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Figure 1: The chord diagram on the left shows the association and relative number of various labels in the proposed FMB
dataset. Its branches display part of the well registered targets, which are extraordinarily affluent and manifold. The zoomed-
in regions on the right show the segmentation comparison in cyan circles and fusion comparison in orange circles. It is
obvious that the proposed method is superior to SOTA methods on both visual effects and mIoU.

Abstract

Multi-modality image fusion and segmentation play a
vital role in autonomous driving and robotic operation.
Early efforts focus on boosting the performance for only
one task, e.g., fusion or segmentation, making it hard to
reach ‘Best of Both Worlds’. To overcome this issue, in
this paper, we propose a Multi-interactive Feature learn-
ing architecture for image fusion and Segmentation, namely
SegMiF, and exploit dual-task correlation to promote the
performance of both tasks. The SegMiF is of a cascade
structure, containing a fusion sub-network and a commonly
used segmentation sub-network. By slickly bridging inter-
mediate features between two components, the knowledge
learned from the segmentation task can effectively assist
the fusion task. Also, the benefited fusion network sup-
ports the segmentation one to perform more pretentiously.
Besides, a hierarchical interactive attention block is estab-
lished to ensure fine-grained mapping of all the vital in-
formation between two tasks, so that the modality/semantic
features can be fully mutual-interactive. In addition, a dy-

namic weight factor is introduced to automatically adjust
the corresponding weights of each task, which can balance
the interactive feature correspondence and break through
the limitation of laborious tuning. Furthermore, we con-
struct a smart multi-wave binocular imaging system and
collect a full-time multi-modality benchmark with 15 anno-
tated pixel-level categories for image fusion and segmenta-
tion. Extensive experiments on several public datasets and
our benchmark demonstrate that the proposed method out-
puts visually appealing fused images and perform averagely
7.66% higher segmentation mIoU in the real-world scene
than the state-of-the-art approaches. The source code and
benchmark are available at https://github.com/
JinyuanLiu-CV/SegMiF.

1. Introduction
Accurate and robust scene parsing[1, 2] is a fundamen-

tal technology for autonomous driving. However, in com-
plex environments, e.g., inclement weather, only using visi-
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ble sensors may fail to accurately recognize targets. On the
contrary, infrared sensors are free from the aforementioned
issues but limited in low spatial resolution. Consequently,
fusing the infrared and visible image [3, 4, 5, 6, 7] has be-
come a mainstream solution for better scene understanding.

Multi-modality fusion for scene parsing needs to pro-
vide: (i). robust visual appealing image: they require con-
tinually generating high-quality images in dynamic scenes.
(ii). accurate semantic segmentation: they demand to assign
category labels to each pixel. Towards these goals, jointly
solving multi-modality image fusion and segmentation be-
comes an urgent issue.

Numerous learning-based multi-modality image fusion
methods have been fast development [8, 9, 10, 11, 12].
However, most of them concentrate on developing vari-
ous networks for generating visual-appealing images rather
than considering the follow-up high-level vision tasks, pos-
ing an obstacle to better scene parsing. Recently, few
studies[13, 14, 15, 16] have attempted to design multi-task
learning-based loss functions by cascading the fusion net-
work and high-level tasks. Unfortunately, seeking unified
appropriate features for either task simultaneously is still a
tough issue.

Moreover, exploring multi-modality fusion and seg-
mentation demands a comprehensive collection of well-
alignment image pairs with pixel-level annotated labels.
Also, as for one image, the annotated needs to cover a wide
range of pixels. Unfortunately, existing multi-modality data
collections either focus on image fusion or lack whole im-
age annotated segmentation labels, placing an obstacle to
exploring the correlation of the fusion and segmentation.

This paper proposes a multi-interactive feature learn-
ing architecture for the joint problem of multi-modality fu-
sion and segmentation, namely SegMiF. SegMiF is con-
structed by a fusion network and a segmentation network,
in which the intrinsic features of either one interact via
a new proposed hierarchical interactive attention (HIA).
HIA fully integrates semantic-/modality-oriented features
by fine-grained mapping. We also derive a dynamic weight-
ing factor and seamless it in the interactive training scheme,
to automatically learn the optimal parameters for either task.
Figure 1 demonstrates that our SegMiF assigns the category
to each pixel from the visual-friendly fused result more ac-
curately than the state-of-the-arts (SOTAs). Our contribu-
tions can be distilled into four main aspects as follows:

• We formulate both image fusion and segmentation
in a joint manner, in which the semantic and pixel-
based features can mutually interact. To this end, two
tasks can achieve the ‘Best of Both Worlds’, generat-
ing visual-appealing fused images along with accurate
scene parsing.

