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Abstract

Understanding and analyzing animal behavior is in-
creasingly essential to protect endangered animal species.
However, the application of advanced computer vision tech-
niques in this regard is minimal, which boils down to lack-
ing large and diverse datasets for training deep models. To
break the deadlock, we present LoTE-Animal, a large-scale
endangered animal dataset collected over 12 years, to fos-
ter the application of deep learning in rare species conser-
vation. The collected data contains vast variations such
as ecological seasons, weather conditions, periods, view-
points, and habitat scenes. So far, we retrieved at least
500K videos and 1.2 million images. Specifically, we se-
lected and annotated 11 endangered animals for behavior
understanding, including 10K video sequences for the ac-
tion recognition task, 28K images for object detection, in-
stance segmentation, and pose estimation tasks. In addi-
tion, we gathered 7K web images of the same species as
source domain data for the domain adaptation task. We
provide evaluation results of representative vision under-
standing approaches and cross-domain experiments. LoTE-
Animal dataset would facilitate the community to research
more advanced machine learning models and explore new
tasks to aid endangered animal conservation. Our dataset
will be released with the paper. Our dataset can be found at
https://LoTE-Animal.github.io

1. Introduction
Protecting endangered wildlife is becoming increasingly

challenging as global biodiversity declines [16]. Accu-
rate information about wild animals is crucial for imple-
menting effective conservation measures [9, 68]. Vari-
ous techniques have been developed to monitor wildlife
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[62, 38, 31, 52, 4, 60, 34], but gathering reliable informa-
tion remains difficult [3]. Endangered animals are scarce
and wary, making it hard to track their movements [68].
And wildlife is often aggressive, making it impossible to
implant sensors [71, 61]. Additionally, human interference
could disturb animal behavior, causing data collection to de-
viate from natural conditions [71, 61].

Camera trapping is an effective solution to these prob-
lems, allowing for the collection of wildlife image data
while ensuring animal welfare [38, 56]. However, camera
trap data is vast and contains a significant amount of irrele-
vant information. Manual sorting and analysis are not only
inefficient but also imprecise [38, 26, 62, 66].

Computer vision technology can automatically extract
and analyze image information, relying on robust deep
learning models for accurate and efficient results [14, 70,
54]. For this reason, it is essential to establish comprehen-
sive large-scale datasets to provide deep learning algorithms
with training and testing data [14, 70, 54]. However, exist-
ing datasets for animal protection are limited in the follow-
ing ways:

(1) Shortage of wildlife data. Current datasets focus on
common domestic or zoo animals [42, 2, 11, 14, 7, 50, 76],
whose behaviors are influenced by human interaction, and
they may not exhibit natural behavior in the wild. Because
wildlife data is scarce, these datasets lack the potential to
develop cross-domain models.

(2) Short time span and discontinuous space. Some
datasets are collected from scattered network images [79],
short-term monitoring data [54], or even synthetic images
[54]. These data cannot reflect the long-term living status
of wild animals. Continuous spatiotemporal data is required
to study the specific habits and migration patterns of endan-
gered animals, while discontinuous data is also inadequate
for developing complex models related to wildlife growth
patterns [80, 48, 37].

(3) Limited tasks for testing. Most datasets have only
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one or two data annotations which limit their usefulness for
multitask training. Furthermore, they lack environmental
information, such as day and night, weather, and location.
This makes it difficult to develop accurate ecological pre-
diction models using these datasets [19, 74, 69].

To address these issues, we present LoTE-animal, a
long-term and continuous dataset for endangered animal be-
havior understanding. LoTE-animal has the following three
features:

(1) Abundant wildlife data in natural habitats. We cu-
rated data of 11 endangered wildlife species from the Wo-
long National Nature Reserve, all of which were captured
by trap cameras with minimal human interference. The
dataset consists of 10k video sequences and 28k images.
We also created a subset of 7k web images that can be used
to enhance the generalization performance of deep learning
models.

(2) Long temporal span and spatial continuity. We
collected the raw data of LoTE-animal dataset by monitor-
ing with infrared-triggered trap cameras for 12 years, during
which the cameras were fixed at specific locations with clear
geographic information. The recorded data includes videos
and images of the same population at different stages in the
same location, providing valuable information for wildlife
research. It is worth noting that the monitoring is still on-
going.

