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Figure 1: Qualitative and quantitative (i.e., PSNR / SSIM / parameters) comparisons of multiple state-of-the-art low-light
image enhancement methods, including MIR-Net [45], DCC-Net [47], SNR [41], and our proposed method. Apparently, our
proposed method has better brightness and fewer parameters than other competing methods.

Abstract

Low-light image enhancement (LLIE) aims to recover il-
lumination and improve the visibility of low-light images.
Conventional LLIE methods often produce poor results be-
cause they neglect the effect of noise interference. Deep
learning-based LLIE methods focus on learning a map-
ping function between low-light images and normal-light
images that outperforms conventional LLIE methods. How-
ever, most deep learning-based LLIE methods cannot yet
fully exploit the guidance of auxiliary priors provided by
normal-light images in the training dataset. In this paper,
we propose a brightness-aware network with normal-light
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priors based on brightness-aware attention and residual-
quantized codebook. To achieve a more natural and re-
alistic enhancement, we design a query module to obtain
more reliable normal-light features and fuse them with low-
light features by a fusion branch. In addition, we propose
a brightness-aware attention module to further improve the
robustness of the network to the brightness. Extensive ex-
perimental results on both real-captured and synthetic data
show that our method outperforms existing state-of-the-art
methods.

1. Introduction
Low-light images suffer from extremely limited visibil-

ity and noise interference, which often have serious effects
on the performance of many downstream tasks [6, 8, 29,
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30]. Professional photographers can work with exposure
time, aperture, and ISO settings to capture more informa-
tion related to the image. However, in the meantime, mo-
tion blur degradation and noise amplification are often in-
evitable. Therefore, computational photography methods
known as low-light image enhancement (LLIE) [9, 39, 43]
have received increasing attention in recent years. Con-
ventional LLIE methods, including histogram equalization
methods [15, 25, 26], gamma correction methods [12, 27],
and Retinex-based methods [14, 19, 39, 43], generally ne-
glect noise degeneration, resulting in unsatisfactory perfor-
mance on real low-light images. LLIE methods based on
deep learning aim to learn a mapping function between low-
light images and normal-light images and outperform con-
ventional LLIE methods by a large margin [41, 45, 47].
However, most deep learning-based LLIE methods focus
on learning the mapping function but ignore the guidance
of the auxiliary priors provided by normal-light images in
the training dataset, leading to unpleasant artifacts or dis-
torted colors in the enhanced images, as shown in Figure
1.

Recently, several image restoration methods [4, 11, 38,
48] propose learning textures and details under the guid-
ance of vector-quantized (VQ) codebook priors. VQ-based
methods, e.g. VQ-VAE [24, 32] and VQ-GAN [7], usu-
ally have two stages. Specifically, in the first stage, a
high-quality codebook is learned with self-reconstruction of
high-quality labels and aims to record high-level semantic
information and provide auxiliary priors to guide the learn-
ing of the second stage. The decoders of VQ-based net-
works store rich, high-quality textures and details simulta-
neously. However, it is unsatisfactory to employ directly
VQ-based methods in LLIE. These VQ-based methods pro-
pose to construct a codebook in high-level feature space by
downsampling the high-quality image with factors of 8, 16,
or 32 and select one codebook item to represent high-level
features, which makes image details lost and network train-
ing unstable.

To improve important details, residual quantized VAE
(RQ-VAE) [16] proposes the selection of multiple code-
book items to accurately represent characteristics using a
residual quantization strategy. In the second stage, the low-
quality images are mapped into high-level semantic space,
and the codebook items closest to the high-level features
are selected to be inputted to the decoder of the first stage
for generating output. Taking into account the gap between
low-quality and high-quality images, some VQ-based meth-
ods adopt distillation loss to allow the second-stage encoder
to mimic one of the first stages. However, since these meth-
ods select the nearest codebook items relying on similari-
ties between the feature vectors of the low-quality images
and the high-quality codebook items, the quantized features
are still limited and unreliable. Furthermore, the short-cut

connection popularly used in the encoder-decoder structure
(e.g., U-Net [31]) cannot be used in VQ-based networks,
resulting in further significant detail loss.

