epoch. We set the weight decay
to 10~*. We conduct all our experiments based on detrex
[12]. We follow their hyperparameters as default for other
DETR variants. As the new loss design results in a smaller
scale of classification loss, we empirically choose a 6.0 as
the classification loss weight. Moreover, we found a proper
Non-Maximum Suppression (NMS) can still help the final
performance for about 0.1 —0.2 AP. We use NMS by default
with a threshold 0.8. We use a random seed 60 in all our
experiments to ensure the results are reproducible. DINO
with the seed 60 in detrex [12] has the same results (49.0
AP) as the original paper.

4.2. Main Results

As shown in Table 2, we firstly compare our Stable-
DINO on COCO object detection val2017 set with other
DETR variants with ResNet-50 [18] backbone. Stable-
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Model #queries Mask AP Box AP APpyesk  Apmask ppmask Apmask  ppmask
Mask2Former [6] 100 38.7 - 59.8 41.2 18.2 41.5 59.8
MaskDINO [23] 300 41.4 45.7 62.9 44.6 21.1 44.2 61.4
Stable-MaskDINO (ours) 300 42.1(+0.7)  47.0(+1.3) 63.4 45.7 21.9 44.5 62.2

Table 4: Results of Stable-MaskDINO compared with other state-of-the-art instance segmentation models on COCO
val2017. All models trained with a ResNet-50 backbone for 12 epochs.

DINO-4scale and Stable-DINO-5scale can achieve 50.2 AP
and 50.5 AP on 1x scheduler, which gains 1.2 and 1.1 AP
over the DINO-4&S5 scale 1x baselines. And with 2 train-
ing scheduler, Stable-DINO-4scale even increased AP by
1.1 and 0.6 compared with DINO-4scale 2x and 3x base-
lines. Table 3 compares our models to other state-of-the-art
Transformer-based detectors with large backbones, such as
the ImageNet-22k [10] pre-trained Swin-Large backbone.
Stable-DINO-4scale can achieve 57.7 AP on 1x and obtain
58.6 AP for 2x scheduler, which outperforms the DINO
1x and 3x baselines by 0.9 and 0.6 AP. Comparisons with
SOTA methods are available in Table 10.

4.3. Generalization of our Methods

To verify the generalization of our models, we ran exper-
iments on other DETR variants. The results are available
in Table 5. Our methods show consistent improvement on
existing models, including Deformable-DETR [47], DAB-
Defomable-DETR [28], and 7-DETR [4].

Model AP AP, AP,, AP,
Deformable-DETR [47] 43.8 267 470 580
Stable-Deformable-DETR (Ours) 451(+1.3) | 286 488 613
DAB-Deformable-DETR [28] 442 275 471 586
Stable-DAB-Deformable-DETR (Ours) | 452(+1.0) | 27.7 49.0 616
H-DETR [28] 48.6 307 512 635

Stable-H-DETR (Ours)
Table 5: Effectiveness of our methods on other DETR vari-
ants. All models are trained with a ResNet-50 backbone for
12 epochs. The models with the prefix “Stable” use our pro-
posed methods.

492 (+0.6) | 32.7 528 649

To further present the effectiveness of our methods on
different tasks, we implement our methods on MaskDINO
[23] for both object detection and segmentation. We name
the new model Stable-MaskDINO. Stable-MaskDINO out-
performs MaskDINO on both detection and segmentation
tasks, as shown in Fig. 4.

4.4. Ablation Study

We present ablations in this section. We use ResNet-50
backbones and 12-epoch training as the default setting.
Effectiveness of model designs. We first verify the effec-
tiveness of each design in our model. The results are avail-
able in Table 6. To make a fair comparison, we test DINO
with NMS 0.8 in row 1 of the table. The model has 0.2
gains compared with the default test way, The results show
that the position-supervised loss and the position-modulated
cost help the final results, with +0.6 AP and +0.4 AP gains,

respectively. It is worth noting that the DINO has achieved
high performance already; hence each gain is hard to obtain.
We find that dense fusion works best among the three ways
by comparing the different memory fusion ways. It brings
+0.2 AP and +0.5 AP5¢ compared with baselines. More-
over, the fusion helps a lot during the early training steps,
as shown in Sec. 3.

Comparisons of different loss designs. We compared
the effectiveness of different loss designs in Table 7. We
ignore the transformation function ¢ (see Sec. 2.2) for sim-
plifications in the table. To keep a fair comparison, we use
loss weight as 10.0 in all experiments in the table. All
models train trained without memory fusion and position-
modulated cost. There are some interesting observations
in the experiments. First, with positional metrics as super-
vision, the model has performance gains most of the time.
The methods are robust to the function design. For example,
it even works well with the f1(s) = (e* — 1)/(e — 1) func-
tion. Second, the introduction of classification scores (like
probabilities) will result in a performance drop in models,
as shown in the lines 5, 6, and 7 in Table 7. it verifies our
analysis in Sec. 1 and Sec. 2.4. It also demonstrates the
effectiveness of our methods design. At last, convex func-
tions like f1(s) = s? work better than concave functions
like f1(s) = s°5. As a special case, the concave function
sin(s x m/2) even results in a performance drop, since it
reaches 1 fast with the increasing of s.

Comparisons of different loss weights. We test different
loss weights for our position-supervised loss in this section.
The results are available in Table 8. The results show that
our model works well for most classification weights, e.g.
from 4.0 to 10.0. We use the position-modulated cost and
use no memory in this ablation.