(3) Rich scene and annotation information. LoTE-
animal dataset provides annotated information on different
weather conditions, seasons, and habitat environments, and
records images of wildlife in different growth stages under
these conditions. We annotated the images with bounding
boxes, segmentation masks, skeletal keypoints, and action
labels, making them suitable for various computer vision
tasks.

In this paper, we trained and tested representative com-
puter vision models based on the wild and web subsets. We
also evaluated the generalization performance of the mod-
els trained on the web subset. Our results can serve as a
reference for the development of deep learning algorithms.

2. Related works
In this section, we introduce easily accessible and open-

source animal datasets for animal behavior understanding,
and highlight the rarity and potential value of endangered
animal datasets.

Previous animal datasets are typically image-based or
dedicated to classification tasks. For example, image classi-
fication datasets such as Dogs vs Cats [35], Animals with
Attributes 2 (AwA2) [75], Bee or Wasp [59], and Fish
Recognition Ground-Truth [11, 12] are commonly used.
Some special-interest datasets are tailored to specific en-
vironments and only for actions performed by specific ani-
mals, such as Sheep [55], Cattle [45], Pigs [46], and Salmon

[49].
Open-source animal datasets have inspired many works

for animal behavior understanding. We introduce several
easily accessible and open-source animal datasets in Tab. 1.

These datasets provide pose estimation annotations and
additional bounding box annotations, which are provided by
Poselets [13] and Animal Pose [14]. Furthermore, TigDog
[23, 24], BADJA [57, 8], Synthetic Animal [51], and Stan-
fordExtra [7] include instance segmentation annotations,
while TigDog [23, 24] and Animal Kingdom [54] also pro-
vide video labels for action recognition.

Poselets [13] includes 2D pose and bounding box anno-
tations for all animals in the PASCAL 2011 [27] dataset.
Animal Pose [14] extended the dataset size by annotating
more images from Poselets [13] and Animals 10 [1], and
has two subsets: Subset 1 includes five categories from
Poselets [13], and Subset 2 includes seven categories with
only bounding box annotations from Animals 10 [1]. Stan-
fordExtra [7] released a dataset with 20 keypoints and bi-
nary silhouette for each image from StanfordDogs [25, 39].
Although there are no pose labels in StanfordDogs [25, 39],
the comprehensiveness of the canine family’s images con-
tained in this dataset make it a useful research material
for object segmentation and pose estimation [7]. BADJA
[57, 8] is a video-based pose annotation animal dataset
containing 11 video sequences. By far one of the largest
datasets available, AP-10K [79] focuses solely on pose es-
timation. Animal Kingdom [54] contains 850 species, mak-
ing it the most species-rich dataset, but the number of each
species is small. Table 1 summarizes dataset comparisons.
Among them, the datasets demonstrating quantity advan-
tages are Synthetic Animal (50K) [51], iWildCam (280K)
[63], Mouse(1000K) [63] and AcinoSet(119K) [41]. Syn-
thetic Animal [51] is a synthetic dataset, while iWildCam
[63] comprises real-world wildlife images encompassing
263 distinct categories, primarily focused on wildlife clas-
sification recognition. Mouse [63] consists of 6 million
frames of unlabeled tracked poses of interacting mice, as
well as over 1 million frames with tracked poses and corre-
sponding frame-level behavior annotations. A distinctive
addition is the AcinoSet [41], a wildlife cheetah dataset.
This dataset incorporates unmarked animal pose estimation
using DeepLabCut, furnishing 2D keypoints across 119K
frames. Remarkably, only 7.5K image frames underwent
manual annotation for this dataset.