To address these challenges, we propose a novel low-
light image enhancement (LLIE) method based on VQ-VAE
with a three-stage framework in this paper. In the first stage,
we learn a normal-light decoder and a more hierarchical
and expressive normal-light codebook by residual quanti-
zation [16]. However, constructing a more expressive code-
book also means that it becomes more difficult to select the
correct items from the codebook. Therefore, in the sec-
ond stage, not only should the learned features from the
low-light images approximate the normal-light image fea-
tures by distillation loss, but also should be calculated the
similarities between the low-light features and query items
to select the codebook items. To avoid the loss of details
caused by downsampling, we propose the third stage to pro-
tect valuable details and refine the enhanced results by a fu-
sion branch that fuses features of the pre-trained low-light
encoder and normal-light decoder on different scales. In
addition, a novel brightness-aware attention module is pro-
posed to dynamically learn the brightness and textures of
images and is integrated into the fusion branch. The contri-
butions of this paper are listed below.

• We propose a novel low-light image enhancement
method based on VQ-VAE with a three-stage frame-
work. To our knowledge, our proposed method is the
first VQ-based method for LLIE.

• We construct a more hierarchical and expressive code-
book by residual quantization. In addition, we design
a query module to bridge the gap between low-light
features and the normal-light codebook.

• To avoid the image details lost by the downsampling
operation, we propose a fusion branch fusing low-light
features and normal-light priors at different scales.

• We design a brightness-aware attention module that
learns a brightness map to modulate features to im-
prove the robustness of the network to the brightness.

• Extensive experimental results on several popular
datasets show that our proposed method outperforms
several existing state-of-the-art LLIE methods.

2. Related Work
2.1. Low-light image enhancement methods

Many conventional LLIE methods were based on his-
togram equalization [15, 25, 26] or gamma correction [12,
27]. These methods were aimed at expanding the dynamic
range and enhancing the contrast. However, they tended to
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Figure 2: Architectures of the proposed three-stage framework for low-light image enhancement. (a) In stage I, we aim to
learn an expressive codebook C and a precise normal-light decoder DN . (b) In stage II, we learn a low-light encoder EL and
a query module Q, while the codebook C and the decoder DN are fixed. (c) In stage III, we propose a fusion branch to fuse
the features of the fixed encoder EL and decoder DN , pursuing better results.

generate undesirable artifacts. Retinex-based methods, on
the other hand, decompose an image into two components
(reflectance and illumination) and then correct the illumi-
nation and suppress artifacts [14, 19, 28, 39]. Although
Retinex-based methods outperformed early methods, they
still show poor performance when applied to real-world im-
ages [34].

Since deep learning-based methods have gradually dom-
inated the field of low-level image processing [5, 20, 37,
44], several works have been proposed to solve the LLIE
problem [9, 17, 18, 21, 35, 42, 43, 45, 46]. Zamir et al. [45]
proposed MIR-Net which integrates multiscale contextual
information and preserves spatial details in high resolution.
Wu et al. [40] proposed a deep unfolding network based
on the traditional URetinex model. Zhang et al. [47] pro-
posed DCC-Net to explore the color consistency between
enhanced and normal-light images. Xu et al. [41] pro-
posed a signal-to-noise (SNR)-aware network that simul-
taneously employs a convolution-based short-range branch
and a transformer-based long-range branch for LLIE.

2.2. VQ-based image restoration methods

Previous studies have shown that better priors can lead
to better restoration performance [3, 10, 22, 33]. VQ-VAE
[32] introduced a codebook learned by a vector-quantized
autoencoder. Since this codebook could provide a more
compressed and expressive low-level feature bank, many
image restoration methods propose learning image textures
and details with the guidance of vector-quantized (VQ)
codebook priors and achieving significant progress. Most of
them obtain high-quality features by matching the vector in
the codebook that is most similar to the low-quality feature.
Wang et al. [38] propose using a multi-head cross-attention
layer to incorporate low-quality features and high-quality
priors. Gu et al. [11] propose a parallel decoder to gradu-
ally fuse the low-quality input feature and the high-quality
priors. These VQ-based methods verify the effectiveness
of fusing low-quality features and the corresponding high-
quality priors. However, they ignore the gap between low-
quality features and the codebook, which leads to inaccurate
matching results. Zhou et al. [48] propose a Codeformer to
predict the correct code index given the low-quality feature.
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Although Codeformer improves matching accuracy, it fo-
cuses on face restoration and relies on a high compression
ratio to reduce code length. Most recently, RQ-VAE [16]
has faced the challenge of selecting multiple codebook el-
ements to accurately represent features using the residual
quantization strategy.

