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Abstract

Modern object detectors have taken the advantages of
backbone networks pre-trained on large scale datasets. Ex-
cept for the backbone networks, however, other components
such as the detector head and the feature pyramid network
(FPN) remain trained from scratch, which hinders the gen-
eralization capacity of detectors. In this study, we pro-
pose to integrally migrate pre-trained transformer encoder-
decoders (imTED) to a detector, constructing a feature ex-
traction path which is “fully pre-trained” so that detec-
tors’ generalization capacity is maximized. The essential
differences between imTED with the baseline detector are
twofold: (1) migrating the pre-trained transformer decoder
to the detector head while removing the randomly initial-
ized FPN from the feature extraction path; and (2) defining
a multi-scale feature modulator (MFM) to enhance scale
adaptability. Such designs not only reduce randomly initial-
ized parameters significantly but also unify detector train-
ing with representation learning intendedly. Experiments
on the MS COCO object detection dataset show that imTED
consistently outperforms its counterparts by ∼2.4 AP. With-
out bells and whistles, imTED improves the state-of-the-art
of few-shot object detection by up to 7.6 AP. Code is re-
leased at https://github.com/LiewFeng/imTED.

1. Introduction
Over the past two years, vision transformers (ViTs) [6]

have been promising representation models. The vanilla
transformer trained with a sophisticated self-supervised
learning method, e.g., masked autoencoder (MAE) [11],
demonstrated great potential. Since the introduction of
transformers [35] to computer vision, the effort of taming
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Figure 1: Comparison of the baseline detector e.g., Faster
R-CNN [30] using a transformer backbone (upper) with
the proposed imTED (lower). The baseline detector solely
transfers a pre-trained backbone network, e.g., the encoder,
but training the detector head and FPN from scratch. By
contrast, our imTED approach integrally migrates the pre-
trained transformer encoder-decoder. It significantly re-
duces the proportion of randomly initialized parameters and
improves detector’s generalization capability.

them for object detection has never stopped [3, 19]. This
is motivated by the observation that ViTs pre-trained on ex-
traordinarily large datasets incorporate over-completed and
versatile features, which guarantee the performance and
generalization capability of detectors finetuned on small
datasets. [19, 17].

Modern object detectors, such as Faster R-CNN and
Mask R-CNN [30, 12], typically consist of a backbone net-
work, a neck component and a detector head. However,
except for the backbone network, other components that oc-
cupy a significant proportion of parameters remain trained
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from scratch, Fig. 1(upper). Such components, including
but not limited to the region proposal network (RPN) [30],
the feature pyramid network (FPN) [20] and the detector
head [9], fail to take advantages of the representation mod-
els pre-trained on large-scale datasets.

In this study, we do not design any new components for
object detection; instead, we devote to take full advantages
of pre-trained models to improve detector’s generalization
capability. Specifically, we propose to integrally migrate
pre-trained transformer encoder-decoders (imTED) to de-
tectors, Fig. 1(lower), constructing a feature extraction path
which is not only “fully pre-trained” but also consistent with
pre-trained models, as much as possible.

As shown in Fig. 1(lower), imTED employs the ViT en-
coder pre-trained with MAE [11] as backbone, and uses the
decoder as the detector head. It breaks the routine to re-
move the randomly initialized FPN from the feature extrac-
tion path while leveraging the adaptive respective field pro-
vided by the attention mechanism in ViTs [6, 28] to handle
objects at multiple scales. These designs support the in-
tegral migration of pre-trained encoder-detector to the ob-
ject detection pipeline. By adding linear output layers, i.e.,
a light-weight classification layer and a bounding-box re-
gression layer, atop the migrated encoder-decoder, imTED
realizes object classification and localization. To enhance
the capacity for multi-scale object detection, we introduce
a multi-scale feature modulator (MFM), which combines
both the advantages of FPN with those of fully pre-trained
models.

The competitiveness of imTED is validated upon popular
detectors including Faster R-CNN and Mask R-CNN [30,
12]. Experiments on the MS COCO dataset demonstrate
that imTED with ViT-base model outperforms its counter-
part by ∼2.4 AP at moderate computational cost. Benefiting
from the integral migration of pre-trained models, imTED
demonstrates strong generalization capability, which is val-
idated by low/few-shot detection tasks. When reducing pro-
portions of the training data, performance gains of imTED
monotonously increase. When training a few-shot detector,
by freezing the backbone network while finetuning the rest
detector components, imTED improves the state-of-the-art
by up to 7.6 AP. imTED opens up a promising direction for
few-shot object detection using vision transformers.