These datasets are available from various sources, in-
cluding the web, domestic environments, and zoos. For
example, some datasets are collected from the web, such
as Poselets [13], TigDog [23, 24], BADJA [57, 8], Ani-
mals 10 [2], Animal Pose [14], AP10K [79], and Animal
Kingdom [54]. Other datasets are sourced from domestic
environments, such as Stanford Dogs [42] and StanfordEx-
tra [7], while some are sourced from zoos, such as ATRW
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Year Dataset Species Source
Tasks Other

taskAction
recognition

(video)

Obeject
detection
(image)

Instance
segementation

(image)

Pose
estimation

(image)

2011 Stanford Dogs [42] dogs(120 breeds) domestic - - - 20K -
2012 Poselets [13] dog, cat, horse, sheep, cow web - 6.2K - 6.2K -
2016 TigDog [23, 24] dog, horse, tiger web 6.3K - 6.3K 6.3K -
2018 BADJA [57, 8] 11 animals web - - 6.7K - 3D tracking

2018 Animals 10 [2]
dog, cat, horse, spider,

butterfly, chicken, sheep,
cow, squirrel, elephant

web - - - 26K -

2019 Animal Pose [14]
dog, cat, cow, horse, sheep
and the other 7 categories

web - 971 - 3.7K Domain adaption

2019 Synthetic Grevy’s Zebra [82] zebra synthetic - - - 12K 3D reconstruction
2019 ATRW [44] amur tiger zoos - - - 8K Re-identification

2020 Synthetic Animal [51]
hound, tiger, horse,

sheep, elephant
synthetic - - 50K 50K -

2020 StanfordExtra [7] dogs(120 breeds) domestic - - 12K 12K 3D reconstruction
2021 iWildCam [5] 263 species wild - 280K - - -
2021 AcinoSet [41] cheetah wild - - - 119K -
2021 Horse 10 [50] horse zoos - - - 8.1K -

2021 AP10K [79]
23 animal families

and 54 species
web - - - 10K Cross-domain

2021 Mouse [63] mouse - - - 1000K

Classic Classification,
Annotation Style

Transfer,
New Behaviors

2022 Animal Kingdom [54] 850 species web 30K - - 33K
Video

grounding

2023 LoTE-animal 11 endangered species wild 10K 35K 35K 35K
Cross-domain,

semi-supervised,
self-supervised

Table 1: The comparison of other open-source animal datasets. LoTE-animal is shown in bold.

[44] and Horse 10 [50]. Zuffi Silvia et al. [82] and Mu
Jiteng et al. [51] also attempted to use synthetically gen-
erated animals for pose estimation. However, these syn-
thetic datasets are different from real-life animals and may
not fully capture the complexities and variations in their be-
haviors. While some datasets, including TigDog, BADJA,
and Animal Kingdom [23, 24, 8, 54, 79], do contain a
small number of endangered species, they are typically ob-
tained from documentaries rather than in-situ observations.
To truly understand and protect endangered species, it is
crucial to collect data directly from their natural habitats
through in-situ observations.

3. Dataset construction
Our dataset consists of two parts: one obtained from the

web and the other from trap cameras in undisturbed set-
tings. The web data was obtained through web crawlers
that searched for relevant keywords and retrieved 7K im-
ages from various online image repositories. The wild data
was collected by installing trap cameras in natural habitats

of endangered animals. We selected 11 endangered species
as our research subjects and annotated their behaviors. All
data, including the web-scraped portion, were filtered and
classified by the Wildlife Habitat Research Center to ensure
the accuracy of the dataset.

3.1. Wild data collection and collation

Data collection. The study area is situated in
the Sichuan Wolong National Nature Reserve in south-
west China, with geographical coordinates of 102

◦
52

′ −
103

◦
24

′
E and 30

◦
45

′ − 31
◦
25

′
N, covering an area of

2,000km2 and an elevation ranging from 1,150m to
6,250m. The Wolong National Nature Reserve serves as the
primary location for data collection, accounting for 95% of
the dataset, with monitoring sites depicted in Fig. 1a. In ad-
dition, we included supplementary data from the adjacent
Mabian Dafengding Nature Reserve, which features the
same species, accounting for 5% of our dataset, as shown
in Fig. 1b.

The data collection area spans an elevation range of
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(a) Wolong (b) Mabian Dafengding

Figure 1: The map of monitoring sites in wild.

1,806 m to 4,445 m, which encompasses the primary dis-
tribution altitude of endangered animals. To capture animal
activity within this range, we deployed over 200 infrared-
triggered camera traps (Ltl 5210A) at multiple sites, as il-
lustrated in Fig. 2.