3. The Proposed Method
3.1. Overview of LLIE

To obtain normal-light images with more valuable details
and less unpleasant artifacts, we propose an LLIE method
based on VQ-VAE [32] with a three-stage framework, as
shown in Figure 2. The components of these three stages
are as follows.

• Stage I: The network of Stage I contains a normal-
light encoder EN , a residual quantization (RQ) module
with a codebook C, and a normal-light decoder DN .
Learning an expressive codebook C and a precise de-
coder DN is the core of Stage I. More details will be
described in Sec. 3.2.

• Stage II: In Stage II, we propose to learn a query mod-
ule Q and select the codebook items according to the
similarity between the features of a low-light encoder
EL and the learned query Q. The parameters of the en-
coder EL and the query Q require training, while the
codebook C and the decoder DN learned in Stage I are
fixed. More details will be described in Sec. 3.3.

• Stage III: In Stage III, we propose a fusion branch
to fuse features of the pre-trained encoder EL and the
decoder DN . In this way, it can further protect more
valuable details and obtain better performance than
Stage II. More details will be described in Sec. 3.4.

As shown in Figure 2, the encoders EL and EN and the
decoder DN consist of three basic blocks. Each basic block,
shown in Figure 3 (a), consists of a convolutional layer and
three spectral attention blocks (SAB) [1, 2]. SAB [1, 2]
is proposed to learn channel-wise self-attention of feature
maps with low computational cost and achieve state-of-the-
art spectral reconstruction performance. More details about
SAB are given in the supplementary material. The encoders
EL and EN use two downsampling operators to downsam-
ple the feature, while the decoder DN uses two upsampling
operators to recover the feature.

3.2. Stage I: Codebook C and Normal-light Decoder
DN Learning

In Stage I, we aim to learn more expressive normal-light
image priors (i.e., the codebook C = {ck ∈ R2×2×c}Kk=1)
by self-reconstruction of normal-light images. As shown

Figure 3: The architectures of (a) the basic block and (b)
the proposed brightness-aware attention module.

Figure 4: The procedure of (a) the Unfold RQ module and
(b) the modified Unfold RQ module. NNM denotes the
nearest-neighbor matching operator. Unlike the Unfold RQ
module (a) use NNM operator to find the nearest codebook
item ck, the modified Unfold RQ module (b) uses NNM op-
erator to find the index of the nearest query item qk.

in Figure 2 (a), the normal-light image IN ∈ RH×W×3 is
first encoded into a high-level feature F3 ∈ Rh×w×c by
the encoder EN . Then the feature F3 is quantized into dis-
crete features by RQ operator [16] as shown in Figure 4
(a). We unfold the feature F3 into N overlapped patches
P = {Pi ∈ R2×2×c}Ni=1 and use D RQ operators to recur-
sively discretize each patch Pi. The dth RQ operator can be
described as

R(d)
i = R(d−1)

i −∆F(d−1)
i ,

∆F(d)
i = argmin

ck∈C
||R(d)

i − ck||2,
(1)

where ∆F(d)
i = 0, R(d)

i denotes the dth residual and R(0)
i =

Pi. The final discretized patch Pq
i =

∑D
d=1 ∆F(d)

i . We fold
all discretized patches Pq

i and obtain the quantized feature
Fq that will be fed into the normal-light decoder DN to re-
construct the original normal-light image.
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Compared to previous VQ-based face restoration meth-
ods that adopt high compression ratios (e.g., 8, 16, and 32)
in the encoder, our proposed method only uses two down-
sampling operators to compress the input image of ratio 4
in total, greatly reducing the damage to image details and
textures. Although preserving richer image details and tex-
tures means needing a larger codebook to represent them in
VQ-VAE [32] and VQ-GAN [7], RQ-VAE [16] allows us to
construct an expressive codebook in a small size.