• A hierarchical interactive attention is introduced to
bridge the feature gap between the fusion network

and the segmentation one. Establishing the seman-
tic/modality multi-head attention mechanism in HIA
simultaneously preserves intrinsic modality features
and brings more attention to semantic features.

• An interactive feature training scheme is proposed to
overcome the shortcoming of insufficient feature inter-
action between fusion and segmentation. Seamlessly
integrating a dynamic weighting factor allows the ex-
ploration of the optimal parameters of each task in an
automatic manner.

• We construct a smart multi-wave binocular imag-
ing system, and introduce a full-time multi-modality
benchmark, namely FMB, to promote the research of
both image fusion and segmentation. FMB contains
1500 well-registered infrared and visible image pairs
with 15 annotated pixel-level categories (see the left
part of Figure 1). Also, it covers a wide range of pixel
variations and various severe environments, e.g., dense
fog, heavy rain, and low-light condition.

2. Related Works

Multi-modality image fusion In recent years, deep learn-
ing based multi-modality image fusion approaches achieved
significant progress[11, 12, 17, 18, 19]. Early efforts [8, 9,
10, 20, 21] tend to achieve excellent fusion effects by ad-
justing the network structure or loss functions. However,
a minority pay attention to whether the downstream tasks
can be well adapted to fusion. DIDFuse [10] was the first
to apply deep decomposition for high and low-frequency
features, while AUIF [22] proposed a decomposition and
fusion framework based on algorithm unfolding from an
optimization perspective. Subsequently, CDDFuse [6] up-
graded the decomposition network to a Transformer-CNN
dual-stream structure. DDFM [7], for the first time, uti-
lized denoising diffusion models for image fusion tasks.
Recently, some methods [23, 13, 24] cascaded fusion and
downstream tasks, focusing on improving task performance
by achieving oriented fusion. Nevertheless, this kind of na-
tive gradient back propagation hinders the fusion network to
adapt to subsequent tasks heuristicly from the feature level.

Multi-modality Segmentation Recently, two-stream-
based feature fusion models are proposed to perform the
segmentation directly. Most of existing methods mostly de-
velop various simple fusion strategies, such as the weighted
average [25, 26, 27], summation [28, 29] and concatena-
tion [30, 31]. Nonetheless, direct feature fusion lacks ex-
plicit fusion principle to preserve the typical modality fea-
ture and pay no attention to the pixel-level visual effects.
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Figure 2: Workflow of our proposed SegMiF. The left part depicts the latent interactive relationship between image fusion
and segmentation. The middle part plots the concrete architecture of the SegMiF. The right part details the components of
proposed hierarchical interactive attention.

3. The Proposed Method
3.1. Problem formulation

As for image fusion or segmentation tasks, one of the
most commonly used ways is to design a neural network,
and fully utilize it to find a set of optimal parameters. For
this purpose, we suppose that the visible, infrared, and fused
image are all gray-scale with the size of m× n, denoted as
column vectors x, y, and u ∈ Rmn×1, respectively. The
optimization model is formulated as:

min
ωk

f
(
k,N (x,y;ωk)

)
, (1)

where k denotes the output of the task-related network N
with the learnable parameters ωk. f (·) is a fidelity term.

Previous approaches solely design image fusion or seg-
mentation networks, which only can achieve outstanding re-
sults for one task. To generate visual-appealing fused im-
ages along with accurate scene segmentation results, we
jointly formulate the two tasks into one goal [32, 33, 34],
which can be rewritten as:

min
ωu,ωs

fu
(
u,Φ(x,y;ωu)

)
+ fs

(
s,Ψ(x,y;ωs)

)
+ g(ω⋆), (2)

where ω⋆ = [ωu,ωs]. u and s denote the fused image
and segmentation map, which are produced by the fusion
network Φ and segmentation network Ψ with the learnable
parameters ωu and ωs. g (·) is a constrained term to joint
optimize the two tasks. In this paper, we regard the g (·) as
a feature learning constrained manner, and achieve this goal
by designing a hierarchical attention along with the interac-
tive training scheme. The visualized illustration is plotted
in the left part of Figure 2.