The contributions of this study include:

• We integrally migrate pre-trained transformer encoder-
decoders (imTED) to object detectors, constructing a
“fully pre-trained” feature extraction path to improve
detectors’ generalization capacity.

• We redesign the feature extraction path to guarantee
the “integral migration” of the pre-trained transformer
encoder-decoders. We introduce a multi-scale feature

modulator (MFM), to improve the scale adapatiblity of
imTED.

• imTED not only achieves significant performance
gains on object detection and few-shot object detec-
tion, but also takes a step towards unifying detector
training with representation learning.

2. Related Work

Representation Models. Object detection has widely
explored representation models pre-trained upon large-scale
datasets. Over the past decade, CNNs [15, 31, 33, 13, 37]
have been preferred representation models. Recently, vi-
sion transformers [6, 25, 7, 36] demonstrated greater po-
tential. Vision transformers including ViT [6], Swin [25],
MViT [7], and PvT [36] became promising models for im-
age recognition. The vision transformers [1, 39, 27, 11]
trained with self-supervised paradigms were validated to
have higher generalization capability. Such generalization
capability was pushed to a new height by MAE [11], which
constructed not only representation models for feature ex-
traction but also decoders for image reconstruction.

Model object detectors, either CNN-based [24, 23, 9, 30,
12] or transformer-based [2, 40], utilized pre-trained rep-
resentation models as encoders to extract features, while
left the FPN and detector head using randomly initialized
parameters. These randomly initialized parameters, when
finetuned using few training samples, experience difficult to
achieve promising performance. Considering that the back-
bone, the FPN [22] and the detector head occupy most of the
learnable parameters of an object detector, to make them be
“fully pre-trained” is an important problem to be solved.

Feature Pyramid Network. FPN [22] leveraged a top-
down structure with lateral connections to construct high-
level semantic feature maps at scales, enhancing the flex-
ibility for multi-scale representation. It was designed to
adapt hierarchical CNN features but not compatible with
plain representation models, e.g., ViT [6]. To solve this
problem, a small network was designed to obtain multi-
scale features [19], but this unfortunately caused more pa-
rameters being randomly initialized.

The ViTDet method [17] proposed to remove the top-
down feature fusion to simplify FPN, but remains not con-
structing a “fully pre-trained” feature extraction path. The
major difference between ViTDet [17] and our imTED ap-
proach lies in the detector head. imTED simply feeds the
last feature map of the MAE encoder to the RoI-Align com-
ponent, without applying FPN. The aligned features are fed
to the pre-trained transformer decoder for object classifica-
tion and localization. Such designs guarantee that the fea-
ture extraction path be consistent with that of the pre-trained
model.

6826



Detector Head. DETRs [2, 40] are representative de-
tectors, which leverage transformers as the detector head.
Given CNN features as input, the transformer encoder-
decoder reasons the relations of the objects and the global
image context to output the final set of predictions. How-
ever, the vision transformers in DETRs were randomly ini-
tialized and only used to process features extracted by the
backbone network. By contrast, the transformer in our
imTED is pre-trained and utilized to not only extract fea-
tures but also perform feature transformation. As a variant
of DETR, ViDT [32] replaced the CNN backbone with a
pre-trained transformer but still leaved the following trans-
former neck randomly initialized.

Recently, ViTDet [17] and MIMDet [8] tried the pow-
erful representations pre-trained by MAE [11] for object
detection. However, ViTDet solely leverages the pre-
trained MAE encoder but deprecates the pre-trained de-
coder. Whereas, the proposed imTED utilizes both the
pre-trained encoder and the pre-trained decoder. Although
MIMDet [8] utilizes both the encoder and decoder for fea-
ture extraction, the core idea is leveraging the reconstruc-
tion ability of decoder to mask input image patches, which
reduces the computation cost. It keeps the randomly initial-
ized FPN and detector head, as well as introducing more
randomly initialized layers for multi-scale feature extrac-
tion. By contrast, the imTED approach in this study uti-
lizes the pre-trained encoder to extract features and the pre-
trained decoder as the detector head, constructing a “fully
pre-trained” feature extraction path, for the first time to our
best knowledge.