Loss Function. To train the normal-light encoder EN , the
codebook C and the normal-light decoder DN , we employ
the total loss function L = Lrecon + β · Lvq , where the
reconstruction loss Lrecon and the vector quantization loss
Lvq are defined as:

Lrecon = ||̂IN − IN ||22,
Lvq = ||sg[F3]− Fq||22 + β||F3 − sg[Fq]||22,

(2)

where β is set to 0.25 in our experiments, sg[·] denotes the
stop-gradient operator, and ÎN denotes the output of the
normal-light decoder DN .

3.3. Stage II: Low-light Encoder EL and Query Q
Learning

In this stage, we use the low-light encoder EL to extract
the features of the low-light images and obtain the features
FL
1 , FL

2 , and FL
3 on three scales, as shown in Figure 2 (b).

Due to noise corruption and different brightnesses, there is
a gap between low-light features FL

3 and normal-light code-
book C, making it difficult for low-light feature patches to
match codebook items accurately. To address this issue,
we introduce a query module Q = {qk ∈ R2×2×c}Kk=1

to bridge the low-light feature patches and the codebook. In
other words, instead of directly calculating the distance be-
tween low-light features FL

3 and the normal-light codebook
C, we calculate the distance between FL

3 and the query Q
and use the index of the closest distance to match the item
in the codebook C. The details of the modified RQ module
are shown in Figure 4 (b) and the matching strategy can be
described as

R(d)
i = R(d−1)

i −∆F(d−1)
i ,

k
(d)
i = argmin

k
||R(d)

i − qk||22,

∆F(d)
i = c

k
(d)
i

.

(3)

As shown in Figure 2 (b), we input the feature FL
3 into the

modified RQ module and obtain the quantized feature FL
q .

Then the quantized feature FL
q is fed into the pre-trained

normal-light decoder DN . The low-light encoder EL and
the query module Q are trainable, while the codebook Q
and the normal-light decoder DN are pre-trained in Stage I

and fixed. The parameters of the query Q are initialized to
be the same as the parameters of the codebook C.

Loss Function. To train the low-light encoder EL, we use
the normal-light encoder EH as a teacher network and EL

as a student network to distill knowledge on different scales.
Specifically, we minimize the ℓ1-distance between the fea-
ture maps Fj and FL

j . In stage II, we use the following loss
function:

L = Ldistill + Lquery, (4)

Ldistill =

3∑
j=1

||FL
j − Fj ||1, (5)

Lquery = ||dis(F3, C)− dis(sg[FL
3 ],Q)||1, (6)

where dis(F3, C) and dis(sg[FL
3 ],Q) denote the distance

maps between the unfolded patches P of F3 / FL
3 and the

items of C / Q, respectively. Under the constraint of Lquery,
the distance map of FL

3 and Q will be close to the distance
map of F3 and C.

3.4. Stage III: Feature Fusion

In Stage II, we have constructed the normal-light images
preliminarily. However, due to the lack of a shortcut con-
nection between the encoder EL and the decoder DN , it is
inevitable that many valuable details and textures will be
lost by the downsampling operator.

To compensate for the loss of detail and textures, we
introduce a fusion branch that fuses features from the en-
coder EL and the decoder DN on different scales to gener-
ate high-quality normal-light images. In addition, consid-
ering that the brightness of the image may vary in different
areas, we propose a brightness-aware attention module in
the fusion branch, making the network robust to brightness.

Fusion Branch. We propose fusion of features of the en-
coder EL and the decoder DN on different scales by two
fusion blocks DF

1 and DF
2 . Each fusion block consists of

a basic block and a brightness-aware attention module. As
shown in Figure 2 (c), the fusion branch can be described as

Fcat
1 = Concat(FL

3 ↑,FL
2 ,FL

1 ↓,FD
2 ,FD

1 ↓),

Ff
1 = BA1(D

F
1 (F

cat
1 ),M ↓),

Fcat
2 = Concat(Ff

1 ↑,FL
2 ↑,FL

1 ,FD
2 ↑,FD

1 ),

Ff
2 = BA2(D

F
2 (F

cat
2 ),M),

Irec = Conv(Ff
2 ),

(7)

where ↑ and ↓ denote the upsampling and downsampling
operators with factor 2 respectively, Concat(·, ·, ...) con-
catenates all input features, Conv denotes a 3×3 Conv layer
to reconstruct the final normal-light images Irec, M denotes
a brightness map, and BA1(·, ·) and BA2(·, ·) denote the
brightness-aware attention module.
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Figure 5: Visual quality comparisons of different low-light image enhancement methods on the LOLv1 dataset.