Figure 2: The infrared-triggered camera-trapping in wild.

Data collation. We consulted the Mammal Diversity and
Geographical Distribution in China catalog [40] to identify,
record, and tally the species observed in valid videos. We
verified the endangered status of each animal with the Inter-
national Union for Conservation of Nature (IUCN) Red List
of Threatened Species [36]. To the fullest extent, we divided
different animals into orders, genera, and families based
on the Catalogue of Mammals in China (2021) [81], which
fully reflects the biological relationship between species.

The species composition is organized into four orders
( 1 - 4 ), seven families ( 5 - 12 ), and 11 genera ( 13 - 23 ),
as depicted in Fig. 3. There is only one species in the or-
der Rodentia, while the order Carnivora is represented by
three species and Primates by two. The largest representa-
tion belongs to the order Cetartiodactyla, with five species,
making up more than 50% of the total species.

3.2. Manual annotated plan

We followed the COCO standards and annotated multi-
ple tasks including object detection, instance segmentation,
pose estimation, and action recognition. The animal labels
for the object detection and instance segmentation tasks are
species name. For the pose estimation task, we carefully

Figure 3: Endangered animal species compasition in LoTE-
animal.

compared and considered the definitions of existing animal
keypoints, and ultimately selected 17 skeletal keypoints to
describe the variations among different species. Lastly, for
the action recognition task, we curated typical behaviors
of each animal for annotation. Additionally, we annotated
three types of information that describe the animal’s life
pattern, such as season, weather, day and night, to provide
more contextual information for animal behavior analysis.

During the annotation process, our annotators underwent
rigorous training on the physiognomy, body structure, and
distribution of keypoints for each animal species. Highly
skilled annotators were then selected for further training on
dealing with partial occlusion, and actively participated in
the subsequent annotation process. They were instructed to
label all visible keypoints, and for occluded keypoints, to
estimate their locations based on the animal’s body plan,
pose, and symmetry property. Any keypoints whose loca-
tions could not be accurately estimated were left unanno-
tated. Three annotators were assigned to each image. To
address variability among the annotators, we adopted con-
sensus based annotation, in which multiple annotators are
asked to annotate the same image, and the final annotation
is determined by a consensus among the annotators. This
ensured that the resulting dataset contained accurate and
high-quality annotations.

4. Dataset statistics
In this section, we present the distribution statistics of

our dataset and annotation statistics for each annotation
task.

4.1. Data distribution

In Tab. 2, we present the LoTE-animal species list and
their corresponding conservation statuses in China. This
dataset includes vital umbrella species for safeguarding
endangered wildlife, like giant pandas, red pandas, and
Sichuan golden monkeys. Additionally, it features primates
of high importance to human evolutionary research, includ-
ing the Tibetan macaque. Notably, these 11 species are fo-
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cal conservation targets in China and are listed under the
Convention on International Trade in Endangered Species
of Wild Fauna and Flora (CITES). This unique status lends
our dataset distinct value.

To begin, we present the distribution statistics of our
dataset, which include the order, genus, and family distri-
bution, as shown in Fig. 4.

Figure 4: The order, genus and family distribution.

For the domain adaptation task, we design a small source
domain dataset by crawling 7K web images of the same
species. We then compare this small dataset with the
wild subset collected from the Wolong National Nature Re-
serves, as shown in Fig. 5.

Figure 5: The comparison of web subset and wild subset in
LoTE-animal.

Wolong National Nature Reserve, located within the
Qinghai-Tibet Plateau’s climate region, is characterized by
distinct ecological seasons. We recorded the season as ad-
ditional information and found that the dataset contains the
highest number of images during spring and autumn.

Furthermore, each image was annotated with its time of
capture, indicating whether it was taken during the day or at
night. Interestingly, most animals in the dataset were cap-
tured during the daytime, with the exception of the Malay

porcupine.

4.2. Annotation statistics

In this section, we present the annotation statistics of our
dataset, which include bounding box, segmentation mask,
skeletal keypoints, and action labels for endangered ani-
mals.