3. Approach
The goal of this study is to integrally migrate the pre-

trained transformer encoder-decoder as the pillars of an ob-
ject detector. To this end, we choose encoder-decoders
pre-trained by MAE [11] and migrate them to conven-
tional two-stage detectors, e.g., Faster R-CNN and Mask
R-CNN [30, 12]. In what follows, we first describe the
motivation of imTED. We then address how to integrally
migrate the pre-trained encoder-decoders. Finally. we de-
scribe the implementation details of an imTED detector. We
also show that modulating multi-scale features to the fully
pre-trained feature extraction path further boosts the detec-
tion performance.

3.1. Motivation

MAE pre-trains encoder-decoder representation models
based on the pretext task of masked image modeling [11].
By randomly masking image patches and reconstructing the
masked patches, it trains an encoder for feature extraction
and a decoder for image context modeling. It was validated
that the MAE decoder has the ability to reconstruct masked
pixels under a high mask ratio of 75% [11], demonstrating

Table 1: Object detection and localization performance un-
der three decoder variants on the ImageNet Localization
Dataset. mAP and CoLoc are calculated under 0.5 IoU.
CoLoc measures the correctly localized object ratio.

Model Variants mAP CoLoc Acc.

pre-trained encoder 43.4 77.4 77.1
+ random decoder 43.9 (+0.5) 77.6 (+0.2) 77.7 (+0.6)
+ pre-trained decoder 44.8 (+1.4) 78.3 (+0.9) 78.0 (+0.9)

strong capacity to model image context information. This
piques our curiosity: could the spatial context modeling ca-
pacity of the MAE decoder benefits object localization?

To answer this question, we conduct an experiment
about single object detection on the ImageNet Localization
Dataset [5]1 In the experiment, detectors are trained to pre-
dict a single object in each image to avoid the interference of
complicated feature-object matching, design of FPN, and/or
RoI alignment. Three variants of the object feature extractor
are compared: (i) pre-trained encoder only; (2) pre-trained
encoder with randomly initialized decoder; (3) pre-trained
encoder with pre-trained decoder (imTED). Following the
feature extractor, an object localization head and a classifi-
cation head is used to realize object detection.

As shown in Table 1, the introduction of the randomly
initialized decoder boosts the detection performance by 0.5
mAP and the localization performance by 0.2 CoLoc. Go a
step further, the pre-trained decoder improves the detection
performance by 1.4 mAP and the localization performance
by 0.9 CoLoc. The significant performance gains validate
that the context modeling capacity of the pre-trained de-
coder does benefit object localization, which motivates our
integral migration approach.

3.2. Constructing A Fully Pre-trained Feature Ex-
traction Path

Baseline Detectors. The Faster R-CNN [30] and Mask
R-CNN [12] are employed as baseline detectors. The de-
tector mainly consists of four components: a backbone net-
work, a feature pyramid network (FPN), a region proposal
network (RPN) and a detector head. By adding a mask
head atop Faster R-CNN, Mask R-CNN can simultaneously
conduct object detection and instance segmentation. The
components of a conventional detector are partially pre-
trained. The backbone network is pre-trained on large-scale
datasets, while the FPN, RPN and detector head, which oc-
cupy a large proportion (∼ 40%) of learnable parameters,
are trained from scratch. The reason to use randomly initial-
ized components lies in that the backbone networks speci-
fied for image classification [5] can not be directly applied

1Please refer to the supplementary material for details of dataset prepa-
ration.
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Figure 2: Architecture of the imTED detector. By integrally migrating the transformer encoder-decoder, imTED constructs
a feature extraction path, which is “fully pre-trained”. The reconstructed feature pyramid is only applied for object proposal
generation but does not involve the feature extraction procedure. With these designs, the proportion of randomly initialized
network parameters of the detector is significantly reduced.

for multi-scale feature extraction and object localization.
Integral Migration of Encoder-Decoder. As shown in

Fig. 2, we redesign the feature extraction path by integrally
migrating the transformer encoder and decoder pre-trained
with MAE. The created imTED detector not only leverages
the encoder for feature extraction but also the decoder for
feature transformation. It then leverages a fully connected
layer, a light-weight layer, for object classification and lo-
calization. Notice that the proposal generation pipeline re-
mains unchanged, i.e., the FPN and RPN remain using ran-
domly initialized parameters. Whereas, the proposal gen-
eration pipeline is only responsible for producing region of
interests (RoIs) but does not involve object feature extrac-
tion or transformation. Thereby, the randomly initialized
parameters would not deteriorate detector’s generalization
capacity.