Brightness-aware Attention Module. To make the net-
work robust to brightness, we propose a new brightness-
aware attention module, as shown in Figure 3 (b). First, we
calculate the brightness map as follows.

M = ReLU(IL − Conv(IL). (8)

The brightness map M marks different brightness levels and
is utilized to generate spatial attention to modulate fused
features such as

BAj(F,M) = F + F ⊙ Convs(M), (9)

where Convs(·) denotes three 3× 3 Conv layers, F denotes
the fused feature, and j = 1 or 2.

Loss Function. In Stages III, the parameters of the en-
coder EL and the decoder DN are fixed, while the fusion
branch parameters will be optimized by minimizing the ℓ1
loss as

L = ||Irec − IN ||1. (10)

4. Experiments
4.1. Datasets, metrics and implementation details

To verify the performance of our proposed low-light im-
age enhancement method, we conducted extensive experi-
ments on three public datasets (i.e., the LOLv1 [39] dataset,
the LOLv2-Real [43] dataset, and the LOLv2-Synthetic
[43] dataset). The LOLv1 [39] dataset has 500 low/normal-
light image pairs and is divided into 485 pairs for training
and 15 pairs for testing. The LOLv2-Real [43] and LOLv2-
Synthetic [43] datasets are larger and more diverse, both in-
cluding 689 low/normal-light image training pairs and 100
test pairs. Two commonly used metrics, i.e., peak signal-
to-noise (PSNR) and structural similarity (SSIM) [36], are
adopted to evaluate the performance of competing low-light
image enhancement methods.

We implement our method in PyTorch[23] with 2
NVIDIA 3090 GPUs. We adopt Adam [13] optimizer and

standard data augmentation (e.g., vertical and horizontal
flips) for the whole training procedure. We set the code-
book size K to 1024 and each codebook item has a size of
2 × 2 × 256. We implement the unfold RQ module and
its modified counterpart with 8 and 6 residual quantization
operators on the LOLv1 dataset and the LOLv2-Real and
LOLv2-Synthetic datasets, respectively.

4.2. Compared with state-of-the-art methods

We compare the proposed method with eleven state-of-
the-art deep learning-based methods, including LPNet [18],
MIR-Net [45], A3DLUT [35], Band [42], Retinex [21],
Sparse [43], IPT [5], Uformer [37], SNR [41], URetinex-
Net [40] and DCC-Net [47]. Note that our experimental
setup is consistent with SNR [41] and the numerical results
of competing methods are cited from SNR [41]. Since the
source code of URetinex-Net [40] and DCC-Net [47] are
not public, we have not compared the proposed method with
them on the LOLv2-Real and LOLv2-Synthetic datasets.
Quantitative Analysis. The numerical results of all com-
peting LLIE methods on the LOLv1, LOLv2-Real, and
LOLv2-Synthetic datasets are shown in Tables 1 and 2.
From Tables 1 and 2, we can observe that our proposed
method achieves the best average PSNR and SSIM re-
sults. On the LOLv1, LOLv2-Real, and LOLv2-Synthetic
datasets, our proposed method outperforms the second-best
method SNR [41] by 0.63 dB, 0.89 dB, and 1.8 dB on aver-
age PSNR, respectively. The improvements by our methods
over Band [42], Sparse [43] and MIR-Net [45] are (5.11 dB,
2.08 dB, and 2.72 dB), (8.04 dB, 2.31 dB, and 3.89 dB), and
(1.1 dB, 2.35 dB, and 4 dB) on average, respectively.
Visual Analysis. Figures 5-7 show the visual comparison
of several LLIE methods on the LOLv1, LOLv2-Real and
LOLv2-Synthetic datasets. MIR-Net [45] produces blurred
artifacts as shown in Figures 6 and 7 (Bottom). The color
tone of the DCC-Net [47] and SNR [41] results is incon-
sistent with the ground truth, as shown in Figures 5 and
7 (Top), respectively. Our proposed method can generate
more pleasant images with more details and textures of the
image, fewer undesirable blurred artifacts, and better color
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Figure 6: Visual quality comparisons of different low-light image enhancement methods on the LOLv2-Real dataset.