3.2. Feature interaction architecture

Overview of the whole network. Our proposed SegMiF
is designed with cascade principle, composited by image

fusion and segmentation sub-network. Details of the whole
architecture is shown at Figure 2. In specific, we utilize
two parallel dilated residual dense blocks (DRDB) [35, 36]
to extract features from visual and infrared images. Seg-
Former [37] is leveraged as the baseline segmentation net-
work to provide semantic parsing. Two scales of semantic
features from the backbone, interpolated with original res-
olutions are embedded into fusion network. In order to suf-
ficiently realize the semantic information sharing, we pro-
pose the hierarchical interactive attention (HIA) to transfer
high-level knowledge.

Hierarchical interactive attention. After obtaining
modality feature Fir,Fvis from fusion network and seg-
mentation feature Fseg , we build the HIA to construct
the fine-grained mapping of these features and strengthen
the mutually beneficial representation. Features including
Fir,Fvis and Fseg as inputs, two attention mechanisms are
leveraged to globally exchange intermediate features. Con-
catenating features from attentions, fresh modality features
are generated based on a residual connection.

In detail, channel embedding is utilize to decompose
modality/semantic features. We can denote the outputs from
the linear embedding as {Fs

x,F
m
x }with size Rmn×C , where

x ∈ {ir, vis, seg} is under a vector formulation. Instead of
utilizing the original self-attention mechanisms directly, we
bridge these features with complementary interaction from
different representation subspaces by MoAM and SoAM.

Multi-head attention Multi-head attention Multi-head attention Multi-head attention

infrared token semantic token visible token

Semantic-oriented attention module

infrared token semantic token visible token

Modality-oriented attention module

Figure 3: Detailed architectures of SoAM and MoAM.

Both multi-head attention modules are plotted in Fig-
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ure 3. Semantic-oriented attention module targets to pro-
vide more semantic attention for the modality feature.
SoAM utilizes the token Fs

seg to generate the Query Qs,
which represents the inhere semantic information that needs
to be enhanced. The global context representation of each
can be calculated by as Kir

TVir and Kvis
TVvis, where the

corresponding Key and Value of each head are from the
modality tokens {Fm

ir ,F
m
vis}. Denoted the modality context

representation as Gir, Gvis, we can calculate the attention
as Sir = QsGir and Svis = QsGvis. On the other hand,
MoAM is with the complementary principle to investigate
the significant feature from semantic contexts. Specifically,
MoAM is to introduce two modality queries Qir, Qvis to
represent the intrinsic modality feature (e.g., targets and de-
tails) from {Fm

ir ,F
m
vis}. Similarly, we can obtain the global

context of segmentation Gs by Ks
TVs. The cross atten-

tion can be formulated as Mvis = QsGvis and Mvis =
QsGvis. By concatenating the groups {Svis,Mvis} and
{Sir,Mir}, we can obtain the comprehensive features with
two parallel MLPs with residual connection to aggregate
features from SoAM and MoAM.

3.3. Loss function

The total loss function is combined of an image fusion
loss function Lf and segmentation loss Ls. Lf consists
of three types of losses, i.e., structure loss LSSIM, pixel
loss LMSE and gradient loss Lgrad. For one fused image, it
should preserve overall structures from source images. To
this end, the structural similarity index (SSIM) [38, 39, 40,
41] is introduced in function:

LSSIM = (1− SSIMu,x)/2 + (1− SSIMu,y)/2, (3)

where LSSIM denotes structure similarity loss. To main-
tains the vital intensity in the fused image, we employ the
saliency-based pixel loss, it formulated as :

LMSE = ∥u−m1x∥22 + ∥u−m2y∥22, (4)

where m1 and m2 are saliency weight maps calculated by
VSM [42]. Besides, gradient information of images always
characterizes texture details, thus, we used Lgrad to con-
strain these textual factors to a multi-scale manner:

Lgrad =
∑

k=3,5,7

∥∇ku−max(∇kx,∇ky)∥22 (5)

where ∇ denotes gradient operators that calculate by ∇ =
u − G(u) with combination of different Gauss (G) kernel
size k. Totally, we obtained Lf = LSSIM + LMSE + ηLgrad.