With these redesigns, the imTED detector has signif-
icantly fewer parameters trained from scratch, mostly lie
in the proposal generation path, Fig. 2. When using the
ViT-S [6] model, for example, the Faster R-CNN detector
has ∼17.7M parameters trained from scratch, while imTED
changes this figure to ∼3.3M, which infers a reduction of
81.3%. As is known, larger proportions of pre-trained pa-
rameters imply higher generalization capability. imTED
thereby enjoys significantly higher performance than the
baseline detector.

Removing Feature Pyramid Network. In Faster R-
CNN, FPN can be deployed atop the encoder to augment
the features to multiple resolutions Fig. 3(a). With FPN,
large objects are represented by the low-resolution features
and small ones by high-resolution features. However, FPN
is constructed by using randomly initialized parameters,
which violates the “fully pre-trained” idea. Fortunately,
benefiting from the global attention mechanism, the trans-

former encoder is able to construct an adaptive receptive
field [28], which reduces the requirement of scale alignment
between objects and features. As a result, we are able to re-
move the FPN from the feature extraction path, Fig. 3(b). It
is no doubt that removing FPN has a negative impact on the
multi-resolution representation capability of features. Nev-
ertheless, significant performance gains are observed in ex-
periments, which supports the idea that constructing a “fully
pre-trained” feature extraction path is more important than
the multi-scale prior.

3.3. Detector Implementation

As described in Sec. 3.2, by migrating the transformer
encoder as the backbone, plugging the decoder to the detec-
tor head, and removing the FPN, we construct a “fully pre-
trained” feature extraction path. The architecture of RPN is
not updated as it plays the role of generating region propos-
als but does not disturb the feature extraction stream. An
imTED detector is then implemented by simply adding a
few linear layers and a proposal generation module to the
fully pre-trained encoder-decoder, Fig. 2.

Backbone Network. There is no modification to the
transformer encoder except for resizing the encoder’s posi-
tional embeddings so that they are consistent with input im-
age sizes. The transformer encoder, pre-trained on a large-
scale dataset, outputs a single-scale feature map which is
down-sampled by a factor of 16 relative to the input image.
The single-scale feature map is fed to the RoI-Align module
for proposal feature extraction.

Region Proposal Generation. In the two-stage detec-
tion architecture [30], dense and multi-scale region propos-
als are used for object localization. To produce multi-scale
feature maps, we up-sample or down-sample intermedi-
ate ViT feature maps by placing four resolution-modifying
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Figure 3: The involvement of (a) a conventional Faster R-CNN detector to (b) a single-scale detector (imTED-SS) and (c)
the imTED detector with multi-scale feature modulating.

modules at equally spaced intervals of d/4 transformer
blocks following [19], where d denotes the total number of
blocks. The multi-scale feature maps are fed to the FPN,
the output of which is further fed to the RPN for proposal
generation. The training of the RPN parameters, i.e., the
weights of the fully connected output layer, is consistent
with that of Faster R-CNN [30].

Detector Head. A pre-trained MAE decoder is migrated
to the detector head to replace the randomly initialized net-
work parameters, Fig. 2. The detector head consists of the
pre-trained decoder and two linear layers. Given the feature
map extracted by the encoder, an RoI-Align module extracts
features for each region proposal. The extracted features are
then embedded with location information by summarizing
with position embeddings [11]. The features with position
embedding are then fed to the decoder and transformed with
alternative attention and MLP layers. The transformed fea-
tures are finally fed to the linear classification and regres-
sion layers to predict object categories and location offsets.