Methods PSNR SSIM
A3DLUT [35] 14.77 0.458
IPT [5] 16.27 0.504
Uformer [37] 16.36 0.507
Sparse [43] 17.20 0.640
Retinex [21] 18.23 0.720
Band [42] 20.13 0.830
URetinex-Net [40] 21.33 0.835
LPNet [18] 21.46 0.802
DCC-Net [47] 22.72 0.810
MIR-Net [45] 24.14 0.830
SNR [41] 24.61 0.842
ours 25.24 0.855

Table 1: Quantitative comparison on the LOLv1 dataset.

LOLv2-Real LOLv2-Syn
Methods PSNR SSIM PSNR SSIM
LPNet [18] 17.80 0.792 19.51 0.846
Retinex [21] 18.37 0.723 16.55 0.652
A3DLUT [35] 18.19 0.745 18.92 0.838
Uformer [37] 18.82 0.771 19.66 0.871
IPT [5] 19.80 0.813 18.30 0.811
MIR-Net [45] 20.02 0.820 21.94 0.876
Sparse [43] 20.06 0.816 22.05 0.905
Band [42] 20.29 0.831 23.22 0.927
SNR [41] 21.48 0.849 24.14 0.928
ours 22.37 0.854 25.94 0.941

Table 2: Quantitative comparison on the LOLv2-Real and
LOLv2-Synthetic dataset.

consistency. More comparisons are shown in the supple-
mentary material.

4.3. Ablation Study

To verify the impacts of residual quantization (RQ),
query module Q, fusion branch (FB), and brightness-aware

attention (BA) module, we conduct several ablation studies
on the LOLv2-Real dataset. We set the VQ-VAE method as
the baseline, which does not use FB, Q, and BA, and con-
struct the codebook by vector quantization. The results of
the ablation studies are shown in Table 3.
RQ-based Codebook. Compared model A with the base-
line, constructing the codebook by residual quantization can
improve the PSNR and SSIM results by 0.37 dB and 0.055.
From Figure 8, we can observe that model A result has more
image textures than the baseline. This proves that using
residual quantization can learn a more expressive codebook.
Query Module Q. From Table 3, we can observe that the
improvement of model B over model A is 0.41 dB. The vi-
sual result of model B has fewer blurry artifacts than that of
model A, as shown in Figure 8.
Fusion Branch. Since the details and textures of the im-
age are lost in the encoder, we propose the fusion branch
to preserve the textures and details of the image that can
be verified from Figure 8. As shown in Table 3, compared
to model C with model B, the fusion branch without the
brightness-aware attention module brings an improvement
of 0.15 dB.
Brightness-aware Attention module. The brightness-
aware attention module further improves the PSNR results
by 0.38 dB. We also show the learned brightness map M in
Figure 8. The brightness map M is consistent with the tex-
ture and brightness of the image. As shown in Figure 8, the
visual result of model D is more consistent with the GT in
color tone, such as the areas on the wall and the table.

Models RQ Query FB BA PSNR SSIM
Baseline 21.06 0.747

A ✓ 21.43 0.802
B ✓ ✓ 21.84 0.794
C ✓ ✓ ✓ 21.99 0.853
D ✓ ✓ ✓ ✓ 22.37 0.854

Table 3: Results of the ablation studies.
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Figure 7: Visual quality comparisons of different low-light image enhancement methods on the LOLv2-Synthetic dataset.

Figure 8: Visual comparisons of the ablation studies.

5. Limitations and Conclusion
In this paper, we propose a novel low-light image en-

hancement method based on VQ-VAE with a three-stage
framework. Unlike VQ-VAE, we propose learning a
normal-light codebook by residual quantization. Due to the
gap between the low-light features and the codebook items,
we have developed a query module to address this gap. To
preserve the textures and details of the image, we propose a
branch of fusion to fuse the encoder and decoder features.
Further improvement of color consistency is achieved by a
brightness-aware attention module integrated into the fusion
branch. Extensive experiments on real-captured and syn-
thetic datasets demonstrate that our proposed method out-
performs existing state-of-the-art low-light image enhance-

ment methods. Although our proposed method achieves
promising results, there is still room for improvement. In
this paper, the basic block including three spectral-wise at-
tention blocks only learns channel-wise self-attention and
ignores spatial self-attention. In the future, we will inte-
grate the spatial self-attention module into the basic block
for producing high-quality images. Furthermore, iterative
optimization of stage II and stage III in combination may
be a good way to further improve results.