Common to previous works, Ls is defined as:

Ls(s, s∗) = −
∑
class

s∗ log(s), (6)

where s∗ represents the segmentation label. We adopt the
effective semantic segmentation method SegFormer net-
work Ψ [37]. The total loss function is:

Ltotal = λ1Lf + λ2Ls, (7)

where λ1 and λ2 are dynamic weighting factor which will
be discussed below.

3.4. Dynamic factor for interactive learning

By exploiting an alternatively recurrent iterations, we
can progressively introduce the task-preferred features into
the framework optimization. As mentioned above, at the
phase of image fusion, we introduce the dynamic weighting
factors λ1 and λ2 to rapidly measure the importance of task-
related losses. We observe that the task-specific balance can
be derived from the convergent rate. The intuition is that if
the value of losses cannot be further descended, the network
may obtain the corresponding optimal weights. If the con-
vergent rate descends fast, we should pay more attention to
this task. Learning from the dynamic weight average [43],
we further present the factor of task preference η to empha-
size the primary goal. Denoted ri as the convergent rate of
i-th task with loss Li, we can compute the rate as:

ri(n− 1) =
Li(n− 1)

Li(n− 2)
. (8)

Then the procedure of dynamic weight factor of i-th task is
formulated as:

λi(n) =
ηiexp(ri(n− 1)/T )∑
k exp(rk(n− 1)/T )

, (9)

where T is a temperature to control the sensitiveness of two
tasks. Different from widely sued GDN [44], this dynamic
strategy can actually avoid the complicated computation of
various task gradients.

Then based on the fusion image generated with semantic
feature, we can train the segmentation network end-to-end,
using the gradient decending ωs ← ωs − ∇ωs

Ls(u;ωs).
The two learning processes are trained alternately until full
convergence. Noting that, this training strategy is actually
task-agnostic, we also can introduce other different high-
level vision tasks into the unified consideration, rather than
designing for segmentation unilaterally.

4. Full-time Multi-modality Benchmark
Existing two multi-modality segmentation datasets suf-

fer from few label categories, sparse annotation and
monotonous scene, as shown in Figure 6. The proposed
FMB dataset aims to overcome these difficulties and pro-
mote the development of whole field. A glimpse of FMB is
given in Figure 4 .
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Figure 4: Visualization of visible/infrared/segmentation images in the proposed FMB dataset. The dataset contains a wide
range of real driving scenes under different lighting conditions, and also includes special scenarios with rain, fog, strong
light, and even Tyndall Effect.

Figure 5: Illustration of the binocular imaging system.

We built a binocular imaging system that can be placed
on the car roof, including a visible camera and an infrared
sensor with a wavelength range of 8-14µm(as shown in the
Figure 5). We finally obtained 1500 aligned image pairs
with a resolution of 800×600. In details, two sensors are in-
dividually calibrated using their respected calibration board
to obtain internal parameters, and their relative pose rela-
tionship is obtained through joint calibration. We calculate
the homography matrix H by employing RANSAC1. The
infrared images are projected onto visible coordinates using
H and cropped, ultimately resulting in pixel-level registered
image pairs with a size of 800×600.

The FMB dataset includes rich scenes under dif-
ferent illumination conditions, so that it enables fu-
sion/segmentation model to improve the generalization abil-
ity greatly. We labeled 98.16% of all pixels into 14 differ-
ent categories including Road, Sidewalk, Building, Traffic
Light, Traffic Sign, Vegetation, Sky, Person, Car, Truck, Bus,
Motorcycle, Bicycle and Pole, which often appear in real-
world automatic driving and semantic understanding tasks.

5. Experiments
Two representative datasets including MFNet and pro-

posed FMB are utilized for the training and evaluation. The
details of these datasets are reported in the above section.
Several data augmentation techniques are utilized for the
whole training procedure: random resizing with a ratio of

1Efficient RANSAC for point-cloud shape detection

PST900 MFNet FMB

Figure 6: Comparison of FMB with existing multi-modality
segmentation datasets (i.e., PST900 [31] and MFNet [30]).