3.4. Multi-scale Feature Modulator

Although the single-scale feature extracted by the trans-
former encoder is adaptive to object scales to some extent,
we are wondering could the multi-scale feature representa-
tion be recalled back, in a new fashion, to further enhance
the scale adaptability? To defend the idea of “fully pre-
training”, we can not directly call the FPN back to the fea-
ture extraction path; instead we redefine FPN as a multi-
scale feature modulator (MFM), which acts after the RoI-
Align module Fig. 3(c). Feature modulation for region pro-
posals is defined as an adaptive linear weighting procedure,
as

F = Fss +α ∗ Fms, (1)

where F ∈ RC×H×W denotes the weighted features. Fss ∈
RC×H×W denotes single-scale feature extracted by the pre-
trained encoder and Fms ∈ RC×H×W denotes multi-scale
features extracted by the randomly initialized FPN, which is
constructed by using the single-scale feature as input [20].
α ∈ RC is a learnable weight vector. H and W respectively
denote the height and weight of the output feature maps of

the RoI Align module [30]. Both H and W are set to 7, fol-
lowing the setting of Faster R-CNN [30]. C is the channel
dimension.

At the start-point of detector training, the elements of
α in Eq. 1 are initialized to zeros. When detector train-
ing proceeds, α gradually updates so that the single-scale
feature extracted by encoder is adaptively combined with
the multi-scale features. In a learnable way, the multi-scale
representation capacity is modulated to the single-scale rep-
resentation. The evolution of Faster R-CNN to imTED-SS
and imTED is illustrated in Fig. 3.

4. Experiment
4.1. Setting

The ViT models are categorized to ViT-S, ViT-B and
ViT-L [6] according to the parameter scales. These models
are pre-trained on ImageNet-1K using the self-supervised
MAE method [11] for 1600 epochs. By adding a proposal
generation module, RoI-Align module, multi-scale feature
modulator and light-weight linear output layers atop the
pre-trained encoder-decoder, the imTED detector is con-
structed. The detectors are evaluated on the MS COCO
dataset [21], which consists of ∼118k training images and
5k validation images. Data augmentation strategies are de-
fined by resizing image with shorter size between 480 and
800 while the longer side is no larger than 1333 [2] . The
detector is trained using the AdamW optimizer [26] with
a learning rate 1e-4, a weight decay of 0.05. The training
lasts for 3×schedule (36 epochs with the learning rate de-
cayed by 10 at epochs 27 and 33). The batch size is 16,
distributed across 8 GPUs (2 images per GPU). For the ViT-
S/B/L models, a layer-wise lr decay [1] of 0.75 and a drop
path rate of 0.1/0.2/0.3 are also applied.

4.2. Detection Performance

In Table 2, imTED detectors are evaluated and com-
pared with the baseline and state-of-the-art detectors. By
replacing the ResNeXt101 backbone with a pre-trained ViT
model, the baseline detector improves the average preci-
sion (AP) from 43.1 to 50.5, setting a solid baseline. Upon
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Table 2: Object detection performance on the MS COCO dataset. Comparison of the proposed imTED detector with the
state-of-the-art detectors using vision transformers as backbones. None of compared detection methods (ViTDet, MIMDet,
imTED-SS and imTED) uses relative position embedding.

Approach Backbone Pre-train Epochs Mask R-CNN Faster R-CNN

APbox APmask AP AP50 AP75

Baseline [37] ResNeXt101 1k, sup 36 44.5 39.7 43.1 63.6 47.2
Baseline [25] Swin-B 1k, sup 36 48.5 43.4 - - -
Baseline [18] MViTv2-B 1k, sup 36 51.0 45.7 - - -
Baseline [30] ViT-B 1k, MAE 36 51.3 45.3 50.5 71.4 55.5
ViT-Adapter [4] ViT-S 1k, sup 36 48.2 42.8 - - -
imTED-SS(ours) ViT-S 1k, MAE 36 48.0 42.4 47.3 68.6 51.0
imTED(ours) ViT-S 1k, MAE 36 48.7 42.7 48.2 68.4 52.6
ViT-Adapter [4] ViT-B 1k, sup 36 49.6 43.6 - - -
ViT-Adapter [4] ViT-B 1k, MAE 50 50.8 45.1 - - -
Li et al. [19] ViT-B 1k, MAE 100 50.3 44.9 - - -
ViTDet [17] ViT-B 1k, MAE 100 51.6 45.9 - - -
MIMDet [8] ViT-B 1k, MAE 36 51.7 46.1 - - -
imTED-SS(ours) ViT-B 1k, MAE 36 52.3 46.0 52.2 72.8 57.1
imTED(ours) ViT-B 1k, MAE 36 53.3 46.4 52.9 73.2 57.9
ViT-Adapter [4] ViT-L 22k, sup 36 52.1 46.0 - - -
Li et al. [19] ViT-L 1k, MAE 100 53.3 47.2 - - -
ViTDet [17] ViT-L 1k, MAE 100 55.1 48.9 - - -
MIMDet [8] ViT-L 1k, MAE 36 54.3 48.2 - - -
imTED(ours) ViT-L 1k, MAE 36 55.5 48.1 55.4 75.4 60.6