Ablations for the position-modulated cost. We compare
results with different function and cost weight designs in
this section. The results are available in Table 9. We choose
f2(s) = s%5 and cost weight 2.0 by default.

5. Related Work

Detection Transformer. Detection Transformer (DETR)
[3] proposed a new detector with Transformer-based heads
and eliminated the dependents of head-craft modules. Al-
though the novelty design, it suffers from slow convergence
and inferior performance. Many follow-ups try to solve the
problem from different perspectives. For example, some
work [14, 32, 41, 28] found the importance of positional

6497



Model Id PSL PMC Memory Fusion | AP AP5;y APz3
0 (baseline) 49.0 66.6 535
1 (baseline + NMS) 492 668 54.0
2 v 498 66.7 545
3 v v 502  66.7 55.0
4 v v Simple Fusion | 502 66.7 55.0
5 v v U-like Fusion | 50.3 66.6  55.0
6 v v Dense Fusion | 504 67.3 55.1
7 Dense Fusion | 49.4 673 54.1

Table 6: Ablations for different configurations. We use
“PSL” and “PMC” for the position-supervised loss (Sec.
2.2) and the position-modulated cost in matching (Sec. 2.3).
For a fair comparison, we list the baseline DINO with NMS
(Model Id 1). All models except model O are tested with a
NMS.

Model Id f1(s,p) AP APy, APy
0 (Model 1 in Table 6) | 1 492 668 54.0
1 505 493 615 537
2 s 494 672 542
3 52 49.6 668 545
4 s 49.4 658 543
5 sTp02 486 660 528
6 s'p! 264 325 288
7 s2p! 274 337 298
8 (e —1)/(e—1) [ 496 668 544
9 sin(s x 7/2) 485 673 528
Table 7: Ablations for different loss designs for the

position-supervised loss. s and p are used for IOU scores
and classification probabilities, respectively. fi(s,p) is an
extended function of the f;(s) in Eq. 3 to include classifi-
cation probabilities.

Model Id CLS Welght AP AP59 APr5
0 4.0 49.7 663 545
1 5.0 50.1 66.6 549
2 (Model 3 in Table 6) | 6.0 50.2 66.7 55.0
3 8.0 499 665 547
4 10.0 49.6 665 545
5 20.0 483 659 527

Table 8: Ablations for different loss weights for the
position-supervised loss. The “CLS weight” means the
classification weight in final losses.

Model 1d fa(s) | Cost Weight | AP AP5y APzs
0 (Model 2 in Table 6) | 1 2.0 49.8 667 54.5
1 925120 500 667 54.9
2 500 2.0 50.2 667 55.0
3 s 2.0 497 658 54.7
4 52 2.0 488 647 537
5 $05 1.0 496 646 550
6 505 4.0 496 674 540
7 500 8.0 488 67.1 527

Table 9: Ablations for different designs and cost weight for
the position-modulated cost. s means the IOU scores. f2(s)
is the function defined in Eq. 2.

priors and propose to add more positional prior to models.
DAB-DETR [28], as an example, formulated the decoder
queries as dynamic anchor boxes for better results. Some
work [47, 33] designed new operators to fasten model train-
ing, like deformable attention in Deformable DETR. An-
other line of work [22, 19, 5, 48] tried to add extra branches

to the decoder. They found that auxiliary tasks can help the
convergence of models. There are other explorations with
traditional matching [35], model pre-train [9], and so on.
Although their great progress, the unstable matching prob-
lem across decoder layers got less attention. We analyze
the reason for the unstable matching problem and propose
a simple but priceless solution to the problem in this pa-
per. The new loss and matching designs introduce marginal
costs to previous work, resulting in better model perfor-
mance.

Variants of Focal Loss. Our loss design is a variant of
Focal loss [26]. Although it is less focused on DETR vari-
ants, there are many works [13, 25, 1] that focus on loss
improvement in classical detectors. The most related work
to our solution is the task-aligned loss [13]. We have a dif-
ferent motivation with the task-aligned loss. We focus on
the stable matching problem in DETR variants, which does
not exist in traditional detectors. Moreover, although the
great results of task-aligned loss in one-stage detectors’, the
loss cannot be used to DETR variants directly. It introduces
classification scores as extra supervision, which results in
performance drops in the DETR-like models with one-to-
one matching, as shown in Sec. 7. The key reason for the
difference is the two matching ways between traditional de-
tectors and our solutions. In our paper, we first analyze the
phenomenon of unstable matching and point out that the
key is the multi-optimization path problem. Then we show
that the most crucial design to solve the problem is to use
and only use positional metrics to supervise classification
scores. We provide a neater and more principal solution to
the unstable matching problem in DETR-like models.

6. Conclusion

We analyze the stable matching in DETR-like models
and present that the root cause of the problem is the multi-
optimization path problem. To solve the multi-optimization
path problem, we present that the key to solving it is to use
positional metrics to supervise classification scores of posi-
tive examples. We then propose a new position-supervised
loss and a new position-modulated cost for DETR-like mod-
els. Moreover, we propose a dense memory fusion to en-
hance encoder and backbone features. We validate the ef-
fectiveness of our design on many DETR-like variants.
Limitations. Although our method shows great perfor-
mance, we only verify it on DETR-like image object de-
tection and segmentation. More explorations like 3D object
detection will be left as our future work. Moreover, we fo-
cus on the classification parts in the loss and matching only,
while the localization parts are preserved. Analyses for the
localization parts are left as our future work as well.

5One-stage and two-stage detectors are commonly used concepts in the
classical detectors. We view DETR variants as a new design and do not
classify them as the one-stage or two-stage detectors.
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