0.5-2.0, random cropping to 360×360, brightness distortion
and normalization. The Adam optimizer with poly learning
rate adjustment is utilized to optimize both networks. As
for the fusion, the initial learning rate is 1e−4 and decayed
to 1e−8 progressively. As for segmentation, we first utilized
1e−6 to warm start the training with 3k iterations, then we
conducted the training with intilial learning rate 8e−5. With
batch size of 8, we trained the framework for 8 rounds. For
each round, we set 10k iterations for training segmentation
and 5k iterations for fusion. Noting that, a similar config-
uration of segmentation is also utilized for the training of
fusion-based methods. All experiments are performed on
an NVIDIA Tesla V100 GPU with PyTorch framework.

5.1. Results of multi-modality image fusion

We demonstrate our fusion quality based on qualitative
and quantitative analyses with six state-of-the-art com-
petitors, including DIDFuse [10], DenseFuse [45],
ReCoNet[11], UMFusion[12], TarDAL[13] and
U2Fusion [9].
Qualitative Comparisons. The qualitative results on
MFNet and FMB datasets are depicted in Figure 7, in which
we can clearly observe two remarkable advantages of our
method. First, the significant characteristics of infrared im-
ages can be effectively highlighted. For instance, as shown
on the green rectangle of the first group, DIDFuse, ReCoNet
and TarDAL are susceptible to strong illumination. In con-
trast, our method can remarkably preserve this information
from infrared images, e.g., the structure of cars and pedestri-
ans. Furthermore, benefiting from the guidance of semantic
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Source images DIDFuse DenseFuse ReCoNet UMFusion TarDAL U2Fusion Ours

Figure 7: Visual comparison of different fusion approaches on the MFNet and FMB dataset, respectively.

Figure 8: Quantitative comparisons of image fusion with six SOTA methods on two datasets. Violin plots illustrating the
distribution of the four metrics, in which the white triangles and the black lines indicate mean values and medium values.

Figure 9: Qualitative demonstrations of different approaches on the MFNet dataset.

information, our method can enhance the texture details of
the given scene from either dataset. Compared with other
competitors in the second row of Figure 7, our results ex-
hibit a sharper appearance.

Quantitative Comparisons. We also plot the numerical
results with other six fusion competitors on 50 pairs from
MFNet and 50 pairs from FMB in Figure 8. Four objec-
tive metrics are leveraged for the comparison, including
entropy (EN)[46], standard deviation (SD)[47], spatial fre-
quency (SF)[48] and the sum of the correlations of differ-
ences (SCD)[49]. Note that our results achieve consistent
superiority in terms of these statistical metrics. Specifically,
the highest EN and SCD indicate that our method can sig-
nificantly preserve the largest amount of considerable infor-
mation transferred from source images. Moreover, the im-
mense average value on SD reflects the high pixel contrast
for visual observations. Furthermore, higher SF reflects our

method has rich texture details and contrasts. In summary,
our method enhances the texture details for precise obser-
vation and stably preserves abundant typical information to
support semantic parsing tasks.

5.2. Results of multi-modality segmentation

We provide another comprehensive analysis for image
segmentation. Besides comparing with the newest fusion-
based methods, we also conduct the evaluations with com-
petitive dual-stream methods: GMNet [50], FEANet [51],
EGFNet [52], ABMDRNet [53] and LASNet [54].2

Qualitative Comparisons. Visualized results of segmenta-
tion on MFNet are depicted in Figure 9. We also compare
various competitive methods in Figure 10 under the newly
proposed dataset, which is more challenging with rich cate-
gories, complex imaging conditions and complicated scene

2We also retrained dual-stream methods on the FMB dataset.
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Figure 10: Qualitative demonstrations for the different methods in daytime and nighttime scenarios on FMB benchmark.