Table 3: Ablation studies using ViT-S as the backbone (encoder) in 1x schedule. ⋆ indicates that the module is initialized
using MAE pre-trained weights.

Detector Head FPN MFM Params FLOPs AP AP50 AP75 APS APM APL

Conv Layers ✓ ✗ 42.6M 403G 42.4 62.9 46.0 25.3 45.5 56.4
Decoder ✓ ✗ 30.1M 415G 42.2 62.4 45.8 25.8 45.0 57.0
Decoder⋆ ✓ ✗ 30.1M 415G 42.5 63.0 46.1 25.6 45.4 57.7
Decoder⋆ ✗ ✗ 30.1M 415G 43.2 63.9 46.9 25.0 46.6 58.6
Decoder⋆ ✗ ✓ 30.3M 430G 44.0 64.6 47.6 26.2 47.3 59.3

the solid baseline, imTED-SS with ViT-B model improves
the AP by 1.7 (from 50.5 to 52.2), which is a large mar-
gin for the challenging task. Note that this improvement
is achieved without using FPN in the feature extraction
path, which substantially validates the “integral migration”
idea. When using multi-scale feature modulation (MFM),
the total performance gain increases to 2.4 (52.9 vs. 50.5).
imTED respectively improves the AP50 by 1.8 (from 71.4
to 73.2), and the AP75 by 2.4 (from 55.5 to 57.9). When us-
ing the Mask R-CNN framework, it respectively improves
the APbox by 2.0 and the APmask by 1.1, which are all sig-
nificant margins. imTED also significantly outperforms the
state-of-the-art detectors, i.e., MIMDet and ViTDet, which
use pre-trained transformers as backbones. ViTDet solely

leverages the pre-trained encoder but deprecates the de-
coder. MIMDet leverages both the encoder and decoder for
feature extraction but remains using a randomly initialized
detector head, which deteriorates its generalization capabil-
ity. imTED overcomes these disadvantages and achieves
higher performance. Without using MFM, the APbox and
APmask of imgTED-SS respectively outperform the ViT-
Det detector (which uses FPN) by 0.7 (52.3 vs. 51.6) and
0.1 (46.0 vs. 45.9). When using MFM, the improvements of
APbox and APmask rise up to 1.7 and 0.5. When using the
large backbone (ViT-L), the APbox and APmask of imTED
respectively outperform MIMDet by 1.1 and 0.9. Note that
even only trained for 36 epochs, the imTED is compara-
ble to, if not outperforms, ViTDet which is trained for 100
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Figure 4: Comparison of object localization loss (left) and
object classification loss (right).

epochs.

4.3. Ablation Study

In ablations, we fine-tune the detector for 1× schedule
(12 epochs with the learning rate decayed by 10× at epochs
9 and 11) on the train2017 split and evaluate on the val2017
split. By default, the ViT-S [34] is set as the backbone (en-
coder), and a 4-layer decoder with 256 dimensions is em-
ployed as the detector head. Unless otherwise specified, the
ablation experiments are performed on Faster R-CNN.

Integral Migration. The baseline detector (Faster R-
CNN) only uses a pre-trained encoder as backbone follow-
ing [19]. Its predictions are obtained from FPN, convo-
lutional (Conv) and fully connected layers in the detector
head. By replacing the Conv layers in the detector head with
the pre-trained MAE decoder and removing the FPN, we
construct an integrally pre-trained feature extraction path.
In Table 3, when replacing Conv layers in the detector head
with a decoder without pre-training, there is a little perfor-
mance drop -0.2 (42.2 vs. 42.4) observed. When using the
encoder as the backbone and the decoder pre-trained by the
MAE as the detector head, the AP performance improves
0.3 (42.5 vs. 42.2).