Acknowledgments. This work was supported in part by
the Natural Science Foundation of China under Grant
61991451 and Grant 61836008. Xin Li’s work is partially
supported by the NSF under grants IIS-2114664, CMMI-
2146076, and CCSS-2318758.

12147



References
[1] Yuanhao Cai, Jing Lin, Xiaowan Hu, Haoqian Wang, Xin

Yuan, Yulun Zhang, Radu Timofte, and Luc Van Gool.
Mask-guided spectral-wise transformer for efficient hy-
perspectral image reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17502–17511, 2022.

[2] Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun
Zhang, Hanspeter Pfister, Radu Timofte, and Luc Van Gool.
Mst++: Multi-stage spectral-wise transformer for efficient
spectral reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 745–755, 2022.

[3] Kelvin CK Chan, Xintao Wang, Xiangyu Xu, Jinwei Gu,
and Chen Change Loy. Glean: Generative latent bank
for large-factor image super-resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 14245–14254, 2021.

[4] Chaofeng Chen, Xinyu Shi, Yipeng Qin, Xiaoming Li, Xi-
aoguang Han, Tao Yang, and Shihui Guo. Real-world blind
super-resolution via feature matching with implicit high-
resolution priors. In Proceedings of the 30th ACM Interna-
tional Conference on Multimedia, pages 1329–1338, 2022.

[5] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021.

[6] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
4690–4699, 2019.

[7] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12873–12883, 2021.

[8] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei
Fang, and Hanqing Lu. Dual attention network for scene seg-
mentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3146–3154,
2019.

[9] Xueyang Fu, Delu Zeng, Yue Huang, Xiao-Ping Zhang, and
Xinghao Ding. A weighted variational model for simulta-
neous reflectance and illumination estimation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2782–2790, 2016.

[10] Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing
using multi-code gan prior. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 3012–3021, 2020.

[11] Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen
Li, Ying Shan, and Ming-Ming Cheng. Vqfr: Blind face
restoration with vector-quantized dictionary and parallel de-
coder. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part XVIII, pages 126–143. Springer, 2022.

[12] Shih-Chia Huang, Fan-Chieh Cheng, and Yi-Sheng Chiu.
Efficient contrast enhancement using adaptive gamma cor-
rection with weighting distribution. IEEE transactions on
image processing, 22(3):1032–1041, 2012.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[14] Edwin H Land. The retinex theory of color vision. Scientific
american, 237(6):108–129, 1977.

[15] Chulwoo Lee, Chul Lee, and Chang-Su Kim. Contrast
enhancement based on layered difference representation of
2d histograms. IEEE transactions on image processing,
22(12):5372–5384, 2013.

[16] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive image generation using
residual quantization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11523–11532, 2022.

[17] Chongyi Li, Jichang Guo, Fatih Porikli, and Yanwei Pang.
Lightennet: A convolutional neural network for weakly il-
luminated image enhancement. Pattern recognition letters,
104:15–22, 2018.

[18] Jiaqian Li, Juncheng Li, Faming Fang, Fang Li, and Guixu
Zhang. Luminance-aware pyramid network for low-light
image enhancement. IEEE Transactions on Multimedia,
23:3153–3165, 2020.

[19] Mading Li, Jiaying Liu, Wenhan Yang, Xiaoyan Sun, and
Zongming Guo. Structure-revealing low-light image en-
hancement via robust retinex model. IEEE Transactions on
Image Processing, 27(6):2828–2841, 2018.

[20] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1833–1844,
2021.

[21] Risheng Liu, Long Ma, Jiaao Zhang, Xin Fan, and Zhongx-
uan Luo. Retinex-inspired unrolling with cooperative prior
architecture search for low-light image enhancement. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10561–10570, 2021.

[22] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi,
and Cynthia Rudin. Pulse: Self-supervised photo upsam-
pling via latent space exploration of generative models. In
Proceedings of the ieee/cvf conference on computer vision
and pattern recognition, pages 2437–2445, 2020.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

[24] Jialun Peng, Dong Liu, Songcen Xu, and Houqiang Li. Gen-
erating diverse structure for image inpainting with hierarchi-
cal vq-vae. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10775–
10784, 2021.