Methods
Unlabel Car Person Bike Curve Car Stop Cone Bump

mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

Visible 98.2 97.5 94.6 82.2 81.7 54.7 71.2 61.0 54.9 21.6 61.9 16.6 82.1 43.7 77.3 30.8 69.7 45.9
Infrared 98.6 97.4 90.3 81.8 85.3 67.3 71.6 54.8 51.3 37.3 53.8 24.3 64.7 33.4 70.2 48.0 65.6 49.9
LASNet 99.2 97.4 94.9 84.2 81.7 67.1 82.1 56.9 70.7 41.1 56.8 39.6 58.1 48.8 77.2 40.1 75.4 54.9
EGFNet 99.3 97.7 95.8 87.6 89.0 69.8 80.6 58.8 71.5 42.8 48.7 33.8 65.3 48.3 71.1 47.1 72.7 54.8
FEANet 99.1 97.8 93.9 87.8 82.7 71.1 76.7 61.1 65.5 46.5 26.6 22.1 66.6 55.3 77.3 48.9 73.2 55.3
ABMDR 99.3 98.4 94.3 84.8 90.0 69.6 75.7 60.3 64.0 45.1 44.1 33.1 61.7 47.4 66.2 50.0 69.5 54.8
DIDFuse 98.0 97.3 95.0 79.1 79.5 64.0 80.2 58.5 44.1 19.9 64.0 23.3 77.5 37.8 69.0 20.4 67.5 44.5
ReCoNet 98.1 97.3 95.8 80.4 88.9 60.0 65.0 55.4 47.0 20.7 69.0 25.8 77.8 39.8 46.6 17.4 65.9 44.5
U2Fusion 98.3 97.7 95.2 82.8 85.4 64.8 77.7 61.0 62.7 32.3 66.7 20.9 75.5 45.2 82.3 50.2 71.9 50.8
TarDAL 98.3 97.6 93.5 80.7 86.2 67.1 76.5 60.1 53.8 34.9 55.3 10.5 88.6 38.7 90.6 45.5 71.7 48.6

Ours 98.7 98.1 96.3 87.8 89.6 71.4 81.2 63.2 63.5 47.5 66.7 31.1 85.3 48.9 84.8 50.3 74.8 56.1

Table 1: Quantitative semantic segmentation results of different methods on the MFNet dataset.

details. As discussed above, existing fusion methods can-
not highlight the dimness of infrared targets, and the distant
pedestrian can not be recognized. As for dual-stream meth-
ods, which utilize the modality feature directly, they are
easy to introduce conflicts and weaken the accuracy with-
out a clear feature fusion principle. The results, such as the
car occluded by barriers (the first column of Figure 9) and
the shape of the human (the second column of Figure 10)
can not be precisely classified. It is worth mentioning that
interaction feature learning from segmentation can drasti-
cally transfer the complementary characteristics for image
fusion and further improve the segmentation performance.
Thus, our method can continuously classify the objects of
diverse scenes with high accuracy.

Quantitative Comparisons. Table 1 and Table 2 reported
the qualitative results among different categories of com-
petitors on MFNet and FMB datasets. These results illus-
trate our method is ahead of other state-of-the-art methods
by a large margin on both segmentation datasets. Noting
that our numerical results outperform other methods con-
cerning mIOU and rank second in terms of mACC. Com-
pared with the second one, our method improves 7.66% and
1.45% of mIOU on FMB and MFNet respectively. More
specifically, the classification of Car and Person is impor-
tant for the current intelligent perception system. The top
two results in these two categories indicate the high perfor-

mance of our method to employ for real-world perception.
On the other hand, for thermal-insensitive categories, such
as traffic sign, building, bump, due to the effective visual
quality preservation and enhancement, our method achieves
significant superiority.

5.3. Ablation studies

Study on HIA. HIA plays a key role in preserving in-
trinsic modality features from the semantic feature guid-
ance. Firstly, we visualized the representative feature to
discuss the effectiveness of HIA in Figure 11. Clearly, HIA
can remarkably preserve the salient infrared features with
abundant semantic information, avoiding the interference
of harsh weather and strong light. Then we plot different
variants of HIA to illustrate the inner mechanisms of HIA.
As shown in Figure 12. Obviously, the version w/o SoAM
loses the classify ability to distinguish confused objectives,
e.g., the orange circle in the second row. Meanwhile, “w/o
MoAM” cannot protect the details at nighttime with color
distortion, e.g, the building in the distance. It is worth point-
ing out that our full model not only provides clear visual
observation but also has high sensitiveness to segmentation.
Similarly, the quantitative results reported in Table 3 also
demonstrate the effectiveness of full HIA for both segmen-
tation benchmarks compared with direct aggregation and
other model variants. In brief, HIA is capable enough to
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Methods
Car Person Truck T- Lamp T-Sign Building Vegetation Pole

mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

Visible 84.5 78.3 78.1 46.6 73.2 43.4 82.5 23.7 83.6 64.0 89.0 77.8 88.5 82.1 71.6 41.8 73.5 50.5
Infrared 75.6 69.1 89.9 63.3 66.6 12.6 63.1 24.7 80.5 52.9 87.4 78.0 83.7 75.5 62.1 23.0 69.6 43.9
GMNet 87.6 79.3 77.3 60.1 49.0 22.2 54.1 21.6 78.5 69.0 89.1 79.1 88.9 83.8 59.7 39.8 64.4 49.2
LASNet 81.3 72.6 76.4 48.6 29.6 14.8 20.7 2.9 79.3 59.0 86.9 75.4 87.6 81.6 56.6 36.7 56.9 42.5
EGFNet 83.6 77.4 79.5 63.0 33.5 17.1 58.6 25.2 82.6 66.6 88.5 77.2 89.3 83.5 63.8 41.5 63.0 47.3
FEANet 82.3 73.9 78.8 60.7 44.7 32.3 53.6 13.5 73.3 55.6 87.6 79.4 89.0 81.2 66.2 36.8 64.5 46.8
DIDFuse 86.3 77.7 87.4 64.4 66.3 28.8 75.9 29.2 81.1 64.4 87.1 78.4 89.5 82.4 79.2 41.8 73.0 50.6
ReCoNet 83.7 75.9 87.7 65.8 34.7 14.9 83.3 34.7 85.6 66.6 89.0 79.2 88.2 81.3 73.3 44.9 71.4 50.9
U2Fusion 85.0 76.6 87.7 61.9 84.6 14.4 75.1 28.3 81.3 68.9 89.5 78.8 92.5 82.2 74.5 42.2 70.1 47.9
TarDAL 81.8 74.2 93.3 56.0 66.3 18.8 75.0 29.6 81.2 66.5 88.1 79.1 87.9 81.7 65.9 41.9 74.8 48.1

Ours 85.3 78.3 78.3 65.4 74.4 47.3 86.4 43.1 86.1 74.8 90.0 82.0 91.6 85.0 72.5 49.8 74.5 54.8

Table 2: Quantitative semantic segmentation results of different methods on the FMB dataset.

bridge the fusion and segmentation tasks.

Figure 11: Feature visualization of different stages. From
left to right: visible image, infrared image, their features,
w/o HIA, and w/ HIA.

Model
HIA MF Dataset FMB Dataset

SoAM MoAM mAcc mIoU mAcc mIoU

“Concatenate” ✗ ✗ 72.6 52.7 72.3 51.3

“Summation” ✗ ✗ 71.5 52.6 73.7 52.1

“Average” ✗ ✗ 72.9 52.1 72.4 50.7

M1 ✗ ✗ 67.2 51.9 72.4 50.5

M2 ✗ ✔ 73.6 55.0 72.7 52.3

M3 ✔ ✗ 72.0 53.4 73.1 54.1

M4 ✔ ✔ 74.8 56.1 74.5 54.8

Table 3: Numerical results about the effectiveness of HIA.
The first three are the results of direct feature aggregation.
Latter are the results of model variants with HIA.

Analyzing the dynamic factor. We discussed the im-
pact of the proposed dynamic factor for interactive learning
compared with existing multi-task optimization methods, as
shown in Figure 13. Manual adjustment requires plenty of
prior knowledge and labor consumption. But concurrently,
it achieves decent segmentation results. The other five train-
ing strategies hardly coordinate the relationship between the
two tasks and fail to achieve good visualization and segmen-
tation performance. The dynamic factor enables to better
introduce task preferences into optimization, thus achieving

excellent results on both tasks.

w/o HIA w/o SoAM w/o MoAM Full Model

Figure 12: Visual comparisons of different models.

Manual DWA[43] GLS[55] GDN[44] RLM[56] UW[57] Ours

Figure 13: Comparisons of different strategies of adjusting
dynamic factors.

6. Conclusion
In this paper, a multi-interactive architecture was pro-

posed to formulate fusion and segmentation in a harmo-
nious manner. We introduced a hierarchical interactive at-
tention with dynamic factors, which bridges gaps of cross-
task features from architecture and learning perspectives.
In addition, we proposed a comprehensive full-time multi-
modality benchmark, with well-registered targets, abundant
scenes and affluent labels.
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