Removing FPN. By skipping FPN and constructing a
fully pre-trained feature extraction path, imTED further im-
proves AP by 0.7 (43.2 vs. 42.5). The total performance
gain (43.2 vs. 42.4) over the baseline detector, considering
the extensively investigated problem and the challenging as-
pects of the dataset, validates the effectiveness of the pro-
posed imTED approach.

MFM. In Table 3, when using multi-scale features to
modulate the feature extracted by fully pre-trained models,
imTED improves AP performance by 0.8 (44.0 vs. 43.2).
This shows the compatibility of fully pre-trained models
with the randomly initialized module. In total, imTED im-
proves the AP performance by 1.6 (44.0 vs. 42.4).

Training Loss Analysis. As shown in Fig. 4(left),
imTED’s localization loss decreases faster than the base-
line detector using either a randomly initialized decoder or
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Figure 5: Performance gains during a 3× training with ViT-
B. Left: AP improvements. Right: AP improvements under
different IoU thresholds.

Table 4: Detection performance using ViT-S in 1x schedule
under different detector head depth.

Depth FLOPs AP AP50 AP75 APS APM APL

1 371G 42.3 62.8 45.8 25.1 45.4 56.5
2 390G 43.1 63.4 46.8 26.1 46.3 57.4
3 410G 43.9 64.2 47.3 26.0 46.9 58.7
4 430G 44.0 64.6 47.6 26.2 47.3 59.3

a randomly initialized FPN. imTED benefits from both the
integral migration and multi-scale feature representation,
demonstrating larger advantages on the localization ability.
On the other hand, the compared detectors have similar clas-
sification loss curves, Fig. 4(right). This shows that imTED
benefits a lot from the strong localization capacity of the
pre-trained decoder.

Depth of Decoder. In Table 4, we evaluate the effect of
depth of decoder (transformer blocks). Performance gradu-
ally saturates when the depth of decoder increases and the 4-
layer decoder achieves the best performance. While larger
objects benefit more from deeper decoders than smaller
ones, the computational cost increases with the number of
decoder layers.

Performance Gains During Training. imTED signif-
icantly improves AP during training, Fig. 5, which show
that it not only speeds up training convergence but also
raises the performance upper-bound. Particularly, imTED
achieves larger performance gains under larger IoU thresh-
olds, which implies improved localization capacity.

Computational Cost. In Table 3, replacing the Conv
layers with the pre-trained decoder brings moderate in-
crease of computational cost, i.e., the FLOPs increases
from 403G to 415G. When introducing MFM as the mod-
ulator, the FLOPs further increases from 415G to 430G. In
total, the FLOPs increase by 6.7%.
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4.4. Generalization Capacity

Low-shot Object Detection. imTED has greater gener-
alization capacity because its feature extraction procedure
is consistent with the pre-trained representation models. To
validate this capacity, we evaluate the performance gains of
imTED over the baseline detector by gradually reducing the
training samples, which is termed low-shot object detection,
Fig. 6(left). When the percentage of training data reduces,
the performance gains of imTED over the baseline detector
monotonously increase. Larger performance gains with less
training data demonstrate greater generalization capability.

We also evaluate the detection performance of object cat-
egories under different numbers of training instances. As
shown in Fig. 6(right), for the object categories of fewer
training instances, imTED outperforms the baseline detec-
tor by larger margins. This further validates the effective-
ness of imTED for low-shot object detection, which implies
higher generalization capability.

Few-shot Object Detection. imTED can be applied for
few-shot object detection without any modification. Fol-
lowing Meta YOLO [14], the object categories in MS
COCO are divided into two groups: base classes with ade-
quate annotations and novel classes with K-shot annotated
instances. On MS COCO, 20 classes are selected as novel
ones and the remaining 60 classes as base ones. The base
classes are used to initialize the detector, i.e., endowing it
the ability to localize objects, through base training. The de-
tector is then finetuned upon the novel classes for few-shot
object detection. In Table 5, imTED respectively improves
the state-of-the-arts of few-shot detection by 3.5 (19.0 to
22.5) and 7.6 (22.6 to 30.2) under 10-shot and 30-shot set-
tings. The large performance gains further validate the gen-
eralization capability of the proposed imTED detectors.