Our team annotated the entire dataset, a time-consuming
task that required rich computer vision annotation tech-
niques. In total, we annotated about 35K bounding boxes,
34K segmentation polygons, and 425K skeletal keypoints,
as shown in Fig. 6.

Figure 6: The annotation statistics. The primary axis (left)
is the number of bounding boxes and polygons (mask) and
the secondary axis (right) is the number of skeletal key-
points.

We also gathered statistics on the number of boxes in
each image, revealing that approximately 15K images con-
tain only one animal, while around 6.5K images contain
between two and six animals, with a few images featuring
more than seven animals. Social animals such as Pseudois-
Nayaur, MacacaThibetana, and RhinopithecusRoxellana,
tend to appear in large groups, with some images featuring
more than 20 animals. On average, there are 1.6 animals
per image, as demonstrated in Fig. 7.

Furthermore, we gathered data on the area ratios of each
animal in comparison to the entire image, as demonstrated
in Fig. 8. Typically, the majority of the animals have an
area ratio peak of 0.1, indicating that smaller animals are
more prevalent. Additionally, we observed that a smaller
number of animals have an area ratio of more than 0.3 in
LoTE-animal, indicating a scarcity of larger animals in the
dataset.

Moreover, we also examined the skeletal keypoints of the
animals, as depicted in Fig. 9. From these statistics, we can
infer that predicting the skeletal keypoints of animal limbs
(left front palm, right front palm, left back palm, and right
back palm) is challenging.

To further investigate animal behavior, we also collected
statistics on the number of behavior video clips, encompass-
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Protection level Specie Specie(Latin) Category(Latin) Family(Latin) Order(Latin)
I Giant Panda Ailuropoda Melanoleuca Ailuropoda Ailuropodidae Carnivora
I Golden Snub-nosed Monkey Rhinopithecus Roxellana Rhinopithecus Cercopithecidae Primates
II Red Panda Ailurus Fulgens Ailurus Ailuridae Carnivora
II Yellow-throated Marte Martes Flavigula Martes Mustelidae Carnivora
II Tibetan Macaque Macaca Thibetana Macaca Cercopithecidae Primates
II Wild Boar Sus Scrofa Sus Suidae Cetartiodactyla
II Sambar Rusa Unicolor Rusa Cervidae Cetartiodactyla
II Tufted Deer Elaphodus Cephalophus Elaphodus Cervidae Cetartiodactyla
II Chinese Serow Capricornis Milneedwardsii Capricornis Bovidae Cetartiodactyla
II Blue Sheep Pseudois Nayaur Pseudois Bovidae Cetartiodactyla
III Porcupine Hystrix Brachyura Hystri Hystricidae Primates

Table 2: The endangered animal species list of LoTE-animal. I, II, III is wildlife protection levels and endangered levels in
China. Italics are Latin names.

Figure 7: Number of boxes in each image.

Figure 8: The area ratios of each animal in one image.

ing 21 common and special behaviors of endangered ani-
mals. The distribution of animal behavior is long-tailed, as
shown in Fig. 10.

Finally, we provide some annotation samples in Fig. 11,
including images of single animals, images with two ani-
mals, and images with multiple occluded animals. We also
showcase images of small object animals in the fourth row.

Figure 9: The distribution of skeletal keypoints.

Figure 10: Number of videos of each animal behavior in the
dataset.

20069



Figure 11: A glance at animal species in LoTE-Animal.

5. Experiment
In this section, we present our experimental setup and

evaluation results for the proposed endangered animal
dataset. Specifically, we perform four types of supervised
learning tasks and three types of cross-domain tasks to com-
pare model performance. Our objective in conducting these
experiments is to gain a deeper understanding of the dataset
by assessing the performance of common computer vision
techniques on it.

5.1. Implementation details

We implement experiments in several representative
computer vision models on 4 GeForce RTX 2080Ti GPU
with 48GB or 4 GeForce RTX 3090 GPU with 96GB.
The PyTorch 1.8.0 deep learning architecture is used, and
the programming language is Python 3.8. Unless other-
wise specified, all models are implemented using the pub-
licly available MMLAB framework [17, 20, 21, 22] or of-
ficially released code by default. Hyperparameters are set
uniformly across all experiments, and the models are op-
timized with default parameters in the codebase. We ter-
minate training when the loss converges stably, or when
the training schedule (measured in epochs) is completed.
Specifically, we use a training schedule denoted by 1×for
12 epochs, 2×for 24 epochs, and 3×for 36 epochs. In ad-
dition, we report evaluation results under the average preci-
sion (AP) metric, with cross denoting cross-domain adapta-
tion tasks.