[25] Stephen M Pizer. Contrast-limited adaptive histogram equal-
ization: Speed and effectiveness stephen m. pizer, r. eugene

12148



johnston, james p. ericksen, bonnie c. yankaskas, keith e.
muller medical image display research group. In Proceed-
ings of the first conference on visualization in biomedical
computing, Atlanta, Georgia, volume 337, page 1, 1990.

[26] Stephen M Pizer, E Philip Amburn, John D Austin,
Robert Cromartie, Ari Geselowitz, Trey Greer, Bart ter
Haar Romeny, John B Zimmerman, and Karel Zuiderveld.
Adaptive histogram equalization and its variations. Com-
puter vision, graphics, and image processing, 39(3):355–
368, 1987.

[27] Shanto Rahman, Md Mostafijur Rahman, Mohammad
Abdullah-Al-Wadud, Golam Dastegir Al-Quaderi, and Mo-
hammad Shoyaib. An adaptive gamma correction for image
enhancement. EURASIP Journal on Image and Video Pro-
cessing, 2016(1):1–13, 2016.

[28] Zia-ur Rahman, Daniel J Jobson, and Glenn A Woodell.
Retinex processing for automatic image enhancement. Jour-
nal of Electronic imaging, 13(1):100–110, 2004.

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015.

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015.

[32] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017.

[33] Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong
Chen, Jing Liao, and Fang Wen. Bringing old photos back
to life. In proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2747–2757,
2020.

[34] Ruixing Wang, Qing Zhang, Chi-Wing Fu, Xiaoyong Shen,
Wei-Shi Zheng, and Jiaya Jia. Underexposed photo enhance-
ment using deep illumination estimation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 6849–6857, 2019.

[35] Tao Wang, Yong Li, Jingyang Peng, Yipeng Ma, Xian Wang,
Fenglong Song, and Youliang Yan. Real-time image en-
hancer via learnable spatial-aware 3d lookup tables. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2471–2480, 2021.

[36] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

[37] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang
Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general
u-shaped transformer for image restoration. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 17683–17693, 2022.

[38] Zhouxia Wang, Jiawei Zhang, Runjian Chen, Wenping
Wang, and Ping Luo. Restoreformer: High-quality blind face
restoration from undegraded key-value pairs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 17512–17521, 2022.

[39] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying
Liu. Deep retinex decomposition for low-light enhancement.
arXiv preprint arXiv:1808.04560, 2018.

[40] Wenhui Wu, Jian Weng, Pingping Zhang, Xu Wang, Wenhan
Yang, and Jianmin Jiang. Uretinex-net: Retinex-based deep
unfolding network for low-light image enhancement. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5901–5910, 2022.

[41] Xiaogang Xu, Ruixing Wang, Chi-Wing Fu, and Jiaya Jia.
Snr-aware low-light image enhancement. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17714–17724, 2022.

[42] Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang, and Ji-
aying Liu. Band representation-based semi-supervised low-
light image enhancement: Bridging the gap between signal
fidelity and perceptual quality. IEEE Transactions on Image
Processing, 30:3461–3473, 2021.

[43] Wenhan Yang, Wenjing Wang, Haofeng Huang, Shiqi Wang,
and Jiaying Liu. Sparse gradient regularized deep retinex
network for robust low-light image enhancement. IEEE
Transactions on Image Processing, 30:2072–2086, 2021.

[44] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5728–
5739, 2022.

[45] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling
Shao. Learning enriched features for real image restoration
and enhancement. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXV 16, pages 492–511. Springer, 2020.

[46] Hui Zeng, Jianrui Cai, Lida Li, Zisheng Cao, and Lei Zhang.
Learning image-adaptive 3d lookup tables for high perfor-
mance photo enhancement in real-time. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(4):2058–
2073, 2020.

[47] Zhao Zhang, Huan Zheng, Richang Hong, Mingliang Xu,
Shuicheng Yan, and Meng Wang. Deep color consistent net-
work for low-light image enhancement. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1899–1908, 2022.

[48] Shangchen Zhou, Kelvin CK Chan, Chongyi Li, and
Chen Change Loy. Towards robust blind face restora-
tion with codebook lookup transformer. arXiv preprint
arXiv:2206.11253, 2022.

12149