Occluded Object Detection. We configure a sub-set
of (534) images with occluded objects from the validation
set of MS COCO. If two ground-truth objects has an IoU
larger than 0.5, the corresponding image will be selected.
In Table 6, by introducing the decoder and removing FPN,
imTED improves the AP performance of occluded object
detection by 1.2 (36.6 to 37.8). When using FPN as the
modulator, the AP improvement increases to 2.4 (36.6 to
39.0). The total performance gain on the occluded subset
is larger than that of the full set of MS COCO (2.4 vs. 1.6),
demonstrating the superiority of integral migration on the
occluded object detection task. As is known, MAE learns
features via a form of denoising autoencoder, where each
image is occluded with random patch masks and fed to the
encoder while the decoder predicts the original pixel val-
ues of the masked (occluded) patches. This occlusion-and-
prediction procedure performed on a large mount of im-
ages enables MAE models intrinsically learning occlusion
invariant features. By integral migration, the imTED detec-
tor retains the capacity of MAE pre-trained models, which
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Figure 6: Performance gains on low-shot object detection.
Left: Reducing training samples. Right: Training sample
numbers.

Table 5: Performance comparison of few-shot object detec-
tion on the MS COCO dataset.

Shots Method Detector AP

10

Meta YOLO [14] YOLOv2 5.6
CME [16] FasterR-CNN + R101 15.1
FCT [10] PVTv2-B2-Li 17.1
Meta-DETR [38] DETR + R101 19.0
DeFRCN [29] FasterR-CNN + R101 18.5
Baseline Faster R-CNN + ViT-B 14.8
imTED(ours) imTED + ViT-B 22.5

30

Meta YOLO [14] YOLOv2 9.1
CME [16] FasterR-CNN + R101 16.9
FCT [10] PVTv2-B2-Li 21.4
Meta-DETR [38] DETR + R101 22.2
DeFRCN [29] FasterR-CNN + R101 22.6
Baseline Faster R-CNN + ViT-B 22.2
imTED(ours) imTED + ViT-B 30.2

Table 6: Ablation studies using ViT-S as the backbone (en-
coder) on occluded objects in 1x schedule. ⋆ indicates that
the module is initialized with MAE pre-trained weights.

Detector Head FPN MFM AP AP50 AP75

Conv Layers ✓ ✗ 36.6 55.5 38.8
Decoder ✓ ✗ 36.9 56.1 39.2
Decoder⋆ ✓ ✗ 37.5 57.1 39.5
Decoder⋆ ✗ ✗ 37.8 57.3 42.2
Decoder⋆ ✗ ✓ 39.0 58.9 41.3

facilities detecting occluded objects.

5. Conclusion and Future Remarks
We improved the conventional detection pipeline by inte-

grally migrating pre-trained transformer encoder-decoders
(imTED). The idea is to construct a feature extraction path
which is not only “fully pre-trained” but also consistent with
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MAE models. By migrating an MAE decoder to the detec-
tor head and removing FPN, imTED updated Faster R-CNN
to a simpler yet more effective detector, where FPN can be
optionally used as a feature modulator to further enhance
scale adaptability. Experiments on low/few-shot and oc-
cluded object detection demonstrated the performance gains
brought by imTED, with striking contrast with the state-of-
the-arts. imTED provides an insight to fully exploit the po-
tential of pre-trained masked autoencoders.

Despite the fact that imTED is implemented with less
parameters, the computational cost of the decoder is moder-
ately larger than the detector head with Conv layers. In the
future, one solution is to use cascaded rejection strategies to
reduce object proposals. The other solution is to configure a
light-weight decoder using knowledge distillation. Another
limitation of this work is that it’s only applicable to the pre-
trained models with both an encoder and a decoder.
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data-efficient image transformers & distillation through at-
tention. In ICML, volume 139, pages 10347–10357, 2021.
7

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 30, 2017. 1

[36] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In IEEE CVPR, pages 568–
578, 2021. 2

[37] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In IEEE CVPR, pages 1492–1500, 2017. 2,
6

[38] Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, and Shijian Lu.
Meta-detr: Few-shot object detection via unified image-level

meta-learning. arXiv preprint arXiv:2103.11731, 2(6), 2021.
8

[39] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang
Xie, Alan Yuille, and Tao Kong. ibot: Image bert pre-training
with online tokenizer. arXiv preprint arXiv:2111.07832,
2021. 2

[40] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 2, 3

6834