5.2. Results of supervised learning and cross-
domain tasks

We randomly divided the web and wild images into two
separate train set, validation set, and test set in a ratio of
7:1:2 for each species. We transplant some popular com-

puter vision frameworks for comparison. We also imple-
mented cross domain tasks for object detection, instance
segmentation, pose estimation to analyze and compare web
images without behavior information and wild images with
behavior information.

There are two kinds of experiments, one is the perfor-
mance comparison of models trained separately in web col-
umn and wild column, the other is the comparison of gener-
alization performance in web subset web column and cross
column, as shown in Tab. 3. We visualize the AP perfor-
mance of the three cross-domain tasks, as shown in Fig. 12

Our experiments reveal significant improvements in the
performance of object detection and instance segmentation
algorithms on both the web and wild subsets. Specifically,
the r50 accuracy of object detection increased from 55.45%
to 70.65% and from 69.75% to 76.13% on the web and wild
subsets, respectively, with similar improvements observed
for the r101 model. For instance segmentation, the r50 ac-
curacy increased from 57.16% to 64.98% and from 68.47%
to 67.00% on the web and wild subsets, respectively, with
similar improvements observed for the r101 model. The
evaluated the pose estimation method showed lower accu-
racy, ranging from 36.55% to 51.17% on the web subset and
from 36.55% to 43.74% on the wild subset. The accuracy
of the action recognition method is only tested on the wild
subset with the lowest is 24.76% and the highest is 60.02%.

In the second type of experiment, we evaluated cross-
domain adaptation performance on two subsets: training on
the web or wild subset and testing on the other opposite sub-
set. The results in the cross column of Tab. 3 indicate that all
models exhibit a significant decrease in performance when
tested on the cross subset. Specifically, for object detection
models, the performance decrease ranges from 52.49% to
60.18%. For instance segmentation models, the decrease is
between 51.95% and 57.96%. For pose estimation models,
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Model Year Schedule Backbone
AP AP.5 AP.75

web wild
web
↓

wild

wild
↓

web
web wild

web
↓

wild
web wild

web
↓

wild

Object Detection

Faster R-CNN [58] NeurIPS2015 1×
r50 55.45 69.75 26.35 26.54 85.11 93.07 45.78 63.15 81.35 27.29
r101 58.83 71.04 31.22 29.55 86.27 93.30 49.32 67.08 81.93 35.49

FCOS [67] ICCV2019 1×
r50 40.59 70.13 16.16 20.16 60.87 91.90 25.26 44.75 80.15 17.75
r101 42.16 72.31 17.02 22.49 62.27 93.27 26.44 46.75 82.15 18.88

DETR [15] ECCV2020 1× r50 56.10 39.70 10.70 6.25 71.60 60.97 20.30 51.90 44.37 10.10

Sparse R-CNN [65] CVPR2021 3×
r50 65.01 73.41 29.06 33.51 83.34 94.48 42.36 70.42 82.18 31.75
r101 68.25 74.42 28.63 35.62 83.86 94.49 41.00 74.23 82.73 30.94

TOOD [30] ICCV2021 2×
r50 68.45 75.09 29.84 21.87 85.14 93.83 41.41 75.25 84.75 33.10
r101 69.58 75.79 32.38 25.01 85.60 94.09 44.34 76.16 84.58 35.32

DiffusionDet [18] arXiv2022 2×
r50 70.65 76.13 30.49 32.59 86.45 95.34 42.80 74.76 85.01 32.71
r101 69.75 76.23 27.48 35.20 85.00 95.40 37.57 74.00 85.60 29.72

Instance Segementation

Mask R-CNN [32] ICCV2017 1×
r50 57.16 68.47 27.04 24.65 82.91 93.89 42.58 65.64 82.12 30.87
r101 59.59 69.47 28.64 28.37 83.86 93.91 43.22 68.72 84.50 33.74

YOLOACT [10] ICCV2019 55e
r50 57.48 61.41 24.16 30.14 80.78 89.33 37.67 63.17 72.08 26.65
r101 58.39 62.47 26.03 34.37 81.03 90.33 40.00 64.61 73.41 29.60

SOLOv2 [73] ECCV2020 55e
r50 62.46 63.86 27.56 12.90 85.48 89.28 38.84 75.22 73.92 31.60
r101 63.83 64.64 28.45 10.56 83.73 91.23 40.70 69.56 75.00 32.20

PointRend [43] CVPR2020 3× r50 66.59 73.42 29.98 25.71 86.06 95.05 41.38 75.91 86.90 34.90

QueryInst [28] ICCV2021 55e
r50 64.98 67.00 30.85 29.70 86.32 93.12 46.14 75.53 79.69 35.83
r101 67.20 71.84 33.80 29.45 87.02 96.31 48.29 76.83 87.25 39.99

Pose Estimation
HourglassNet [53] ECCV2016

210e

hourglass 46.93 41.86 21.99 36.60 85.04 83.58 52.48 45.75 37.03 14.51

ResNet [33] CVPR2016
r50 46.05 41.02 21.33 34.93 85.93 82.31 53.80 42.91 35.91 12.39
r101 48.89 41.15 22.08 34.19 86.73 82.92 54.85 48.95 35.85 13.95

HRNet [64] CVPR2019
w32 51.00 43.74 25.74 41.13 88.54 84.56 59.93 52.87 39.94 17.77
w48 51.17 43.25 26.30 41.58 88.55 84.82 58.47 52.70 39.46 17.85

SCNet [47] CVPR2020
r50 46.93 40.65 21.55 34.40 86.84 82.97 54.80 44.64 35.36 12.87
r101 47.07 40.56 20.85 34.79 86.62 83.00 53.45 46.48 34.85 12.37

LiteHRNet [78] CVPR2021
r18 39.21 36.55 16.45 28.27 81.20 80.90 45.76 32.00 28.42 7.71
r30 38.94 37.62 16.05 27.62 80.86 81.01 44.86 31.35 29.50 8.44

PVTV2 [72] CVMJ2022 b2 48.85 40.77 23.48 36.25 88.15 82.35 58.65 49.02 34.75 14.75
Action Recognition

top 1 top5 mean accurary

SlowOnly [29] ICCV2019
256e r50 79.39 98.39 60.02
196e r101 68.98 97.03 42.44

SlowFast [29] ICCV2019 256e
r50 71.79 97.54 43.88
r101 N/A N/A N/A

TPN [77] CVPR2020 150e r50 55.81 94.32 24.76

TimeSformer [6] ICML2021 15e
spaceOnly 61.70 96.68 39.04

jointST 68.63 97.89 40.72
divST 70.24 97.99 43.29

Table 3: The results of four supervised learning vision tasks and three cross-domain tasks on two subsets, respectively. The
underlined models are trained on 3090 GPU and the rest on 2080Ti GPU. The best, second and third results are shown in red,
orange, blue.
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Figure 12: The AP performance of meodels on web dataset, wild dataset, web→wild and wild→web.

the decrease ranges from 49.54% to 54.83%.

6. Discussion
Object detection and instance segmentation algorithms

applied to the LoTE-animal dataset have shown significant
improvements in accuracy with the evolution of algorithms.
In cross-domain instance segmentation tasks, the general-
ization ability has also been gradually enhanced. However,
the overall accuracy drop in cross-domain tasks is still rela-
tively significant. Therefore, when constructing algorithms,
in addition to considering accuracy improvement, enhanc-
ing its generalization performance should also be taken into
account, as direct transfer of web models has significant
limitations. Analysis of the results on the wild test set re-
veals that the proportion of wildlife images in the missed
detection and missed segmentation images is very low.

Pose estimation requires first locating the animal’s skele-
tal keypoints and then making pose judgments, which is
more challenging than object detection and instance seg-
mentation. Therefore, the accuracy of the results is signif-
icantly lower than that of the former two. HourglassNet,
ResNet, and HRNet are improved networks for animal pose
estimation [79], although their performance is significantly
lower than that of newly proposed networks such as SC-
Net [47], LiteHRNet [78], and PVTV2 [72] in human pose
estimation. However, after training on the LoTE-animal
dataset, the former models outperform the latter, indicating
that there are differences between human and animal pose
estimation, and simple transfer cannot fully leverage their
strengths. The results show that although the web subset has
fewer samples, its accuracy is higher than that of the wild
subset after training, which is because the animal images in
the web subset are generally tracked and the animal’s main
target is complete after selection, while in wild data, ani-
mal limbs are more frequently occluded and located at the
edges, making the task more difficult. However, some web
models can achieve more than 60% of the performance of
wild models in cross-domain testing, indicating that mod-

els established based on web data for pose estimation tasks
have certain generalization capabilities, and new algorithm
construction can explore their potential.

For action recognition task, the statistical information
of the dataset shows a long-tailed distribution of animal
videos. The lack of training samples results in decreased ac-
curacy. Therefore, in algorithm construction, it is a worth-
while direction to enhance the training of tail-end images to
improve model accuracy.

At present, there are significant limitations to datasets
constructed based on network data, and their performance
is relatively poor in practical applications. In the short term,
if developing deep learning models for specific endangered
animal analyses based on existing algorithms, continuous
time and space-uninterrupted raw data need to be collected
to construct datasets, but this method is difficult. Another
approach is to develop deep learning models with general-
ization capabilities, such as developing cross-domain deep
learning models using transfer learning. The dataset estab-
lished in this study provides a foundation for the develop-
ment and testing of such models.

7. Conclusion
In this paper, we present a animal dataset with a long

time span, and simultaneously incorporate endangered ani-
mals computer vision tasks. Our evaluation of the dataset
using mainstream deep learning algorithms yielded valu-
able insights for optimizing algorithms designed specifi-
cally for wildlife conservation. Our work is expected to
inspire further research in animal behavioral analysis and
understanding, which is vital for the preservation of endan-
gered species and ecological balance.
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[19] Sylvain Christin, Éric Hervet, and Nicolas Lecomte. Appli-
cations for deep learning in ecology. Methods in Ecology
and Evolution, 10(10):1632–1644, 2019. 2

[20] MMSegmentation Contributors. Mmsegmentation:
Openmmlab semantic segmentation toolbox and bench-
mark. https://github.com/open-mmlab/
mmsegmentation, 2020. 7

[21] MMPose Contributors. Openmmlab pose estimation
toolbox and benchmark. https://github.com/
open-mmlab/mmpose, 2020. 7

[22] MMAction2 Contributors. Openmmlab’s next generation
video understanding toolbox and benchmark. https://
github.com/open-mmlab/mmaction2, 2020. 7

[23] Luca Del Pero, Susanna Ricco, Rahul Sukthankar, and Vit-
torio Ferrari. Articulated motion discovery using pairs of
trajectories. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2151–2160,
2015. 2, 3

[24] Luca Del Pero, Susanna Ricco, Rahul Sukthankar, and Vitto-
rio Ferrari. Behavior discovery and alignment of articulated
object classes from unstructured video. International Jour-
nal of Computer Vision, 121(2):303–325, 2017. 2, 3

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2

[26] Anna Rita Di Cerbo and Carlo M Biancardi. Monitoring
small and arboreal mammals by camera traps: effectiveness
and applications. Acta Theriologica, 58(3):279–283, 2013.
1

[27] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2011 (VOC2011) Results. http://www.pascal-
network.org/challenges/VOC/voc2011/workshop/index.html.
2

[28] Yuxin Fang, Shusheng Yang, Xinggang Wang, Yu Li, Chen
Fang, Ying Shan, Bin Feng, and Wenyu Liu. Instances as
queries. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 6910–6919, Oc-
tober 2021. 8

[29] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE international conference on com-
puter vision, pages 6202–6211, 2019. 8

[30] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott,
and Weilin Huang. Tood: Task-aligned one-stage object de-
tection. In ICCV, 2021. 8

20073
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